The microstructure evolution and mechanical properties of a Fe-0.12C-0.2Si-1.6Mn-0.3Cr-0.0025B(wt.%)steel with different initial microstructures,i.e.,hot rolled(HR)and cold rolled-annealed(CRA),were studied through op...The microstructure evolution and mechanical properties of a Fe-0.12C-0.2Si-1.6Mn-0.3Cr-0.0025B(wt.%)steel with different initial microstructures,i.e.,hot rolled(HR)and cold rolled-annealed(CRA),were studied through optical microscopy,scanning electron microscopy,electron channeling contrast imaging,microhardness and room temperature uniaxial tensile tests.After water quenching from 930℃ to room temperature,a fully martensitic microstructure was obtained in both as-quenched HR and CRA specimens,which shows a microhardness of 480±5 HV,and no significant difference in microstructure and microhardness was observed.Tensile test results show that the product of tensile strength and total elongation(UTS×TE)of the as-quenched HR specimen,i.e.,24.1 GPa%,is higher than that of the as-quenched CRA specimen,i.e.,18.9 GPa%.While,after being tempered at 300℃,the martensitic microstructures and mechanical properties of the two as-quenched specimens change significantly due to the synergy role of the matrix phase softening and the precipitation strengthening.Concerning the maximum UTS×TE,it is 18.9 GPa%obtained in the as-quenched CRA one,while that is 24.4 GPa%obtained in the HR specimen after tempered at 300℃ for 5 min.展开更多
The hot workability of 7085 aluminum alloys with different initial microstructures (as-homogenized and as-solution treated) was studied by isothermal compression tests at the deformation temperature ranging from 300...The hot workability of 7085 aluminum alloys with different initial microstructures (as-homogenized and as-solution treated) was studied by isothermal compression tests at the deformation temperature ranging from 300 to 450 ℃ and the strain rate ranging from 0.0001 to 1 s 1. The strain rate sensitivity of the alloy was evaluated and used for establishing the power dissipation maps and instability maps on the basis of the flow stress data. The results show that the efficiency of power dissipation for the as-homogenized alloy is lower than that of the as-solution treated alloy. The deformation parameters of the dynamic recrystallization for the as-homogenized and as-solution treated alloy occur at 400 ℃, 0.01 s i and 450 ℃, 0.001 s-1, respectively. The flow instability region of the as-homogenized alloy is narrower than that of the as-solution treated alloy. These differences of the alloys with two different initial microstructures on the processing maps are mainly related to the dynamic precipitation characteristics.展开更多
The feasibility of improving the overall performance of medium Mn steels was demonstrated via tailoring the initial microstructure and cold rolling reduction. The combined effects of cooling patterns after hot rolling...The feasibility of improving the overall performance of medium Mn steels was demonstrated via tailoring the initial microstructure and cold rolling reduction. The combined effects of cooling patterns after hot rolling (HR) and cold rolling (CR) reductions show: (1) as the cooling pattern varied from furnace cooling (FC) to oil quenching (OQ), the intercritically annealed microstructure was dramatically refined and the fraction of recrystallized ferrite dropped, regardless of CR reductions. This resulted in both high yield/ultimate tensile strengths (YS/UTS) but low total elongation to fracture (El); (2) as the CR reduction increased from 50% to 75%, the OQ-samples after annealing exhibited a more refined microstructure with relatively higher fractions of retained austenite and sub-structure, leading to higher YS and UTS but lower El; whereas the FC samples appeared to exhibit little difference in overall tensile properties in both cases. The differences in microstructural evolution with cooling patterns and CR reductions were explained by the calculated accumulated effective strain (eAES), which was considered to be related to degrees of recovery and recrystallization of the deformed martensite (α'). The optimal tensile properties of -1 GPa YS and -40 GPa.% UTSxEI were achieved in the OQ-50%CR annealed samples at 650 ℃ for 1 h. This was quite beneficial to large-scale production of ultra-high strength steels, owing to its serious springback during heaw cold working.展开更多
In order to describe and predict the kinetic process of discontinuous dynamic recrystallization (DDRX) during hot workingfor metals with low to medium stacking fault energies quantitatively, a new physically-based m...In order to describe and predict the kinetic process of discontinuous dynamic recrystallization (DDRX) during hot workingfor metals with low to medium stacking fault energies quantitatively, a new physically-based model was proposed by considering thecharacteristics of grain size distribution, capillary effect of initial grain boundaries (GBs) and continuous consumption of GBs. UsingIncoloy 028 alloy as a model system, experiments aiming to provide kinetic data (e.g., the size and volume fraction of recrystallizedgrain) and the associated microstructure were performed. Good agreement is obtained between model predictions and experimentalresults, regarding flow stress, recrystallized fraction and grain size evolution. On this basis, a thermo-kinetic relationship upon thegrowth of recrystallized grain was elucidated, i.e., with increasing thermodynamic driving force, the activation energy barrierdecreases.展开更多
The kinetics of austenite formation in the surface and center regions of a 40 t forged ingot of a high-strength medium- carbon low-alloy steel was studied using high-resolution dilatometry. The starting microstructure...The kinetics of austenite formation in the surface and center regions of a 40 t forged ingot of a high-strength medium- carbon low-alloy steel was studied using high-resolution dilatometry. The starting microstructures from the surface or center regions had different proportions of bainite and residual austenite as well as different prior austenite grain sizes. Two heating rates representing the actual heating rates in the surface (5℃ s -1) and center regions (0.5℃ s -1) of large size forged blocks were utilized. Dilatometric curves revealed only one transformation step of austenite formation at both heating rates independent of grain size or proportion of phases. Optical microscopy, field emission gun scanning electron microscopy and X-ray diffraction were used to study microstructure evolution and confirm the results obtained by dilatometry. The kinetic parameters for austenite formation were determined from the dilatometry data by Johnson-Mehl- Avrami-Kolmogorov (JMAK) equation. The JMAK coefficients were determined for each condition of the investigated steels. The calculations indicated that the nucleation and growth of austenite in the surface region were accelerated more than 10,000 times due to a significantly smaller average prior austenite grain size, stability of initial retained austenite, and accumulation of coarse carbides at the surface. The results were discussed in the framework of classical nucleation and growth theories using the kinetic parameters for austenite formation.展开更多
The hot compression curves and deformed microstructures were investigated under various hot deformation conditions in three states:hot isostatic pressing(HIP,A1),HIP+hot extrusion at 1100℃(A2),and HIP+hot extrusion a...The hot compression curves and deformed microstructures were investigated under various hot deformation conditions in three states:hot isostatic pressing(HIP,A1),HIP+hot extrusion at 1100℃(A2),and HIP+hot extrusion at 1150℃(A3).The results show that A2 sample,extruded at 1100℃ with uniform γ+γ′duplex microstructures,demonstrates excellent hot deformation behavior at both 1050 and 1100℃.The true stress-true strain curves of A2 sample maintain a hardening-softening equilibrium over a larger strain range,with post-deformation average grain size of 5μm.The as-HIPed A1 sample and 1150℃ extruded A3 sample exhibit a softening region in deformation curves at 1050℃,and the grain microstructures reflect an incomplete recrystallized state,i.e.combination of fine recrystallized grains and initial larger grains,characterized by a necklace-like microstructure.The predominant recrystallization mechanism for these samples is strain-induced boundary migration.At 1150℃ with a strain rate of 0.001 s^(-1),the influence of the initial microstructure on hot deformation behavior and resultant microstructure is relatively less pronounced,and postdeformation microstructures are fully recrystallized grains.Fine-grained microstructures are conducive to maximizing the hot deformation potential of alloy.By judiciously adjusting deformation regimes,a fine and uniform deformed microstructure can be obtained.展开更多
Man (Nondestr Test Eval 15:191-214, 1999) derived the constitutive relation of a weakly-textured orthorhombic aggregate of cubic crystallites with effects of microstructure and initial stress. In this paper, a comp...Man (Nondestr Test Eval 15:191-214, 1999) derived the constitutive relation of a weakly-textured orthorhombic aggregate of cubic crystallites with effects of microstructure and initial stress. In this paper, a computational expression on the integration ∫SO(3) Q^× D^1m0dg is given. Then, by means of the computational expression, the general constitutive relation of a weakly-textured anisotropic polycrystal with the consideration of microstructure and initial stress is derived. As special cases of our general constitutive relation, two constitutive relations are given for an isotropic polycrystal and a weakly-textured anisotropic aggregate of cubic crystallites. The acoustoelastic tensor of the reference cubic crystal is derived to determine the material constants of the polycrystal. Two examples are given for understanding the physical meaning of the texture coefficients and the constitutive relations.展开更多
The influence of the RE-rich phase distribution in the precursor alloys on the anisotropy of the hydrogenation disproportionation desorption recombination(HDDR) processed powders is investigated. The homogenized ing...The influence of the RE-rich phase distribution in the precursor alloys on the anisotropy of the hydrogenation disproportionation desorption recombination(HDDR) processed powders is investigated. The homogenized ingot alloy and the as-cast strip casting(SC) alloy with a uniform RE-rich grain boundary phase lead to high anisotropy of the refined powders,acquiring degrees of alignment(DOA) of 0.62 and 0.54, respectively. The RE-rich phase aggregation results in a deteriorated DOA of the powders due to the drastic disproportionation rate, while a thin and uniform RE-rich phase distribution is beneficial for DOA. A reaction model of the initial particle microstructure is proposed for optimizing the HDDR powder anisotropy.展开更多
Mosquitoes possess the striking ability to walk on water because each of their legs has a huge water supporting force(WSF) that is 23 times their body weight.Aiming at a full understanding of the origins of this ext...Mosquitoes possess the striking ability to walk on water because each of their legs has a huge water supporting force(WSF) that is 23 times their body weight.Aiming at a full understanding of the origins of this extremely large force,in this study,we concentrate on two aspects of it:the intrinsic properties of the leg surface and the active control of the initial stepping angle of the whole leg.Using a measurement system that we developed ourselves,the WSFs for the original leg samples are compared with those whose surface wax and microstructures have been removed and with those of a different stiffness.The results show that leg f exibility plays a dominant role over surface wax and microstructures on the leg surface in creating the supporting force.Moreover,we discuss the dependence relationship between the maximum WSF and the initial stepping angle,which indicates that the mosquito can regulate this angle to increase or decrease the WSF during landing or takeoff.These finding are helpful for uncovering the locomotion mechanism of aquatic insects and for providing inspiration for the design of microfluids miniature boats,biomimetic robots,and microsensors.展开更多
基金Chongqing Natural Science Foundation(No.CSTB2022NSCQ-MSX1394)Graduate Research and Innovation Foundation of Chongqing,China(Grant No.CYS22008)+2 种基金Open Project of State Key Laboratory of Advanced Special Steel,Shanghai Key Laboratory of Advanced Ferrometallurgy,Shanghai University(SKLASS 2023-10)the Science and Technology Commission of Shanghai Municipality(No.19DZ2270200)the Open Project of the Large Casting and Forging Manufacturing Technology Engineering Center of Shanghai Institute of Mechanical and Electrical Engineering,State Key Laboratory of Vanadium and Titanium Resources Open Fund(No.2022P4FZG04A).
文摘The microstructure evolution and mechanical properties of a Fe-0.12C-0.2Si-1.6Mn-0.3Cr-0.0025B(wt.%)steel with different initial microstructures,i.e.,hot rolled(HR)and cold rolled-annealed(CRA),were studied through optical microscopy,scanning electron microscopy,electron channeling contrast imaging,microhardness and room temperature uniaxial tensile tests.After water quenching from 930℃ to room temperature,a fully martensitic microstructure was obtained in both as-quenched HR and CRA specimens,which shows a microhardness of 480±5 HV,and no significant difference in microstructure and microhardness was observed.Tensile test results show that the product of tensile strength and total elongation(UTS×TE)of the as-quenched HR specimen,i.e.,24.1 GPa%,is higher than that of the as-quenched CRA specimen,i.e.,18.9 GPa%.While,after being tempered at 300℃,the martensitic microstructures and mechanical properties of the two as-quenched specimens change significantly due to the synergy role of the matrix phase softening and the precipitation strengthening.Concerning the maximum UTS×TE,it is 18.9 GPa%obtained in the as-quenched CRA one,while that is 24.4 GPa%obtained in the HR specimen after tempered at 300℃ for 5 min.
基金Projects(2010CB731701,2012CB619502) supported by the National Basic Research Program of ChinaProject(CX2012B043) supported by Hunan Provincial Innovation Foundation for Postgraduate,ChinaProject(51021063) supported by Creative Research Group of National Natural Science Foundation of China
文摘The hot workability of 7085 aluminum alloys with different initial microstructures (as-homogenized and as-solution treated) was studied by isothermal compression tests at the deformation temperature ranging from 300 to 450 ℃ and the strain rate ranging from 0.0001 to 1 s 1. The strain rate sensitivity of the alloy was evaluated and used for establishing the power dissipation maps and instability maps on the basis of the flow stress data. The results show that the efficiency of power dissipation for the as-homogenized alloy is lower than that of the as-solution treated alloy. The deformation parameters of the dynamic recrystallization for the as-homogenized and as-solution treated alloy occur at 400 ℃, 0.01 s i and 450 ℃, 0.001 s-1, respectively. The flow instability region of the as-homogenized alloy is narrower than that of the as-solution treated alloy. These differences of the alloys with two different initial microstructures on the processing maps are mainly related to the dynamic precipitation characteristics.
基金financially supported by the National Natural Science Foundation of China (Grant.No.51401050)the Fundamental Research Funding for the Central Universities (Grant.No.N160204001),China (A/Prof.Cai)supported by grants through the Australian Research Council (ARC) Laureate Fellowship (Prof.Hodgson)
文摘The feasibility of improving the overall performance of medium Mn steels was demonstrated via tailoring the initial microstructure and cold rolling reduction. The combined effects of cooling patterns after hot rolling (HR) and cold rolling (CR) reductions show: (1) as the cooling pattern varied from furnace cooling (FC) to oil quenching (OQ), the intercritically annealed microstructure was dramatically refined and the fraction of recrystallized ferrite dropped, regardless of CR reductions. This resulted in both high yield/ultimate tensile strengths (YS/UTS) but low total elongation to fracture (El); (2) as the CR reduction increased from 50% to 75%, the OQ-samples after annealing exhibited a more refined microstructure with relatively higher fractions of retained austenite and sub-structure, leading to higher YS and UTS but lower El; whereas the FC samples appeared to exhibit little difference in overall tensile properties in both cases. The differences in microstructural evolution with cooling patterns and CR reductions were explained by the calculated accumulated effective strain (eAES), which was considered to be related to degrees of recovery and recrystallization of the deformed martensite (α'). The optimal tensile properties of -1 GPa YS and -40 GPa.% UTSxEI were achieved in the OQ-50%CR annealed samples at 650 ℃ for 1 h. This was quite beneficial to large-scale production of ultra-high strength steels, owing to its serious springback during heaw cold working.
基金Project(51431008)supported by the National Natural Science Foundation of ChinaProjects(2017YFB0703001,2017YFB0305100)supported by the National Key Research and Development Program of China
文摘In order to describe and predict the kinetic process of discontinuous dynamic recrystallization (DDRX) during hot workingfor metals with low to medium stacking fault energies quantitatively, a new physically-based model was proposed by considering thecharacteristics of grain size distribution, capillary effect of initial grain boundaries (GBs) and continuous consumption of GBs. UsingIncoloy 028 alloy as a model system, experiments aiming to provide kinetic data (e.g., the size and volume fraction of recrystallizedgrain) and the associated microstructure were performed. Good agreement is obtained between model predictions and experimentalresults, regarding flow stress, recrystallized fraction and grain size evolution. On this basis, a thermo-kinetic relationship upon thegrowth of recrystallized grain was elucidated, i.e., with increasing thermodynamic driving force, the activation energy barrierdecreases.
文摘The kinetics of austenite formation in the surface and center regions of a 40 t forged ingot of a high-strength medium- carbon low-alloy steel was studied using high-resolution dilatometry. The starting microstructures from the surface or center regions had different proportions of bainite and residual austenite as well as different prior austenite grain sizes. Two heating rates representing the actual heating rates in the surface (5℃ s -1) and center regions (0.5℃ s -1) of large size forged blocks were utilized. Dilatometric curves revealed only one transformation step of austenite formation at both heating rates independent of grain size or proportion of phases. Optical microscopy, field emission gun scanning electron microscopy and X-ray diffraction were used to study microstructure evolution and confirm the results obtained by dilatometry. The kinetic parameters for austenite formation were determined from the dilatometry data by Johnson-Mehl- Avrami-Kolmogorov (JMAK) equation. The JMAK coefficients were determined for each condition of the investigated steels. The calculations indicated that the nucleation and growth of austenite in the surface region were accelerated more than 10,000 times due to a significantly smaller average prior austenite grain size, stability of initial retained austenite, and accumulation of coarse carbides at the surface. The results were discussed in the framework of classical nucleation and growth theories using the kinetic parameters for austenite formation.
基金Shenzhen Science and Technology Program(KJZD20230923113900001)Project of Industry and Information Technology Bureau of Shenzhen Municipality(201806071403422960)。
文摘The hot compression curves and deformed microstructures were investigated under various hot deformation conditions in three states:hot isostatic pressing(HIP,A1),HIP+hot extrusion at 1100℃(A2),and HIP+hot extrusion at 1150℃(A3).The results show that A2 sample,extruded at 1100℃ with uniform γ+γ′duplex microstructures,demonstrates excellent hot deformation behavior at both 1050 and 1100℃.The true stress-true strain curves of A2 sample maintain a hardening-softening equilibrium over a larger strain range,with post-deformation average grain size of 5μm.The as-HIPed A1 sample and 1150℃ extruded A3 sample exhibit a softening region in deformation curves at 1050℃,and the grain microstructures reflect an incomplete recrystallized state,i.e.combination of fine recrystallized grains and initial larger grains,characterized by a necklace-like microstructure.The predominant recrystallization mechanism for these samples is strain-induced boundary migration.At 1150℃ with a strain rate of 0.001 s^(-1),the influence of the initial microstructure on hot deformation behavior and resultant microstructure is relatively less pronounced,and postdeformation microstructures are fully recrystallized grains.Fine-grained microstructures are conducive to maximizing the hot deformation potential of alloy.By judiciously adjusting deformation regimes,a fine and uniform deformed microstructure can be obtained.
基金the National Natural Science Foundation of China(10562004,10662004)the Natural Science Foundation of Jiangxi of China(0512021)+1 种基金the Science Foundation of Jiangxi Educational Department of China([2006]3)the Foundation of Train
文摘Man (Nondestr Test Eval 15:191-214, 1999) derived the constitutive relation of a weakly-textured orthorhombic aggregate of cubic crystallites with effects of microstructure and initial stress. In this paper, a computational expression on the integration ∫SO(3) Q^× D^1m0dg is given. Then, by means of the computational expression, the general constitutive relation of a weakly-textured anisotropic polycrystal with the consideration of microstructure and initial stress is derived. As special cases of our general constitutive relation, two constitutive relations are given for an isotropic polycrystal and a weakly-textured anisotropic aggregate of cubic crystallites. The acoustoelastic tensor of the reference cubic crystal is derived to determine the material constants of the polycrystal. Two examples are given for understanding the physical meaning of the texture coefficients and the constitutive relations.
基金Project supported by the National Natural Science Foundation of China(Grant No.51101167)the Ningbo Natural Science Foundation,China(Grant No.2013A610075)+4 种基金the Ningbo Science and Technology Project,China(Grant No.2013B10004)the Program of International Science and Technology Cooperation of China(Grant No.2010DFB53770)the China Postdoctoral Science Foundation(Grant No.2012M520943)the State Key Program of the National Natural Science Foundation of China(Grant No.2011AA03A401)the National Key Technologies R&D Program of China(Grant No.2012BAE01B03)
文摘The influence of the RE-rich phase distribution in the precursor alloys on the anisotropy of the hydrogenation disproportionation desorption recombination(HDDR) processed powders is investigated. The homogenized ingot alloy and the as-cast strip casting(SC) alloy with a uniform RE-rich grain boundary phase lead to high anisotropy of the refined powders,acquiring degrees of alignment(DOA) of 0.62 and 0.54, respectively. The RE-rich phase aggregation results in a deteriorated DOA of the powders due to the drastic disproportionation rate, while a thin and uniform RE-rich phase distribution is beneficial for DOA. A reaction model of the initial particle microstructure is proposed for optimizing the HDDR powder anisotropy.
基金supported by the National Natural Science Foundation of China (Grants 11302093,11302094 and 11272357)the Natural Science Fund for Distinguished Young Scholars of Shandong Province (JQ201302)
文摘Mosquitoes possess the striking ability to walk on water because each of their legs has a huge water supporting force(WSF) that is 23 times their body weight.Aiming at a full understanding of the origins of this extremely large force,in this study,we concentrate on two aspects of it:the intrinsic properties of the leg surface and the active control of the initial stepping angle of the whole leg.Using a measurement system that we developed ourselves,the WSFs for the original leg samples are compared with those whose surface wax and microstructures have been removed and with those of a different stiffness.The results show that leg f exibility plays a dominant role over surface wax and microstructures on the leg surface in creating the supporting force.Moreover,we discuss the dependence relationship between the maximum WSF and the initial stepping angle,which indicates that the mosquito can regulate this angle to increase or decrease the WSF during landing or takeoff.These finding are helpful for uncovering the locomotion mechanism of aquatic insects and for providing inspiration for the design of microfluids miniature boats,biomimetic robots,and microsensors.