期刊文献+
共找到69篇文章
< 1 2 4 >
每页显示 20 50 100
Biofunctional supramolecular injectable hydrogel with spongy-like metal-organic coordination for effective repair of critical-sized calvarial defects
1
作者 Yingqi Chen Zuocheng Qiu +11 位作者 Xueling Hu Tiehua Wang Guoqing Li Ziling Tang Chongzhou Fang Weibei Sheng Jin Zhao Fei Yu Jian Weng Anjaneyulu Udduttula Geetha Manivasagam Hui Zeng 《Asian Journal of Pharmaceutical Sciences》 2025年第1期144-163,共20页
In clinical settings,regenerating critical-sized calvarial bone defects presents substantial problems owing to the intricacy of surgical methods,restricted bone growth medications,and a scarcity of commercial bone gra... In clinical settings,regenerating critical-sized calvarial bone defects presents substantial problems owing to the intricacy of surgical methods,restricted bone growth medications,and a scarcity of commercial bone grafts.To treat this life-threatening issue,improved biofunctional grafts capable of properly healing critical-sized bone defects are required.In this study,we effectively created anti-fracture hydrogel systems using spongy-like metal-organic(magnesium-phosphate)coordinated chitosan-modified injectable hydrogels(CPMg)loaded with a bioinspired neobavaisoflavone(NBF)component.The CPMg-NBF hydrogels showed outstanding anti-fracture capabilities during compression testing and retained exceptional mechanical stability even after 28 d of immersion in phosphatebuffered saline.They also demonstrated prolonged and stable release profiles of Mg^(2+)and NBF.Importantly,CPMg-NBF hydrogels revealed robust biphasic mineralization and were non-toxic to MC3T3-E1 cells.To better understand the underlying mechanism of Mg^(2+)and NBF component,as well as their synergistic effect on osteogenesis,we investigated the expression of key osteogenic proteins in the p38 MAPK and NOTCH pathways.Our results showed that CPMg-NBF hydrogels greatly increased the expression of osteogenic proteins(Runx2,OCN,OPN,BMPS and ALP).In vivo experiments showed that the implantation of CPMg-NBF hydrogels resulted in a significant increase in new bone growth within critical-sized calvarial defects.Based on these findings,we expect that the CPMg-NBF supramolecular hydrogel has tremendous promise for use as a therapeutic biomaterial for treating critical-sized calvarial defects. 展开更多
关键词 injectable hydrogel Magnesium-phosphate Neobavaisoflavone Calvarial defect Bone regeneration
暂未订购
Injectable hydrogel-based tumor vaccine with fibrotic tumor immune microenvironment remodeling to prevent breast cancer postoperative recurrence and metastases
2
作者 Honghao Sun Huimin Zhao +5 位作者 Ronghui Yin Chenxi Zhou Ming Wu Yueyang Deng Zhanwei Zhou Minjie Sun 《Chinese Chemical Letters》 2025年第5期394-400,共7页
Postoperative recurrence and metastasis are still the main challenges of cancer therapy.Tumor vaccines that induce potent and long-lasting immune activation have great potential for postoperative cancer therapy.Howeve... Postoperative recurrence and metastasis are still the main challenges of cancer therapy.Tumor vaccines that induce potent and long-lasting immune activation have great potential for postoperative cancer therapy.However,the clinical effects of therapeutic tumor vaccines are unsatisfactory due to immune escape caused by the lack of immunogenicity after surgery and the local fibrosis barrier of the tumor which limits effector T cell infiltration.To overcome these challenges,we developed an injectable hydrogelbased tumor vaccine,RATG,which contains whole tumor cell lysates(TCL),Toll-like receptor(TLR)7/8 agonist imiquimod(R837)and an antifibrotic drug ARV-825.TCL and R837 were loaded onto the hydrogel to achieve a powerful reservoir of antigens and adjuvants that induced potent and lasting immune activation.More importantly,ARV-825 could be slowly and sustainably released in the tumor resection cavity to downregulateα-smooth muscle actin(α-SMA)and collagen levels,disintegrate fibrosis barriers and promote T cell infiltration after immune activation to reduce immune escape.In addition,ARV-825 also directly acted on the remaining tumor cells to degrade bromodomain-containing protein 4(BRD4)which is a critical epigenetic reader overexpressed in tumor cells,inhibiting tumor cell migration and invasion.Therefore,our injectable hydrogel created a powerful immune niche in postoperative tumor resection cavity,significantly enhancing the efficacy of tumor vaccines.Our strategy potently activates the immune system and disintegrates the fibrotic barrier of residual tumors with immune microenvironment remodeling in situ,showing anti-recurrence and anti-metastatic effects,and provides a new paradigm for postoperative treatment of tumors. 展开更多
关键词 injectable hydrogel Tumor vaccine FIBROSIS Breast cancer metastasis BRD4
原文传递
An injectable hydrogel containing versatile nanoparticles with antioxidant and antifibrotic properties for myocardial infarction treatment
3
作者 Hong Yang Jingjing Li +6 位作者 Han Shen Dongxu Jia Yujuan Jia Zhu Wang Qian Yu Zhenya Shen Yanxia Zhang 《Journal of Materials Science & Technology》 2025年第12期121-130,共10页
Myocardial infarction (MI) continues to be the primary cause of death globally. Oxidative stress in the initial phase of MI, followed by uncontrolled and excessive myocardial fibrosis, significantly impedes cardiac re... Myocardial infarction (MI) continues to be the primary cause of death globally. Oxidative stress in the initial phase of MI, followed by uncontrolled and excessive myocardial fibrosis, significantly impedes cardiac repair efficiency post-MI, culminating in adverse ventricular remodeling and potential heart failure. To address the diverse pathological stages of MI, an injectable composite hydrogel containing versatile nanoparticles was developed. In this study, mesoporous silicon nanoparticles (MSNs) served as carriers for encapsulating microRNA-29b (miR-29b) mimics with antifibrotic activity, subsequently coated with a complex of natural antioxidant tannic acid and zinc ions (TA/Zn). These nanoparticles were then embedded into a biocompatible alginate hydrogel to enhance retention within the infarcted myocardium. Upon injection into the infarcted region of MI mice, the composite hydrogel gradually released the nanoparticles as it degraded. Initially, the TA/Zn complex on the outer layer scavenged reactive oxygen species, thereby inhibiting cell apoptosis. The subsequent dissociation of the TA/Zn complex led to the release of the encapsulated miR-29b mimics that could inhibit the activation of cardiac fibroblasts and collagen production, thereby alleviating fibrosis progression. Overall, this composite hydrogel demonstrated the potential to reduce infarct size and improve cardiac function, suggesting its promise as a synergistic therapeutic approach for repairing infarcted myocardium. 展开更多
关键词 Myocardial infarction injectable hydrogel ANTIOXIDANT Myocardial fibrosis
原文传递
Recent advances in the application of injectable hydrogels for myocardial infarction
4
作者 Yue Wang Xi-Di Yang +2 位作者 Ze-Qi Chen Cheng Hu Yun-Bing Wang 《Biomedical Engineering Communications》 2025年第4期44-52,共9页
Myocardial infarction(MI)continues to be a leading cause of morbidity and mortality in cardiovascular diseases worldwide,severely compromising cardiac structure and function.While conventional treatments-including pha... Myocardial infarction(MI)continues to be a leading cause of morbidity and mortality in cardiovascular diseases worldwide,severely compromising cardiac structure and function.While conventional treatments-including pharmacological interventions,coronary artery bypass grafting(CABG),and percutaneous coronary intervention(PCI)-can effectively restore coronary blood flow,their ability to regenerate cardiomyocytes and substantially improve cardiac function remains limited.In this context,injectable hydrogels have emerged as a groundbreaking therapeutic approach,presenting remarkable potential for MI treatment owing to their exceptional biocompatibility,tunable mechanical properties,and versatile functionality.These hydrogels can form stable three-dimensional networks within infarcted myocardium,not only providing mechanical support to mitigate ventricular wall stress but also serving as delivery platforms for bioactive components such as growth factors,therapeutic drugs,and stem cells.Through multiple mechanisms-including attenuation of oxidative stress and calcium overload to protect cardiomyocytes,stimulation of angiogenesis to enhance tissue perfusion,and regulation of inflammatory responses to reduce fibrotic scarring-injectable hydrogels significantly promote myocardial repair and regeneration.Preclinical studies have consistently validated the therapeutic efficacy of various injectable hydrogel formulations in improving cardiac outcomes post-MI,highlighting their transformative potential in cardiovascular medicine. 展开更多
关键词 injectable hydrogel myocardial infarction application progress
在线阅读 下载PDF
Polysaccharide based supramolecular injectable hydrogels for in situ treatment of bladder cancer 被引量:1
5
作者 Chang Zhang Jie Niu +4 位作者 Jianqiu Li Hui Zhang Qilin Yu Yong Chen Yu Liu 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第1期259-263,共5页
Implantable system maximizes drug concentration and continuously releases drugs near the tumor,which is an effective tool to solve the difficult retention of chemotherapy drugs in bladder cancer.In this work,a novel p... Implantable system maximizes drug concentration and continuously releases drugs near the tumor,which is an effective tool to solve the difficult retention of chemotherapy drugs in bladder cancer.In this work,a novel polysaccharide supramolecular injectable hydrogel(CCA hydrogels for short)is rapidly constructed by simply mixing cationic chitosan,anionic sulfobutyl etherβ-cyclodextrin(SBE-β-CD)and a trace amount of silver ions.The injected hydrogel reconstituted and regained its shape in less than 1 h,and it can still maintain the elasticity suitable for the human body.By packaging the drug directly,the gel achieves a high concentration of doxorubicin,an anticancer drug.Using MB49-luc cells as the model of bladder tumor for anti-tumor in vivo,the CCA-DOX gel has obvious inhibitory effect on bladder tumor,and its inhibitory effect is much greater than that of free DOX.Therefore,this self-healing injectable hydrogel has great potential for in situ treatment of bladder cancer. 展开更多
关键词 Sulfobutylether-β-cyclodextrin Supramolecular chemistry CHITOSAN injectable hydrogel Bladder cancer Local chemotherapy
原文传递
Overview of Injectable Hydrogels for the Treatment of Myocardial Infarction
6
作者 Bingcheng Yi Yiwei Xu +5 位作者 Xiaoyu Wang Guangjun Wang Shuo Li Ruijie Xu Xuequan Liu Qihui Zhou 《Cardiovascular Innovations and Applications》 2024年第1期424-447,共24页
Myocardial infarction(MI)triggers adverse remodeling mechanisms,thus leading to heart failure.Since the applica-tion of biomaterial-based scaffolds emerged as a viable approach for providing mechanical support and pro... Myocardial infarction(MI)triggers adverse remodeling mechanisms,thus leading to heart failure.Since the applica-tion of biomaterial-based scaffolds emerged as a viable approach for providing mechanical support and promoting cell growth,injectable hydrogels have garnered substantial attention in MI treatment because of their minimally invasive administration through injection and diminished risk of infection.To fully understand the interplay between inject-able hydrogels and infarcted myocardium repair,this review provides an overview of recent advances in injectable hydrogel-mediated MI therapy,including:I)material designs for repairing the infarcted myocardium,considering the pathophysiological mechanism of MI and design principles for biomaterials in MI treatment;II)the development of injectable functional hydrogels for MI treatment,including conductive,self-healing,drug-loaded,and stimulus-responsive hydrogels;and III)research progress in using injectable hydrogels to restore cardiac function in infarcted myocardium by promoting neovascularization,enhancing cardiomyocyte proliferation,decreasing myocardial fibrosis,and inhibiting excessive inflammation.Overall,this review presents the current state of injectable hydrogel research in MI treatment,offering valuable information to facilitate interdisciplinary knowledge transfer and enable the develop-ment of prognostic markers for suitable injectable materials. 展开更多
关键词 injectable hydrogel functional biomaterials cardiac function myocardial infarction material design
暂未订购
Study on Preparation of Temperature-sensitive Injectable Hydrogel 被引量:1
7
作者 LIU Ling-xiu HU Guo-yin +1 位作者 LIU Xin GU Han-qing 《Chinese Journal of Biomedical Engineering(English Edition)》 2010年第2期66-76,共11页
To get a sort of new scaffold material for soft tissue reconstruction,we have prepared XLHA-PNIPAAm and XLHA-MC injectable hydrogels through blending crosslinked HA(XLHA) and two temperature-sensitive materials differ... To get a sort of new scaffold material for soft tissue reconstruction,we have prepared XLHA-PNIPAAm and XLHA-MC injectable hydrogels through blending crosslinked HA(XLHA) and two temperature-sensitive materials differed in degradation poly(N-isopropylacrylamide)(PNIPAAm) and methylcellulose(MC),respectively.We tested the injectablility,enzymatic biodegradability,temperature-sensitivity,structure cytotoxicity and hemolysis of the two injectable hydrogels.Our research has successfully obtained the preparation condition of XLHA-PNIPAAm injectable hydrogel,and verified that adding non-degradable material PNIPAAm can postpone the degradation of HA more effectively than degradable material MC.PNIPAAm prepared with 5 kGy dose radiation,MBAAm/NIPAAm(M/M)=0.015,monomer concentration=3% produced XLHA-PNIPAAm with slowest enzymatic biodegradability.DSC results showed that temperature-sensitivity of the XLHA-PNIPAAm was more stable than that of XLHA-MC.Two composite hydrogels were qualified in cytotoxicity and hemolysis tests and the biocompatibility of XLHA-PNIPAAm hydrogel showed better than XLHA-MC hydrogel. 展开更多
关键词 HYALURONAN poly(N-isopropylacrylamide) METHYLCELLULOSE injectable hydrogel tissue engineering
在线阅读 下载PDF
Thermosensitive injectable hydrogel loaded with hypoxia-induced exosomes maintains chondrocyte phenotype through NDRG3-mediated hypoxic response
8
作者 Xiongbo Song Liling Gu +5 位作者 Qiming Yang Jiarui Wu Junrong Chen Xiaobin Tian Li Sun Long Chen 《Chinese Chemical Letters》 SCIE CAS CSCD 2023年第8期227-231,共5页
Current clinical treatments cannot effectively delay the progression of osteoarthritis(OA).Consequently,joint replacement surgery is required for late-stage OA when patients cannot tolerate pain and joint dysfunction.... Current clinical treatments cannot effectively delay the progression of osteoarthritis(OA).Consequently,joint replacement surgery is required for late-stage OA when patients cannot tolerate pain and joint dysfunction.Therefore,the prevention of OA progression in the early and middle stages is an urgent clinical problem.In a previous study,we demonstrated that NDRG3-mediated hypoxic response might be closely related to the development and progression of OA.In this study,an injectable thermosensitive hydrogel was established by cross-linking Pluronic F-127 and hyaluronic acid(HA)for the sustained release of hypoxia-induced exosomes(HExos)derived from adipose-derived mesenchymal stem cells.We demonstrated that for OA at the early and middle stages,the HExos-loaded HP hydrogel could maintain the chondrocyte phenotype by enhancing chondrocyte autophagy,reducing chondrocyte apoptosis,and promoting chondrocyte activity and proliferation through the NDRG3-mediated hypoxic response.This novel composite hydrogel,which could activate the NDRG3-mediated hypoxic response,may provide new ideas and a theoretical basis for the treatment of early-and mid-stage OA. 展开更多
关键词 OSTEOARTHRITIS injectable thermosensitive hydrogel EXOSOMES Hypoxic response NDRG3
原文传递
cGAMP-targeting injectable hydrogel system promotes periodontal restoration by alleviating cGAS-STING pathway activation
9
作者 Xiang Liu Hua Zhang +11 位作者 Lei Xu Huayu Ye Jinghuan Huang Jing Xiang Yunying He Huan Zhou Lingli Fang Yunyan Zhang Xuerong Xiang Richard D.Cannon Ping Ji Qiming Zhai 《Bioactive Materials》 2025年第6期55-70,共16页
The impaired function of periodontal ligament stem cells(PDLSCs)impedes restoration of periodontal tissues.The cGAS-cGAMP-STING pathway is an innate immune pathway that sensing cytosolic double-stranded DNA(dsDNA),but... The impaired function of periodontal ligament stem cells(PDLSCs)impedes restoration of periodontal tissues.The cGAS-cGAMP-STING pathway is an innate immune pathway that sensing cytosolic double-stranded DNA(dsDNA),but its role in regulating the function of PDLSCs is still unclear.In this study,we found that mito-chondrial DNA(mtDNA)was released into the cytoplasm through the mitochondrial permeability transition pore(mPTP)in PDLSCs upon inflammation,which binds to cGAS and activated the STING pathway by promoting the production of cGAMP,and ultimately impaired the osteogenic differentiation of PDLSCs.Additionally,it is first found that inflammation can down-regulate the level of the ATP-binding cassette membrane subfamily member C1(ABCC1,a cGAMP exocellular transporter)and ectonucleotide pyrophosphatase/phosphodiesterase 1(ENPP1,a cGAMP hydrolase),which further aggravated the accumulation of intracellular cGAMP,leading to the persistent activation of the cGAS-STING pathway and thus the impaired the differentiation capacity of PDLSCs.Furthermore,we designed a hydrogel system loaded with a mPTP blocker,an ABCC1 agonist and ENPP1 to promote periodontal tissue regeneration by modulating the production,exocytosis,and clearance of cGAMP.In conclusion,our results highlight the profound effects,and specific mechanisms,of the cGAS-STING pathway on the function of stem cells and propose a new strategy to promote periodontal tissue restoration based on the reestablishment of cGAMP homeostasis. 展开更多
关键词 cGAMP homeostasis cGAS-STING pathway Inflammatory environment Periodontal ligament stem cells Osteogenic differentiation injectable hydrogel system
原文传递
An injectable hydrogel CCT@CAD realizes the synergistic treatment of chemotherapy,photothermal therapy and nanozyme therapy for breast cancer
10
作者 Qingjie Pei Jialing Yao +4 位作者 Jiaxin Yao Wenyan Qiao Xiaoyan Zheng Junfeng Hui Daidi Fan 《Nano Research》 2025年第11期781-796,共16页
Breast cancer(BC)is a common malignant tumor in women,which seriously affects the health of patients.In this paper,a plasma nano-composite injectable hydrogel CCT@CAD was developed to realize multi-therapy synergistic... Breast cancer(BC)is a common malignant tumor in women,which seriously affects the health of patients.In this paper,a plasma nano-composite injectable hydrogel CCT@CAD was developed to realize multi-therapy synergistic anti-cancer.In the acidic tumor microenvironment,CCT@CAD released Au-modified cerium dioxide loaded with cisplatin(CAD),and the surface charge of CAD changed from negative to positive based on the pH-responsive charge inversion characteristic,which significantly improved the internalization efficiency and permeability of tumor cells to CAD.The introduction of Au nanoparticles endowed CAD with localized surface plasmon resonance(LSPR)effects.This effect enhanced electron transfer to activate the Ce active site on the surface of cerium dioxide,thus enhancing the activity of nanozyme,which enabled CAD to rapidly produce O2 and consume glutathione in tumor cells.Meanwhile,Au nanoparticles endowed CAD with excellent photothermal conversion ability,and local hyperthermia could be realized under near infrared laser irradiation.Animal experimental results showed that the tumor inhibition rate was nearly 100%after 14-day treatment of CCT@CAD.The combination of chemotherapy,photothermal therapy and nanozyme therapy proposed in this study provides a new idea for the treatment of BC. 展开更多
关键词 injectable hydrogel localized surface plasmon resonance(LSPR) photothermal therapy nanozyme charge inversion
原文传递
Peroxidase-like nanozyme based microenvironment-responsive injectable hydrogel for bacteria-infected wound healing 被引量:1
11
作者 ZHOU Wei LI XiaNan +6 位作者 TANG MengCheng PAN LingFeng WANG BeiBei ZHANG Hao ZHANG Han WANG ShiBo KONG XiangDong 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2024年第10期3247-3260,共14页
Hydrogel stands out as one of the most attractive wound dressings due to its excellent moisturizing properties and capacity to absorb wound exudates.However,conventional hydrogel dressings often lack responsiveness to... Hydrogel stands out as one of the most attractive wound dressings due to its excellent moisturizing properties and capacity to absorb wound exudates.However,conventional hydrogel dressings often lack responsiveness to the microenvironment,merely acting as protective barriers for the wound.Consequently,they exhibit limited effectiveness in preventing infection and facilitating wound repair.To address these problems,we have developed a multifunctional injectable hydrogel,CF/MS@HG,based on peroxidase-like nanozymes,aiming at rapidly healing bacterial-infected wounds.The hydrogel is mainly composed of oxidized sodium alginate,aminated gelatin,and polylysine,encapsulating MIL-101(CuFe)NPs(CF)and manganese selenide nanoparticles(MnSe_(2) NPs,or MS NPs).After injection,the complex rapidly gelatinizes at the infected wound site through a Schiff base reaction.In vitro experiments have demonstrated the hydrogel’s strong adhesion and self-healing capabilities.Moreover,CF exhibiting peroxidase(POD)-like activity,catalyzes in situ hydrogen peroxide(H_(2)O_(2))to generate highly toxic hydroxyl radicals(·OH)within the wound microenvironment,inducing oxidative damage to bacteria.Meanwhile,MS decomposes into H2Se in the slightly acidic wound microenvironment,disrupting bacterial metabolism and inhibiting proliferation.The addition of polylysine further enhances the hydrogel’s antibacterial properties.In vivo experiments have shown that the hydrogel exhibits excellent biological safety and significantly promotes wound healing.This multifunctional smart hydrogel holds great promise for the treatment of bacterial-infected wounds. 展开更多
关键词 peroxidase-like nanozyme manganese selenide injectable hydrogel bacterial infection wound healing
原文传递
H_(2)O_(2)-Responsive Injectable Polymer Dots Hydrogel for Long-term Photodynamic Therapy of Tumors
12
作者 Jian Wang Ke Liang +6 位作者 Jian Li Yun-Xiu Zhang Xiao-Kuang Xue Tie-Jin Chen Yong-Liang Hao Jia-Sheng Wu Jie-Chao Ge 《Chinese Journal of Polymer Science》 SCIE EI CAS CSCD 2024年第11期1690-1698,I0008,共10页
Photodynamic therapy(PDT)has been emerged as a promising modality for cancer treatment.However,the development of drug delivery system enabling continuous release of photosensitizers(PSs)for long-term PDT treatment st... Photodynamic therapy(PDT)has been emerged as a promising modality for cancer treatment.However,the development of drug delivery system enabling continuous release of photosensitizers(PSs)for long-term PDT treatment still remains challenges.Herein,a H_(2)O_(2)-responsive injectable hydrogel,covalently crosslinked by N^(1)-(4-boronobenzyl)-N^(3)-(4-boronophenyl)-N^(1),N^(1),N^(3),N^(3)-tetramethylpropane-1,3-diaminium(TSPBA)with PVA containing polythiophene quaternary ammonium salt(PT2)polymer dots(PDots)as a photosensitizer was fabricated.Under the stimulation of H_(2)O_(2),the obtained injectable hydrogel gradually degrades and releases PDots.In vitro experiments suggested that the released PDots could realize efficient tumor cells inhibition through its robust singlet oxygen generation capability upon 577 nm laser irradiation.In vivo studies demonstrated a sustained retention of PDots for at least 7 days following single-dose administration,facilitating efficient tumor inhibition with light treatments for 3 times without apparent biotoxicity.This work presents an innovative polymer dots-based composite local drug delivery system for long-term PDT in cancer treatment. 展开更多
关键词 injectable hydrogel Polymer dots Photodynamic therapy LONG-TERM Cancer therapy
原文传递
Mussel-mimetic polysaccharide-based injectable hydrogels for biomedical applications
13
作者 Yawen Fan Lu Zheng +3 位作者 Min Jin Xiaoyun Li Zhong Alan Li Xiaoying Wang 《BMEMat(BioMedical Engineering Materials)》 2024年第4期18-48,共31页
With high biocompatibility and degradability,polysaccharide-based hydrogels are favorable healthcare materials.However,in many biomedical applications,these materials are inconvenient to handle with fixed morphology,u... With high biocompatibility and degradability,polysaccharide-based hydrogels are favorable healthcare materials.However,in many biomedical applications,these materials are inconvenient to handle with fixed morphology,unable to closely match the wounds,and easy to detach due to insufficient adhesion.Inspired by the superior wet adhesive properties of marine mussels,researchers have used mussel-inspired chemistry to create mussel-mimetic injectable polysaccharide-based hydrogels that are simple to operate,controllable in shape,and highly adhesive,and have significantly extended their applications such as tissue adhesives,delivery vehicles,tissue engineering scaffolds,and wearable sensors.However,there are few comprehensive reviews on polysaccharide-based hydrogels with both mussel-mimetic adhesion and injectability,and few critical analyses of these hydrogels'preparation methods and applications.This review fills this gap and systematically summarizes the preparation strategies for novel mussel-mimetic injectable polysaccharide-based hydrogels,including modifying polysaccharides with catechol-or pyrogallol-containing small molecules and leveraging different interactions between catechol-/pyrogallol-modified polysaccharides and other substances to form crosslinked hydrogels.Furthermore,recent biomedical applications of injectable catechol-/pyrogallol-modified polysaccharide-based hydrogels are discussed,and their future challenges and research trends are proposed. 展开更多
关键词 biomedical applications catechol/pyrogallol-modified injectable hydrogels mussel-mimetic hydrogels POLYSACCHARIDES
暂未订购
Decellularised extracellular matrix-based injectable hydrogels for tissue engineering applications
14
作者 Wan-Ying Guo Wei-Huang Wang +2 位作者 Pei-Yao Xu Ranjith Kumar Kankala Ai-Zheng Chen 《Biomaterials Translational》 2024年第2期114-128,共15页
Decellularised extracellular matrix(dECM)is a biomaterial derived from natural tissues that has attracted considerable attention from tissue engineering researchers due to its exceptional biocompatibility and malleabi... Decellularised extracellular matrix(dECM)is a biomaterial derived from natural tissues that has attracted considerable attention from tissue engineering researchers due to its exceptional biocompatibility and malleability attributes.These advantageous properties often facilitate natural cell infiltration and tissue reconstruction for regenerative medicine.Due to their excellent fluidity,the injectable hydrogels can be administered in a liquid state and subsequently formed into a gel state in vivo,stabilising the target area and serving in a variety of ways,such as support,repair,and drug release functions.Thus,dECM-based injectable hydrogels have broad prospects for application in complex organ structures and various tissue injury models.This review focuses on exploring research advances in dECM-based injectable hydrogels,primarily focusing on the applications and prospects of dECM hydrogels in tissue engineering.Initially,the recent developments of the dECM-based injectable hydrogels are explained,summarising the different preparation methods with the evaluation of injectable hydrogel properties.Furthermore,some specific examples of the applicability of dECM-based injectable hydrogels are presented.Finally,we summarise the article with interesting prospects and challenges of dECM-based injectable hydrogels,providing insights into the development of these composites in tissue engineering and regenerative medicine. 展开更多
关键词 decellularisation methods decellularised extracellular matrix injectable hydrogels tissue engineering
原文传递
Collagen fibril-like injectable hydrogels from self-assembled nanoparticles for promoting wound healing 被引量:5
15
作者 Shanshan Li Xiaoyun Li +9 位作者 Yidi Xu Chaoran Fan Zhong Alan Li Lu Zheng Bichong Luo Zhi-Peng Li Baofeng Lin Zhen-Gang Zha Huan-Tian Zhang Xiaoying Wang 《Bioactive Materials》 SCIE CSCD 2024年第2期149-163,共15页
Soft hydrogels are excellent candidate materials for repairing various tissue defects,yet the mechanical strength,anti-swelling properties,and biocompatibility of many soft hydrogels need to be improved.Herein,inspire... Soft hydrogels are excellent candidate materials for repairing various tissue defects,yet the mechanical strength,anti-swelling properties,and biocompatibility of many soft hydrogels need to be improved.Herein,inspired by the nanostructure of collagen fibrils,we developed a strategy toward achieving a soft but tough,anti-swelling nanofibrillar hydrogel by combining the self-assembly and chemical crosslinking of nanoparticles.Specifically,the collagen fibril-like injectable hydrogel was subtly designed and fabricated by self-assembling methylacrylyl hydroxypropyl chitosan(HM)with laponite(LAP)to form nanoparticles,followed by the inter-nanoparticle bonding through photo-crosslinking.The assembly mechanism of nanoparticles was elucidated by both experimental and simulation techniques.Due to the unique structure of the crosslinked nanoparticles,the nanocomposite hydrogels exhibited low stiffness(G’<2 kPa),high compressive strength(709 kPa),and anti-swelling(swelling ratio of 1.07 in PBS)properties.Additionally,by harnessing the photo-crosslinking ability of the nanoparticles,the nanocomposite hydrogels were processed as microgels,which can be three-dimensionally(3D)printed into complex shapes.Furthermore,we demonstrated that these nanocomposite hydrogels are highly biocompatible,biodegradability,and can effectively promote fibroblast migration and accelerate blood vessel formation during wound healing.This work presents a promising approach to develop biomimetic,nanofibrillar soft hydrogels for regenerative medicine applications. 展开更多
关键词 injectable soft hydrogels Collagen fibril-like structure Self-assembled nanoparticles Chitosan Wound healing
原文传递
Bioinspired Injectable Self-Healing Hydrogel Sealant with Fault-Tolerant and Repeated Thermo-Responsive Adhesion for Sutureless Post-Wound-Closure and Wound Healing 被引量:8
16
作者 Yuqing Liang Huiru Xu +2 位作者 Zhenlong Li Aodi Zhangji Baolin Guo 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第11期256-274,共19页
Hydrogels with multifunctionalities,including sufficient bonding strength,injectability and self-healing capacity,responsive-adhesive ability,fault-tolerant and repeated tissue adhesion,are urgently demanded for invas... Hydrogels with multifunctionalities,including sufficient bonding strength,injectability and self-healing capacity,responsive-adhesive ability,fault-tolerant and repeated tissue adhesion,are urgently demanded for invasive wound closure and wound healing.Motivated by the adhesive mechanism of mussel and brown algae,bioinspired dynamic bonds cross-linked multifunctional hydrogel adhesive is designed based on sodium alginate(SA),gelatin(GT)and protocatechualdehyde,with ferric ions added,for sutureless post-wound-closure.The dynamic hydrogel cross-linked through Schiff base bond,catechol-Fe coordinate bond and the strong interaction between GT with temperature-dependent phase transition and SA,endows the resulting hydrogel with sufficient mechanical and adhesive strength for efficient wound closure,injectability and self-healing capacity,and repeated closure of reopened wounds.Moreover,the temperature-dependent adhesive properties endowed mispositioning hydrogel to be removed/repositioned,which is conducive for the fault-tolerant adhesion of the hydrogel adhesives during surgery.Besides,the hydrogels present good biocompatibility,near-infrared-assisted photothermal antibacterial activity,antioxidation and repeated thermo-responsive reversible adhesion and good hemostatic effect.The in vivo incision closure evaluation demonstrated their capability to promote the post-wound-closure and wound healing of the incisions,indicating that the developed reversible adhesive hydrogel dressing could serve as versatile tissue sealant. 展开更多
关键词 Bioinspired injectable hydrogel Tissue sealant Temperature-dependent adhesion Reversible adhesion Wound healing
在线阅读 下载PDF
Therapeutic neovascularization promoted by injectable hydrogels 被引量:11
17
作者 Amrita Pal Brent L.Vernon Mehdi Nikkhah 《Bioactive Materials》 SCIE 2018年第4期389-400,共12页
The aim of therapeutic neovascularization is to repair ischemic tissues via formation of new blood vessels by delivery of angiogenic growth factors,stem cells or expansion of pre-existing cells.For efficient neovascul... The aim of therapeutic neovascularization is to repair ischemic tissues via formation of new blood vessels by delivery of angiogenic growth factors,stem cells or expansion of pre-existing cells.For efficient neovascularization,controlled release of growth factors is particularly necessary since bolus injection of molecules generally lead to a poor outcome due to inadequate retention within the injured site.In this regard,injectable hydrogels,made of natural,synthetic or hybrid biomaterials,have become a promising solution for efficient delivery of angiogenic factors or stem and progenitor cells for in situ tissue repair,regeneration and neovascularization.This review article will broadly discuss the state-of-the-art in the development of injectable hydrogels from natural and synthetic precursors,and their applications in ischemic tissue repair and wound healing.We will cover a wide range of in vitro and in vivo studies in testing the functionalities of the engineered injectable hydrogels in promoting tissue repair and neovascularization.We will also discuss some of the injectable hydrogels that exhibit self-healing properties by promoting neovascularization without the presence of angiogenic factors. 展开更多
关键词 injectable hydrogels NEOVASCULARIZATION Tissue regeneration Angiogenic factors Cell-therapy
原文传递
Advances of injectable hydrogel-based scaffolds for cartilage regeneration 被引量:17
18
作者 Jiawei Li Guojun Chen +4 位作者 Xingquan Xu Peter Abdou Qing Jiang Dongquan Shi Zhen Gu 《Regenerative Biomaterials》 SCIE 2019年第3期129-140,共12页
Articular cartilage is an important load-bearing tissue distributed on the surface of diarthrodial joints.Due to its avascular,aneural and non-lymphatic features,cartilage has limited self-regenerative properties.To d... Articular cartilage is an important load-bearing tissue distributed on the surface of diarthrodial joints.Due to its avascular,aneural and non-lymphatic features,cartilage has limited self-regenerative properties.To date,the utilization of biomaterials to aid in cartilage regeneration,especially through the use of injectable scaffolds,has attracted considerable attention.Various materials,therapeutics and fabrication approaches have emerged with a focus on manipulating the cartilage microenvironment to induce the formation of cartilaginous structures that have similar properties to the native tissues.In particular,the design and fabrication of injectable hydrogel-based scaffolds have advanced in recent years with the aim of enhancing its therapeutic efficacy and improving its ease of administration.This review summarizes recent progress in these efforts,including the structural improvement of scaffolds,network cross-linking techniques and strategies for controlled release,which present new opportunities for the development of injectable scaffolds for cartilage regeneration. 展开更多
关键词 drug delivery tissue engineering injectable hydrogel cartilage regeneration
原文传递
Promoting lacunar bone regeneration with an injectable hydrogel adaptive to the microenvironment 被引量:7
19
作者 Ao Zheng Xiao Wang +4 位作者 Xianzhen Xin Lingjie Peng Tingshu Su Lingyan Cao Xinquan Jiang 《Bioactive Materials》 SCIE CSCD 2023年第3期403-421,共19页
Injectable hydrogel is suitable for the repair of lacunar bone deficiency.This study fabricated an injectable,self-adaptive silk fibroin/mesoporous bioglass/sodium alginate(SMS)composite hydrogel system.With controlla... Injectable hydrogel is suitable for the repair of lacunar bone deficiency.This study fabricated an injectable,self-adaptive silk fibroin/mesoporous bioglass/sodium alginate(SMS)composite hydrogel system.With controllable and adjustable physical and chemical properties,the SMS hydrogel could be easily optimized adaptively to different clinical applications.The SMS hydrogel effectively showed great injectability and shapeability,allowing defect filling with no gap.Moreover,the SMS hydrogel displayed self-adaptability in mechanical reinforcement and degradation,responsive to the concentration of Ca2+and inflammatory-like pH value in the microenvi-ronment of bone deficiency,respectively.In vitro biological studies indicated that SMS hydrogel could promote osteogenic differentiation of bone marrow mesenchymal stem cells by activation of the MAPK signaling pathway.The SMS hydrogel also could improve migration and tube formation of human umbilical vein endothelial cells.Investigations of the crosstalk between osteoblasts and macrophages confirmed that SMS hydrogel could regulate macrophage polarization from M1 to M2,which could create a specific favorable environment to induce new bone formation and angiogenesis.Meanwhile,SMS hydrogel was proved to be antibacterial,especially for gram-negative bacteria.Furthermore,in vivo study indicated that SMS could be easily applied for maxillary sinus elevation,inducing sufficient new bone formation.Thus,it is convincing that SMS hydrogel could be potent in a simple,minimally invasive and efficient treatment for the repair of lacunar bone deficiency. 展开更多
关键词 injectable hydrogel Oral and maxillofacial Silk fibroin Lacunar bone deficiency Bone regeneration
原文传递
An injectable alginate/fibrin hydrogel encapsulated with cardiomyocytes and VEGF for myocardial infarction treatment 被引量:3
20
作者 Chunxia Liu Yong Wu +8 位作者 Hong Yang Kunyan Lu Haixin Zhang Yuanyuan Wang Jingjing Wang Linan Ruan Zhenya Shen Qian Yu Yanxia Zhang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第12期198-206,共9页
Myocardial infarction(MI)is one of the typical cardiovascular diseases,which persist as the leading cause of death globally.Due to the poor regenerative capability of endogenous cardiomyocytes(CMs),the transplantation... Myocardial infarction(MI)is one of the typical cardiovascular diseases,which persist as the leading cause of death globally.Due to the poor regenerative capability of endogenous cardiomyocytes(CMs),the transplantation of exogenous CMs becomes a promising option for MI treatment.However,the low retention and survival of transplanted cells still limit the clinical translation of cell therapy.Herein,an alginate/fibrin-based injectable hydrogel was prepared for the delivery of neonatal CMs and an angiogen-esis agent vascular endothelial growth factor(VEGF)locally to the infarcted area of the heart.This hydro-gel combined the specific advantages of alginate and fibrin with proper mechanical properties and cell affinity,showing good biocompatibility to support the retention and integration of the transplanted CMs to the host myocardium.Moreover,the delivered VEGF was favorable for the blood recovery to mitigate the ischemic microenvironment of the infarcted area and thus improved the survival of the transplanted CMs.Intramyocardial injection of this hydrogel to the infarcted area of the heart promoted angiogenesis,inhibited fibrosis,and improved cardiac function,exhibiting great potential for MI treatment. 展开更多
关键词 injectable hydrogel ALGINATE FIBRIN CARDIOMYOCYTES VEGF Myocardial infarction
原文传递
上一页 1 2 4 下一页 到第
使用帮助 返回顶部