One of the most important of these emissions is fine particulate matter,which is a harmful emission of diesel engines,leading to the imposition of strict regulations.Biodiesel,with its high oxygen content,is an effect...One of the most important of these emissions is fine particulate matter,which is a harmful emission of diesel engines,leading to the imposition of strict regulations.Biodiesel,with its high oxygen content,is an effective alternative to significantly reduce these emissions.In this study,rapeseed methyl ester(RME)was used as a diesel engine fuel and the emitted particulate matter was comparedwith ultra-lowsulfur diesel(ULSD).Inmost experimental studies,the emission of soot wasmeasured.In this work,the effects of injection timing,injection pressure(IP),and engine load on fine particulate matter in both nucleation and accumulation modes were studied.The results show that IP increases the number of particles in the accumulation mode while the number of particles in the crystallization mode is higher for rapeseed methyl ester(RME)than for ultra-low sulfur diesel(ULSD).Conversely,the formation rates of particles in the accumulationmode are higher for ULSD.Cumulative concentration numbers(CCN)are generally higher for RME in crystallization mode but higher for ULSD in accumulation mode.Increasing the IP reduces the CCN values.The particle size in crystallizationmode reaches a maximum of 22 nm at IPs of 800 and 1000 bar but decreases to 15 nm at 1200 bar.Most fine particles fall in the 5–100 nm diameter range.High engine loads reduce the particle size distribution in nucleationmode for both fuels,with a slight increase in particle size in nucleationmode.Thestudy concluded that the use of rapeseed methyl ester as an engine fuel benefits the environment and improves air quality due to the significant reduction in the size,number,and concentration of nano-soot particles and total particles emitted from the engine.展开更多
Photonic crystal surface emitting lasers(PCSELs)utilize the Bragg diffraction of two-dimensional photonic crystals to achieve a single-mode output with a high power and a small divergence angle,and has recently attrac...Photonic crystal surface emitting lasers(PCSELs)utilize the Bragg diffraction of two-dimensional photonic crystals to achieve a single-mode output with a high power and a small divergence angle,and has recently attracted much attention^([1−3]).In 2023,Kyoto University reported GaAs-based 945 nm PCSELs with a continuous-wave(CW)single-mode output power of exceeding 50 W,and a narrow beam divergence angle of 0.05°,demonstrating a brightness of 1 GW·cm^(−2)·sr^(−1),which rivals those of the existing bulky lasers^([4]).展开更多
Propofol(2,6-di-isopropylphenol) is a short-acting,intravenous sedative drug.^([1,2]) The pharmacologic mechanism of propofol is related to its agonistic effects on the gamma-amino butyric acid receptor.^([1-3]) Propo...Propofol(2,6-di-isopropylphenol) is a short-acting,intravenous sedative drug.^([1,2]) The pharmacologic mechanism of propofol is related to its agonistic effects on the gamma-amino butyric acid receptor.^([1-3]) Propofol injection pain(PIP) is well-known in the operating room and is commonly countered by the prophylactic administration of lidocaine.In anesthesia,PIP is encountered in 28%–90% of patients.^([4,5]) However,PIPprophylaxis does not seem to be efficacious in every population.^([6,7]) Whether procedural sedation and analgesia(PSA) in the emergency department(ED) warrants lidocaine administration is unclear.展开更多
Myocardial infarction (MI) continues to be the primary cause of death globally. Oxidative stress in the initial phase of MI, followed by uncontrolled and excessive myocardial fibrosis, significantly impedes cardiac re...Myocardial infarction (MI) continues to be the primary cause of death globally. Oxidative stress in the initial phase of MI, followed by uncontrolled and excessive myocardial fibrosis, significantly impedes cardiac repair efficiency post-MI, culminating in adverse ventricular remodeling and potential heart failure. To address the diverse pathological stages of MI, an injectable composite hydrogel containing versatile nanoparticles was developed. In this study, mesoporous silicon nanoparticles (MSNs) served as carriers for encapsulating microRNA-29b (miR-29b) mimics with antifibrotic activity, subsequently coated with a complex of natural antioxidant tannic acid and zinc ions (TA/Zn). These nanoparticles were then embedded into a biocompatible alginate hydrogel to enhance retention within the infarcted myocardium. Upon injection into the infarcted region of MI mice, the composite hydrogel gradually released the nanoparticles as it degraded. Initially, the TA/Zn complex on the outer layer scavenged reactive oxygen species, thereby inhibiting cell apoptosis. The subsequent dissociation of the TA/Zn complex led to the release of the encapsulated miR-29b mimics that could inhibit the activation of cardiac fibroblasts and collagen production, thereby alleviating fibrosis progression. Overall, this composite hydrogel demonstrated the potential to reduce infarct size and improve cardiac function, suggesting its promise as a synergistic therapeutic approach for repairing infarcted myocardium.展开更多
Following high-level diplomacy,a recent forum has bridged China and Spanish-and Portuguese-speaking countries by injecting substance into cooperation frameworks through a new education alliance and concrete projects.
This paper investigates the application of Direct Current Atmospheric Plasma Spraying(DC-APS)as a versatile thermal spray technique for the application of coatings with tailored properties to various substrates.The pr...This paper investigates the application of Direct Current Atmospheric Plasma Spraying(DC-APS)as a versatile thermal spray technique for the application of coatings with tailored properties to various substrates.The process uses a high-speed,high-temperature plasma jet to melt and propel the feedstock powder particles,making it particularly useful for improving the performance and durability of components in renewable energy systems such as solar cells,wind turbines,and fuel cells.The integration of nanostructured alumina(Al_(2)O_(3))thin films into multilayer coatings is considered a promising advancement that improves mechanical strength,thermal stability,and environmental resistance.The study highlights the importance of understanding injection parameters and their impact on coating properties and uses simulation tools such as the Jets&Poudres(JP)code for in-depth analysis.Furthermore,the paper discusses the implementation of Artificial Neural Networks(ANN)to optimize the coating process by predicting flight characteristics and improving operating conditions.The results show that ANN models are effective in achieving highly accurate prediction values,highlighting the potential of AI in improving thermal spray technology.展开更多
Nonobstructive azoospermia(NOA)is the most challenging and complex clinical scenario for infertile men.Besides circumstances such as hypogonadotropic hypogonadism,surgical sperm retrieval is typically necessary,and mi...Nonobstructive azoospermia(NOA)is the most challenging and complex clinical scenario for infertile men.Besides circumstances such as hypogonadotropic hypogonadism,surgical sperm retrieval is typically necessary,and microdissection testicular sperm extraction(micro-TESE)is the procedure of choice for men with NOA desiring to father children with their own gametes.Micro-TESE results in the highest numbers of sperm cells retrieved for use with in vitro fertilization/intracytoplasmic sperm injection(ICSI)in comparison to all other techniques for surgical sperm retrieval in men with NOA.Several factors may affect sperm retrieval rate and ICSI outcomes,including the patient’s age,testicular volume,histopathological and genetic profile,and serum hormone levels.This article aims to review the medical literature describing predictors of successful micro-TESE and the outcomes of ICSI in men with NOA.展开更多
The evolution of stresses due to inhomogeneity in metal injection molding (MIM) parts during sintering was investigated. The sintering model of porous materials during densification process was developed based on th...The evolution of stresses due to inhomogeneity in metal injection molding (MIM) parts during sintering was investigated. The sintering model of porous materials during densification process was developed based on the continuum mechanics and thermal elasto-viseoplastic constitutive law. Model parameters were identified from the dilatometer sintering experiment. The real density distribution of green body was measured by X-ray computed tomography (CT), which was regarded as the initial condition of sintering model. Numerical calculation of the above sintering model was carried out with the finite element soRware Abaqus, through the user-defined material mechanical behavior (UMAT). The calculation results showed that shrinkages of low density regions were faster than those of high density regions during sintering, which led to internal stresses. Compressive stresses existed in high density regions and tensile stresses existed in low density regions. The densification of local regions depended on not only the initial density, but also the evolution of stresses during the sintering stage.展开更多
BACKGROUND The previous studies have primarily focused on the influence of botulinum toxin A(BoNT-A)injection on emotions during the period of peak motor symptom improvement in blepharospasm patients,based on facial f...BACKGROUND The previous studies have primarily focused on the influence of botulinum toxin A(BoNT-A)injection on emotions during the period of peak motor symptom improvement in blepharospasm patients,based on facial feedback hypothesis.AIM To evaluate the sustained anxiolytic and antidepressant effects of BoNT-A in blepharospasm patients beyond motor symptom control.METHODS We recruited benign essential blepharospasm patients with BoNT-A treatment and collected their data to compare scale scores of Jankovic Rating Scale,Blepharospasm Disability Index,Self-rating Anxiety Scale(SAS),Self-rating Depression Scale(SDS),Hamilton Anxiety Scale and Hamilton Depression Scale between pretreatment(baseline)and pre-reinjection(treatment),to further assess the effects of repeated treatments with BoNT by using sub-group analyses in the certain special states.RESULTS A total of 21 eligible blepharospasm patients were with the mean age of 58.4 years and a male-to-female ratio of 1:6.Significantly decreases in the subscale scores of SDS and SAS,including SDS well-being index,decreased capacity and hard to decide,SAS inability to sit still and headache were showed at post-a single BoNT-A injection when scale scores of Jankovic Rating Scale and Blepharospasm Disability Index were matched between baseline and posttreatment.With each additional BoNT-A injection,the odds ratio of patients with the moderate depressive symptoms decreased by 92.6%.Moreover,BoNT treatment remained a decrease in the subscale scores of SDS and SAS in patients with repeated injections.CONCLUSION This study is to demonstrate that repeated BoNT-A injection have a long-lasting relief for anxiety and depressive symptoms in blepharospasm even after its motor symptom-modulating effects have diminished.展开更多
Rationale:This case report describes a couple with recurrent fertilization failure despite undergoing multiple cycles of intracytoplasmic sperm injection(ICSI).The principal clinical concern was suspected oocyte activ...Rationale:This case report describes a couple with recurrent fertilization failure despite undergoing multiple cycles of intracytoplasmic sperm injection(ICSI).The principal clinical concern was suspected oocyte activation deficiency(OAD),in which fertilization is impeded due to the oocyte’s inability to initiate embryogenesis,commonly attributed to inadequate intracellular calcium(Ca^(2+))release following sperm injection.Patient concerns:The couple repeatedly experienced complete or near-complete fertilization failure in previous ICSI cycles,raising suspicion of an underlying oocyte activation defect.Diagnosis:Based on the repeated absence of fertilization post-ICSI and clinical history,a diagnosis of suspected OAD leading to recurrent ICSI fertilization failure was considered.Interventions:Artificial oocyte activation(AOA)using the calcium ionophore A23187 was performed.After ICSI,unfertilized oocytes were exposed to the ionophore to induce Ca^(2+)influx,simulating physiological calcium oscillations essential for oocyte activation.The efficacy of intervention was evaluated through subsequent embryonic development,morphological grading,and chromosomal integrity.Outcomes:Following AOA treatment,successful oocyte activation occurred,resulting in the formation of high-grade embryos with normal developmental progression.Chromosomal analysis revealed no detectable abnormalities,indicating genomic stability.Lessons:Calcium ionophore–mediated AOA may serve as an effective adjunct in cases of recurrent ICSI failure attributed to OAD.This case highlights the importance of individualized therapeutic strategies in assisted reproduction;however,further research is needed to refine protocols,validate broader clinical efficacy,and assess long-term safety,including potential epigenetic risks.展开更多
Oscillator IC technique is developed by combining injecting synchronization technique with a ring VCO.Using the technique,a novel 2 488GHz of monolithical integrated injected synchronized ring VCO (ISRVCO) is realize...Oscillator IC technique is developed by combining injecting synchronization technique with a ring VCO.Using the technique,a novel 2 488GHz of monolithical integrated injected synchronized ring VCO (ISRVCO) is realized in a standard 0 25μm CMOS process.The ISRVCO is characterized by the following performances: -100dBc /Hz@1MHz at free running frequency,-91 7dBc/Hz@10kHz when injection is locked.With the 3 3V of power supply,the tuning range is 150MHz and the locking range is 100MHz with 50m V p p signal injection.展开更多
Nanoparticles have already gained attentions for their countless potential applications in enhanced oil recovery.Nano-sized particles would help to recover trapped oil by several mechanisms including interfacial tensi...Nanoparticles have already gained attentions for their countless potential applications in enhanced oil recovery.Nano-sized particles would help to recover trapped oil by several mechanisms including interfacial tension reduction, impulsive emulsion formation and wettability alteration of porous media. The presence of dispersed nanoparticles in injected fluids would enhance the recovery process through their movement towards oil–water interface. This would cause the interfacial tension to be reduced. In this research, the effects of different types of nanoparticles and different nanoparticle concentrations on EOR processes were investigated. Different flooding experiments were investigated to reveal enhancing oil recovery mechanisms. The results showed that nanoparticles have the ability to reduce the IFT as well as contact angle, making the solid surface to more water wet. As nanoparticle concentration increases more trapped oil was produced mainly due to wettability alteration to water wet and IFT reduction. However, pore blockage was also observed due to adsorption of nanoparticles, a phenomenon which caused the injection pressure to increase. Nonetheless, such higher injection pressure could displace some trapped oil in the small pore channels out of the model. The investigated results gave a clear indication that the EOR potential of nanoparticle fluid is significant.展开更多
The two-dimensional steady-state discrete phase mathematical model is developed to analyze gas-particle flow and combustion characteristics of coal particles, as well as components concentration and temperature distri...The two-dimensional steady-state discrete phase mathematical model is developed to analyze gas-particle flow and combustion characteristics of coal particles, as well as components concentration and temperature distribu- tion of coal gas in the process of pulverized coal injection of blast furnace raceway. The results show that a great deal of coal gas discharges on the top of raceway away from the tuyere, and the residence time of coal particles in the re- gion of blowpipe and tuyere is 20 ms or so and 50 ms when it reaches raceway boundary. The pressure is the highest at the bottom of raceway and the maximal temperature is about 2 423 K. The char combustion is mainly carried out in the raceway and the maximum of char burn-out rate attains 3× 10-4 kg/s.展开更多
The auto-gelling and drug release properties of the thermosensitive chitosan-β-glycerophosphate formulation were investigated. According to rheological study, gelation lag time of chitosan/β-glycerophosphate (GP) ...The auto-gelling and drug release properties of the thermosensitive chitosan-β-glycerophosphate formulation were investigated. According to rheological study, gelation lag time of chitosan/β-glycerophosphate (GP) solutions varied from 2 to 60min with different deacetylation degree of chitosan, pH, gelation temperature, and the particles in the sol. The gelation properties were also found to influence the release profilles of a hydrophilic drug, 5-fluorouracil (5-FU). Morphological examination by scanning electron microphotography demonstrated that large "pores" occurred during the gel-forming process, which created hydrophilic environment and led to the rapid initial release of the drug (85% in f'LrSt 8h). Poly-3-hydroxybutyrate (PHB), a biodegradable material, was applied here as scaffold to capture 5-FU into microparticles with high encapsulation efficiency by solvent-nonsolvent method. Combination of these microparticles into the chitosan-β-GP formulation could drop the rapid initial release from 85% down to 29% in the optimized PHB content (75%, by mass). The release could sustain for about 10 months. Tiffs study provided an understanding of the potential of injectable implant using thermosensitive chitosan-β-GP formulation containing PHB based particles for the water soluble drugs that need the property of long-term delivery.展开更多
AIM: To compare the efficacies of subconjunctival bevacizumab, ranibizumab, and pegaptanib sodium injections for the inhibition of corneal neovascularization in an experimental rat model. METHODS: Sixteen corneas of 1...AIM: To compare the efficacies of subconjunctival bevacizumab, ranibizumab, and pegaptanib sodium injections for the inhibition of corneal neovascularization in an experimental rat model. METHODS: Sixteen corneas of 16 rats were chemically cauterized and randomized into four groups: bevacizumab group that treated with 0.05mL/1.25mg bevacizumab, ranibizumab group that treated with 0.05mL/0.5mg ranibizumab, pegaptanib group that treated with 0.05mL/0.15mg pegaptanib sodium, and control group that treated with 0.05mL saline solution. Digital photographs of the corneas were taken and analyzed using an image analysis software program. All corneas were excised and examined histologically on the 15 th day. RESULTS: Each treatment group had significantly less neovascularized corneal areas and fewer blood vessels than the control group (all P 【0.05). In addition, bevacizumab group had significantly less neovascu-larized corneal areas and fewer blood vessels than ranibizumab and pegaptanib groups (both P 【0.05). However, there was no significant difference between the ranibizumab and pegaptanib groups regarding percentage of neovascularized corneal areas and number of blood vessels (both P 】0.05). CONCLUSION: Subconjunctival bevacizumab, ranibiz-umab, and pegaptanib sodium were effective with no corneal epitheliopathy for inhibiting corneal neovascularization after corneal burn in rats .Bevacizumab was more effective than ranibizumab and pegaptanib sodium.展开更多
The mechanisms by which titanium carbide (TiC) improves the properties of tungsten carbide (WC) coatings deposited on duplex stainless steels using laser particle injection technique were investigated. The relatio...The mechanisms by which titanium carbide (TiC) improves the properties of tungsten carbide (WC) coatings deposited on duplex stainless steels using laser particle injection technique were investigated. The relationships between laser process parameters and the synthesized composite were studied. The morphologies and microstructures of the feedstock powders and composite coatings were characterized using scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) techniques. Surface hardness of the composite layers was determined using the Vickers microhardness tester while its corrosion behaviour in 3.5%NaCl solution was investigated by potentiodynamic polarization curve measurement method. As a result of the laser treatment, microstructures characterized by hard ceramic particles with strong bonding to substrate were formed on the surface layer of the steels. The addition of TiC to WC resulted in microstructures free from cracks, pores and intermetallics which could be detrimental to the properties of the composites. High microhardness was observed and most of the coatings shifted the corrosion potential to more noble values with the pseudo-passive curve.展开更多
For most strip-like plastic injection molded parts, whose cross section size is much smaller than their length, the traditional Hele-Shaw model and three-dimensional model do not work well in the prediction of the war...For most strip-like plastic injection molded parts, whose cross section size is much smaller than their length, the traditional Hele-Shaw model and three-dimensional model do not work well in the prediction of the warpage be- cause of their special shape. A new solution was suggested in this work. The strip-like plastic part was regarded as a little-curved beam macrnscopically, and was divided into a few one-dimensional elements. On the section of each elemental node location, two-dimensional thermal finite element analysis was made to obtain the non- uniform thermal stress caused by the time difference of the solidification of the plastic melt in the mold. The stress relaxation, or equivalently, strain creep was dealt with by using a special computing model. On the bases of in-mold elastic stress, the final bending moment to the beam was obtained and the warpage was predict- ed in good a^reement with practical cases.展开更多
Magnetic brain stimulation has greatly contributed to the advancement of neuroscience.However,challenges remain in the power of penetration and precision of magnetic stimulation,especially in small animals.Here,a nove...Magnetic brain stimulation has greatly contributed to the advancement of neuroscience.However,challenges remain in the power of penetration and precision of magnetic stimulation,especially in small animals.Here,a novel combined magnetic stimulation system(c-MSS)was established for brain stimulation in mice.The c-MSS uses a mild magnetic pulse sequence and injection of superparamagnetic iron oxide(SPIO)nanodrugs to elevate local cortical susceptibility.After imaging of the SPIO nanoparticles in the left prelimbic(Pr L)cortex in mice,we determined their safety and physical characteristics.Depressive-like behavior was established in mice using a chronic unpredictable mild stress(CUMS)model.SPIO nanodrugs were then delivered precisely to the left Pr L cortex using in situ injection.A 0.1 T magnetic field(adjustable frequency)was used for magnetic stimulation(5 min/session,two sessions daily).Biomarkers representing therapeutic effects were measured before and after c-MSS intervention.Results showed that c-MSS rapidly improved depressive-like symptoms in CUMS mice after stimulation with a 10 Hz field for 5 d,combined with increased brainderived neurotrophic factor(BDNF)and inactivation of hypothalamic-pituitary-adrenal(HPA)axis function,which enhanced neuronal activity due to SPIO nanoparticle-mediated effects.The c-MSS was safe and effective,representing a novel approach in the selective stimulation of arbitrary cortical targets in small animals,playing a bioelectric role in neural circuit regulation,including antidepressant effects in CUMS mice.This expands the potential applications of magnetic stimulation and progresses brain research towards clinical application.展开更多
A novel concept of treating oil reservoirs by nanofluids is being developed to improve oil recovery and reduce the trapped oil in hydrocarbon reservoirs.Nanoparticles show great potential in enhancing oil recovery und...A novel concept of treating oil reservoirs by nanofluids is being developed to improve oil recovery and reduce the trapped oil in hydrocarbon reservoirs.Nanoparticles show great potential in enhancing oil recovery under ambient conditions.In this paper,the approaches of wettability alteration by using nanofluid,stability of nanofluids,and the most reliable wettability alteration mechanisms associated with variant types of nanoparticles have been reviewed.Moreover,the parameters that have a significant influence on nanofluid flooding have been discussed.Finally,the recent studies of the effect of nanoparticles on wettability alteration have been summarised and analysed.Furthermore,this paper presents possible opportunities and challenges regarding wettability alteration using nanofluids.展开更多
文摘One of the most important of these emissions is fine particulate matter,which is a harmful emission of diesel engines,leading to the imposition of strict regulations.Biodiesel,with its high oxygen content,is an effective alternative to significantly reduce these emissions.In this study,rapeseed methyl ester(RME)was used as a diesel engine fuel and the emitted particulate matter was comparedwith ultra-lowsulfur diesel(ULSD).Inmost experimental studies,the emission of soot wasmeasured.In this work,the effects of injection timing,injection pressure(IP),and engine load on fine particulate matter in both nucleation and accumulation modes were studied.The results show that IP increases the number of particles in the accumulation mode while the number of particles in the crystallization mode is higher for rapeseed methyl ester(RME)than for ultra-low sulfur diesel(ULSD).Conversely,the formation rates of particles in the accumulationmode are higher for ULSD.Cumulative concentration numbers(CCN)are generally higher for RME in crystallization mode but higher for ULSD in accumulation mode.Increasing the IP reduces the CCN values.The particle size in crystallizationmode reaches a maximum of 22 nm at IPs of 800 and 1000 bar but decreases to 15 nm at 1200 bar.Most fine particles fall in the 5–100 nm diameter range.High engine loads reduce the particle size distribution in nucleationmode for both fuels,with a slight increase in particle size in nucleationmode.Thestudy concluded that the use of rapeseed methyl ester as an engine fuel benefits the environment and improves air quality due to the significant reduction in the size,number,and concentration of nano-soot particles and total particles emitted from the engine.
基金funded by National Key R&D Program of China(Grant Nos.2024YFB3612200,2023YFB3609601,2022YFB3604300,2022YFB2802801,2022YFB3604802)Natural Science Foundation of China(Grant Nos.U24A20300,62174174,62274177,62275263,62325406,62374172,62304242,62304240,62404241)+4 种基金Youth Innovation Promotion Association of CAS(Grant Nos.2022323 and 2022324)Key R&D Program of Jiangsu Province(Grant No.BE2023018-2)Basic Research Program of Jiangsu(Grant No.BK20240126)Suzhou Science and Technology Program(Grant Nos.SYC2022089,ZXL2024379,and ZXL2024376)Guangdong Basic and Applied Basic Research Foundation(Grant Nos.2022A1515110482 and 2022A1515110004).
文摘Photonic crystal surface emitting lasers(PCSELs)utilize the Bragg diffraction of two-dimensional photonic crystals to achieve a single-mode output with a high power and a small divergence angle,and has recently attracted much attention^([1−3]).In 2023,Kyoto University reported GaAs-based 945 nm PCSELs with a continuous-wave(CW)single-mode output power of exceeding 50 W,and a narrow beam divergence angle of 0.05°,demonstrating a brightness of 1 GW·cm^(−2)·sr^(−1),which rivals those of the existing bulky lasers^([4]).
文摘Propofol(2,6-di-isopropylphenol) is a short-acting,intravenous sedative drug.^([1,2]) The pharmacologic mechanism of propofol is related to its agonistic effects on the gamma-amino butyric acid receptor.^([1-3]) Propofol injection pain(PIP) is well-known in the operating room and is commonly countered by the prophylactic administration of lidocaine.In anesthesia,PIP is encountered in 28%–90% of patients.^([4,5]) However,PIPprophylaxis does not seem to be efficacious in every population.^([6,7]) Whether procedural sedation and analgesia(PSA) in the emergency department(ED) warrants lidocaine administration is unclear.
基金supported by the Natural Science Foundation of Jiangsu Province(No.BK20231314)the National Natural Science Foundation of China(No.92168203)+4 种基金the National Key R&D Program of China(No.2022YFA1104300)the Jiangsu Cardiovascular Medicine Innovation Center(No.CXZX202210)the Suzhou“Science and Education Revitalize Health”Youth Science and Technology Project(No.KJXW2021001)the Suzhou“Science and Education Revitalize Health”Youth Science and Technology Project(No.KJXW2021001)the Priority Academic Program Development of Jiangsu Higher Education Institutions.
文摘Myocardial infarction (MI) continues to be the primary cause of death globally. Oxidative stress in the initial phase of MI, followed by uncontrolled and excessive myocardial fibrosis, significantly impedes cardiac repair efficiency post-MI, culminating in adverse ventricular remodeling and potential heart failure. To address the diverse pathological stages of MI, an injectable composite hydrogel containing versatile nanoparticles was developed. In this study, mesoporous silicon nanoparticles (MSNs) served as carriers for encapsulating microRNA-29b (miR-29b) mimics with antifibrotic activity, subsequently coated with a complex of natural antioxidant tannic acid and zinc ions (TA/Zn). These nanoparticles were then embedded into a biocompatible alginate hydrogel to enhance retention within the infarcted myocardium. Upon injection into the infarcted region of MI mice, the composite hydrogel gradually released the nanoparticles as it degraded. Initially, the TA/Zn complex on the outer layer scavenged reactive oxygen species, thereby inhibiting cell apoptosis. The subsequent dissociation of the TA/Zn complex led to the release of the encapsulated miR-29b mimics that could inhibit the activation of cardiac fibroblasts and collagen production, thereby alleviating fibrosis progression. Overall, this composite hydrogel demonstrated the potential to reduce infarct size and improve cardiac function, suggesting its promise as a synergistic therapeutic approach for repairing infarcted myocardium.
文摘Following high-level diplomacy,a recent forum has bridged China and Spanish-and Portuguese-speaking countries by injecting substance into cooperation frameworks through a new education alliance and concrete projects.
文摘This paper investigates the application of Direct Current Atmospheric Plasma Spraying(DC-APS)as a versatile thermal spray technique for the application of coatings with tailored properties to various substrates.The process uses a high-speed,high-temperature plasma jet to melt and propel the feedstock powder particles,making it particularly useful for improving the performance and durability of components in renewable energy systems such as solar cells,wind turbines,and fuel cells.The integration of nanostructured alumina(Al_(2)O_(3))thin films into multilayer coatings is considered a promising advancement that improves mechanical strength,thermal stability,and environmental resistance.The study highlights the importance of understanding injection parameters and their impact on coating properties and uses simulation tools such as the Jets&Poudres(JP)code for in-depth analysis.Furthermore,the paper discusses the implementation of Artificial Neural Networks(ANN)to optimize the coating process by predicting flight characteristics and improving operating conditions.The results show that ANN models are effective in achieving highly accurate prediction values,highlighting the potential of AI in improving thermal spray technology.
文摘Nonobstructive azoospermia(NOA)is the most challenging and complex clinical scenario for infertile men.Besides circumstances such as hypogonadotropic hypogonadism,surgical sperm retrieval is typically necessary,and microdissection testicular sperm extraction(micro-TESE)is the procedure of choice for men with NOA desiring to father children with their own gametes.Micro-TESE results in the highest numbers of sperm cells retrieved for use with in vitro fertilization/intracytoplasmic sperm injection(ICSI)in comparison to all other techniques for surgical sperm retrieval in men with NOA.Several factors may affect sperm retrieval rate and ICSI outcomes,including the patient’s age,testicular volume,histopathological and genetic profile,and serum hormone levels.This article aims to review the medical literature describing predictors of successful micro-TESE and the outcomes of ICSI in men with NOA.
基金Project(2011CB606306)supported by the National Basic Research Program of ChinaProject(FRF-TP-10-003B)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(51274040)supported by the National Natural Science Foundation of China
文摘The evolution of stresses due to inhomogeneity in metal injection molding (MIM) parts during sintering was investigated. The sintering model of porous materials during densification process was developed based on the continuum mechanics and thermal elasto-viseoplastic constitutive law. Model parameters were identified from the dilatometer sintering experiment. The real density distribution of green body was measured by X-ray computed tomography (CT), which was regarded as the initial condition of sintering model. Numerical calculation of the above sintering model was carried out with the finite element soRware Abaqus, through the user-defined material mechanical behavior (UMAT). The calculation results showed that shrinkages of low density regions were faster than those of high density regions during sintering, which led to internal stresses. Compressive stresses existed in high density regions and tensile stresses existed in low density regions. The densification of local regions depended on not only the initial density, but also the evolution of stresses during the sintering stage.
基金Supported by the Special Funds of Jiangsu Provincial Key Research and Development Projects,No.BE2019612Scientific Research Project Cooperated by Lanzhou Biotechnology Development Co.,Ltd.+3 种基金the Key R&D Program of Jiangsu Science and Technology Project,No.BE2022049 and No.BE2022049-1National Natural Science Foundation of China,No.82171249Nanjing Rehabilitation Medicine Center ProjectJiangsu Provincial Health Commission Special Fund for Aging and Health.
文摘BACKGROUND The previous studies have primarily focused on the influence of botulinum toxin A(BoNT-A)injection on emotions during the period of peak motor symptom improvement in blepharospasm patients,based on facial feedback hypothesis.AIM To evaluate the sustained anxiolytic and antidepressant effects of BoNT-A in blepharospasm patients beyond motor symptom control.METHODS We recruited benign essential blepharospasm patients with BoNT-A treatment and collected their data to compare scale scores of Jankovic Rating Scale,Blepharospasm Disability Index,Self-rating Anxiety Scale(SAS),Self-rating Depression Scale(SDS),Hamilton Anxiety Scale and Hamilton Depression Scale between pretreatment(baseline)and pre-reinjection(treatment),to further assess the effects of repeated treatments with BoNT by using sub-group analyses in the certain special states.RESULTS A total of 21 eligible blepharospasm patients were with the mean age of 58.4 years and a male-to-female ratio of 1:6.Significantly decreases in the subscale scores of SDS and SAS,including SDS well-being index,decreased capacity and hard to decide,SAS inability to sit still and headache were showed at post-a single BoNT-A injection when scale scores of Jankovic Rating Scale and Blepharospasm Disability Index were matched between baseline and posttreatment.With each additional BoNT-A injection,the odds ratio of patients with the moderate depressive symptoms decreased by 92.6%.Moreover,BoNT treatment remained a decrease in the subscale scores of SDS and SAS in patients with repeated injections.CONCLUSION This study is to demonstrate that repeated BoNT-A injection have a long-lasting relief for anxiety and depressive symptoms in blepharospasm even after its motor symptom-modulating effects have diminished.
文摘Rationale:This case report describes a couple with recurrent fertilization failure despite undergoing multiple cycles of intracytoplasmic sperm injection(ICSI).The principal clinical concern was suspected oocyte activation deficiency(OAD),in which fertilization is impeded due to the oocyte’s inability to initiate embryogenesis,commonly attributed to inadequate intracellular calcium(Ca^(2+))release following sperm injection.Patient concerns:The couple repeatedly experienced complete or near-complete fertilization failure in previous ICSI cycles,raising suspicion of an underlying oocyte activation defect.Diagnosis:Based on the repeated absence of fertilization post-ICSI and clinical history,a diagnosis of suspected OAD leading to recurrent ICSI fertilization failure was considered.Interventions:Artificial oocyte activation(AOA)using the calcium ionophore A23187 was performed.After ICSI,unfertilized oocytes were exposed to the ionophore to induce Ca^(2+)influx,simulating physiological calcium oscillations essential for oocyte activation.The efficacy of intervention was evaluated through subsequent embryonic development,morphological grading,and chromosomal integrity.Outcomes:Following AOA treatment,successful oocyte activation occurred,resulting in the formation of high-grade embryos with normal developmental progression.Chromosomal analysis revealed no detectable abnormalities,indicating genomic stability.Lessons:Calcium ionophore–mediated AOA may serve as an effective adjunct in cases of recurrent ICSI failure attributed to OAD.This case highlights the importance of individualized therapeutic strategies in assisted reproduction;however,further research is needed to refine protocols,validate broader clinical efficacy,and assess long-term safety,including potential epigenetic risks.
文摘Oscillator IC technique is developed by combining injecting synchronization technique with a ring VCO.Using the technique,a novel 2 488GHz of monolithical integrated injected synchronized ring VCO (ISRVCO) is realized in a standard 0 25μm CMOS process.The ISRVCO is characterized by the following performances: -100dBc /Hz@1MHz at free running frequency,-91 7dBc/Hz@10kHz when injection is locked.With the 3 3V of power supply,the tuning range is 150MHz and the locking range is 100MHz with 50m V p p signal injection.
文摘Nanoparticles have already gained attentions for their countless potential applications in enhanced oil recovery.Nano-sized particles would help to recover trapped oil by several mechanisms including interfacial tension reduction, impulsive emulsion formation and wettability alteration of porous media. The presence of dispersed nanoparticles in injected fluids would enhance the recovery process through their movement towards oil–water interface. This would cause the interfacial tension to be reduced. In this research, the effects of different types of nanoparticles and different nanoparticle concentrations on EOR processes were investigated. Different flooding experiments were investigated to reveal enhancing oil recovery mechanisms. The results showed that nanoparticles have the ability to reduce the IFT as well as contact angle, making the solid surface to more water wet. As nanoparticle concentration increases more trapped oil was produced mainly due to wettability alteration to water wet and IFT reduction. However, pore blockage was also observed due to adsorption of nanoparticles, a phenomenon which caused the injection pressure to increase. Nonetheless, such higher injection pressure could displace some trapped oil in the small pore channels out of the model. The investigated results gave a clear indication that the EOR potential of nanoparticle fluid is significant.
基金Item Sponsored by National Natural Science Foundation of China and Shanghai Baosteel Group Co Ltd United Research Foundation(50374085)
文摘The two-dimensional steady-state discrete phase mathematical model is developed to analyze gas-particle flow and combustion characteristics of coal particles, as well as components concentration and temperature distribu- tion of coal gas in the process of pulverized coal injection of blast furnace raceway. The results show that a great deal of coal gas discharges on the top of raceway away from the tuyere, and the residence time of coal particles in the re- gion of blowpipe and tuyere is 20 ms or so and 50 ms when it reaches raceway boundary. The pressure is the highest at the bottom of raceway and the maximal temperature is about 2 423 K. The char combustion is mainly carried out in the raceway and the maximum of char burn-out rate attains 3× 10-4 kg/s.
基金Supported by the National Natural Science Foundation of China (No.20376038) and the Research Foundation of the Ministry ofEducation of China (No.2002003056).
文摘The auto-gelling and drug release properties of the thermosensitive chitosan-β-glycerophosphate formulation were investigated. According to rheological study, gelation lag time of chitosan/β-glycerophosphate (GP) solutions varied from 2 to 60min with different deacetylation degree of chitosan, pH, gelation temperature, and the particles in the sol. The gelation properties were also found to influence the release profilles of a hydrophilic drug, 5-fluorouracil (5-FU). Morphological examination by scanning electron microphotography demonstrated that large "pores" occurred during the gel-forming process, which created hydrophilic environment and led to the rapid initial release of the drug (85% in f'LrSt 8h). Poly-3-hydroxybutyrate (PHB), a biodegradable material, was applied here as scaffold to capture 5-FU into microparticles with high encapsulation efficiency by solvent-nonsolvent method. Combination of these microparticles into the chitosan-β-GP formulation could drop the rapid initial release from 85% down to 29% in the optimized PHB content (75%, by mass). The release could sustain for about 10 months. Tiffs study provided an understanding of the potential of injectable implant using thermosensitive chitosan-β-GP formulation containing PHB based particles for the water soluble drugs that need the property of long-term delivery.
文摘AIM: To compare the efficacies of subconjunctival bevacizumab, ranibizumab, and pegaptanib sodium injections for the inhibition of corneal neovascularization in an experimental rat model. METHODS: Sixteen corneas of 16 rats were chemically cauterized and randomized into four groups: bevacizumab group that treated with 0.05mL/1.25mg bevacizumab, ranibizumab group that treated with 0.05mL/0.5mg ranibizumab, pegaptanib group that treated with 0.05mL/0.15mg pegaptanib sodium, and control group that treated with 0.05mL saline solution. Digital photographs of the corneas were taken and analyzed using an image analysis software program. All corneas were excised and examined histologically on the 15 th day. RESULTS: Each treatment group had significantly less neovascularized corneal areas and fewer blood vessels than the control group (all P 【0.05). In addition, bevacizumab group had significantly less neovascu-larized corneal areas and fewer blood vessels than ranibizumab and pegaptanib groups (both P 【0.05). However, there was no significant difference between the ranibizumab and pegaptanib groups regarding percentage of neovascularized corneal areas and number of blood vessels (both P 】0.05). CONCLUSION: Subconjunctival bevacizumab, ranibiz-umab, and pegaptanib sodium were effective with no corneal epitheliopathy for inhibiting corneal neovascularization after corneal burn in rats .Bevacizumab was more effective than ranibizumab and pegaptanib sodium.
基金the National Research Foundation (NRF) under the National Nanotechnology Equipment Program(NNEP)(74407)The financial support received from Tshwane University of Technology and the African Laser Centre( ALC) for Babatunde Abiodun Obadele during the course of this study is also acknowledged
文摘The mechanisms by which titanium carbide (TiC) improves the properties of tungsten carbide (WC) coatings deposited on duplex stainless steels using laser particle injection technique were investigated. The relationships between laser process parameters and the synthesized composite were studied. The morphologies and microstructures of the feedstock powders and composite coatings were characterized using scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) techniques. Surface hardness of the composite layers was determined using the Vickers microhardness tester while its corrosion behaviour in 3.5%NaCl solution was investigated by potentiodynamic polarization curve measurement method. As a result of the laser treatment, microstructures characterized by hard ceramic particles with strong bonding to substrate were formed on the surface layer of the steels. The addition of TiC to WC resulted in microstructures free from cracks, pores and intermetallics which could be detrimental to the properties of the composites. High microhardness was observed and most of the coatings shifted the corrosion potential to more noble values with the pseudo-passive curve.
基金Supported by the Key Program of National Natural Science Foundation of China(11432003)the Key Research Project for Henan Universities(15A430009)
文摘For most strip-like plastic injection molded parts, whose cross section size is much smaller than their length, the traditional Hele-Shaw model and three-dimensional model do not work well in the prediction of the warpage be- cause of their special shape. A new solution was suggested in this work. The strip-like plastic part was regarded as a little-curved beam macrnscopically, and was divided into a few one-dimensional elements. On the section of each elemental node location, two-dimensional thermal finite element analysis was made to obtain the non- uniform thermal stress caused by the time difference of the solidification of the plastic melt in the mold. The stress relaxation, or equivalently, strain creep was dealt with by using a special computing model. On the bases of in-mold elastic stress, the final bending moment to the beam was obtained and the warpage was predict- ed in good a^reement with practical cases.
基金This work was supported by grants from National Natural Science Foundation of China(81830040 to Z.J.Z.)National Key Projects for Research and Development Program of China(2016YFC1306700 to Z.J.Z.,2017YFA0104302 to N.G.,and 2017YFA0104301 to J.F.S.)Program of Excellent Talents in Medical Science of Jiangsu Province(JCRCA2016006 to Z.J.Z.)。
文摘Magnetic brain stimulation has greatly contributed to the advancement of neuroscience.However,challenges remain in the power of penetration and precision of magnetic stimulation,especially in small animals.Here,a novel combined magnetic stimulation system(c-MSS)was established for brain stimulation in mice.The c-MSS uses a mild magnetic pulse sequence and injection of superparamagnetic iron oxide(SPIO)nanodrugs to elevate local cortical susceptibility.After imaging of the SPIO nanoparticles in the left prelimbic(Pr L)cortex in mice,we determined their safety and physical characteristics.Depressive-like behavior was established in mice using a chronic unpredictable mild stress(CUMS)model.SPIO nanodrugs were then delivered precisely to the left Pr L cortex using in situ injection.A 0.1 T magnetic field(adjustable frequency)was used for magnetic stimulation(5 min/session,two sessions daily).Biomarkers representing therapeutic effects were measured before and after c-MSS intervention.Results showed that c-MSS rapidly improved depressive-like symptoms in CUMS mice after stimulation with a 10 Hz field for 5 d,combined with increased brainderived neurotrophic factor(BDNF)and inactivation of hypothalamic-pituitary-adrenal(HPA)axis function,which enhanced neuronal activity due to SPIO nanoparticle-mediated effects.The c-MSS was safe and effective,representing a novel approach in the selective stimulation of arbitrary cortical targets in small animals,playing a bioelectric role in neural circuit regulation,including antidepressant effects in CUMS mice.This expands the potential applications of magnetic stimulation and progresses brain research towards clinical application.
文摘A novel concept of treating oil reservoirs by nanofluids is being developed to improve oil recovery and reduce the trapped oil in hydrocarbon reservoirs.Nanoparticles show great potential in enhancing oil recovery under ambient conditions.In this paper,the approaches of wettability alteration by using nanofluid,stability of nanofluids,and the most reliable wettability alteration mechanisms associated with variant types of nanoparticles have been reviewed.Moreover,the parameters that have a significant influence on nanofluid flooding have been discussed.Finally,the recent studies of the effect of nanoparticles on wettability alteration have been summarised and analysed.Furthermore,this paper presents possible opportunities and challenges regarding wettability alteration using nanofluids.