this paper,we study the exponential non-uniform Berry-Esseen bound for the maximum likelihood estimator of some time inhomogeneous diffusion process.As applications,the optimal uniform Berry-Esseen bound and optimal C...this paper,we study the exponential non-uniform Berry-Esseen bound for the maximum likelihood estimator of some time inhomogeneous diffusion process.As applications,the optimal uniform Berry-Esseen bound and optimal Cramer-type moderate deviations of the Ornstein-Uhlenbeck process andα-Brownian bridge can be obtained.The main methods are the change of measure method and asymptotic analysis technique.展开更多
With a three-dimensional semiclassical ensemble method, we theoretically investigated the nonsequential double ionization of Ar driven by the spatially inhomogeneous few-cycle negatively chirped laser pulses. Our resu...With a three-dimensional semiclassical ensemble method, we theoretically investigated the nonsequential double ionization of Ar driven by the spatially inhomogeneous few-cycle negatively chirped laser pulses. Our results show that the recollision time window can be precisely controlled within an isolated time interval of several hundred attoseconds, which is useful for understanding the subcycle correlated electron dynamics. More interestingly, the correlated electron momentum distribution (CEMD) exhibits a strong dependence on laser intensity. That is, at lower laser intensity, CEMD is located in the first quadrant. As the laser intensity increases,CEMD shifts almost completely to the second and fourth quadrants, and then gradually to the third quadrant.The underlying physics governing the CEMD's dependence on laser intensity is explained.展开更多
The dynamic inhomogeneous finite element method is studied for use in the transient analysis of one dimensional inhomogeneous media. The general formula of the inhomogeneous consistent mass matrix is established based...The dynamic inhomogeneous finite element method is studied for use in the transient analysis of one dimensional inhomogeneous media. The general formula of the inhomogeneous consistent mass matrix is established based on the shape function. In order to research the advantages of this method, it is compared with the general finite element method. A linear bar element is chosen for the discretization tests of material parameters with two fictitious distributions. And, a numerical example is solved to observe the differences in the results between these two methods. Some characteristics of the dynamic inhomogeneous finite element method that demonstrate its advantages are obtained through comparison with the general finite element method. It is found that the method can be used to solve elastic wave motion problems with a large element scale and a large number of iteration steps.展开更多
Homogeneous and inhornogeneous differential realizations of the OSP(2,1)superalgebra on the spaces of homogeneous and inhomogeneous polynomials and the corresponding boson-fermioii realizations are studied.The new ind...Homogeneous and inhornogeneous differential realizations of the OSP(2,1)superalgebra on the spaces of homogeneous and inhomogeneous polynomials and the corresponding boson-fermioii realizations are studied.The new indecomposable and irreducible representations of the OSP(2,1)are given on subspaces and quotient spaces of the universal enveloping algebras of Heisenberg-Weyl superalgebra.All the finite dimensional irreducible representation of the OSP(2,1)superalgebra is naturally obtained as special cases.展开更多
It is well known that subtle changes in structure and tissue composition of articular cartilage can lead to its degeneration. The present paper puts forward a modified layered inhomogeneous triphasic model with four p...It is well known that subtle changes in structure and tissue composition of articular cartilage can lead to its degeneration. The present paper puts forward a modified layered inhomogeneous triphasic model with four parameters based on the inhomogeneous triphasic model proposed by Narmoneva et al. Incorporating a piecewise fitting optimization criterion, the new model was used to obtain the uniaxial modulus Ha, and predict swelling pattern for the articular cartilage based on ultrasound-measured swelling strain data. The results show that the new method can be used to provide more accurate estimation on the uniaxial modulus than the inhomogeneous triphasic model with three parameters and the homogeneous mode, and predict effectively the swell- ing strains of highly nonuniform distribution of degenerated articular cartilages. This study can provide supplementary information for exploring mechanical and material properties of the cartilage, and thus be helpful for the diagnosis of osteoarthritis-related diseases.展开更多
Based on hot compression tests by a Gleeble-1500D thermo-mechanical simulator, the flow stress model and microstructure evolution model for SA508-3 steel were established through the classical theories on work hardeni...Based on hot compression tests by a Gleeble-1500D thermo-mechanical simulator, the flow stress model and microstructure evolution model for SA508-3 steel were established through the classical theories on work hardening and softening. The developed models were integrated into 3D thermal-mechanical coupled rigid plastic finite element software DEFORM3D. The inhomogeneous hot deformation (IHD) experiments of SA508 3 steel were designed and carried out. Meanwhile, numerical simulation was implemented to investigate the effect of temperature, strain and strain rate on microstructure during IHD process through measuring grain sizes at given positions. The simulated grain sizes were basically in agreement with the experimental ones. The results of experiment and simulation demonstrated that temperature is the main factor for the initiation of dynamic recrystallization (DRX), and higher temperature means lower critical strain so that DRX can be facilitated to obtain uniform fine microstructure.展开更多
Inhomogeneous calcium alginate ion cross\|linking gel microspheres, a novel ion absorbent, were prepared by dropping a sodium alginate solution to a calcium chloride solution via an electronic droplet generator. C...Inhomogeneous calcium alginate ion cross\|linking gel microspheres, a novel ion absorbent, were prepared by dropping a sodium alginate solution to a calcium chloride solution via an electronic droplet generator. Calcium alginate microspheres have uniform particle sizes, a smooth surface and a microporous structure. The electrode probe reveals the inhomogeneous distribution of calcium ions with the highest concentration on the surface, and the lowest concentration in the cores of the spheres. As a novel ion adsorbent, calcium alginate gel microspheres have a lower limiting adsorption mass concentration, a higher enrichment capacity and a higher adsorption capacity for Pb 2+ than usual ion exchange resins. The highest percentage of the adsorption is 99 79%. The limiting adsorption mass concentration is 0 0426 mg/L. The adsorption capacity for Pb 2+ is 644 mg/g. Calcium alginate gel microspheres have a much faster ion exchange velocity than D418 chelating resin and D113 polyacrylate resin. The moving boundary model was employed to interpret the ion exchange kinetics process, which indicates that the ion exchange process is controlled by intraparticle diffusion of adsorbable ions. So the formation of inhomogeneous gel microspheres reduces the diffusion distance of adsorbable ions within the spheres and enhances the ion exchange velocity. Alginate has a higher selectivity for Pb 2+ than for Ca 2+ and the selectivity coefficient K Pb Ca is 316. As an ion cross\|linking gel, calcium alginate inhomogeneous microspheres can effectively adsorb heavy metal Pb 2+ at a higher selectivity and a higher adsorption velocity. It is a novel and good ion adsorbent.展开更多
Let Ω be a smooth bounded domain in R^n. In this article, we consider the homogeneous boundary Dirichlet problem of inhomogeneous p-Laplace equation --△pu = |u|^q-1 u + λf(x) on Ω, and identify necessary and ...Let Ω be a smooth bounded domain in R^n. In this article, we consider the homogeneous boundary Dirichlet problem of inhomogeneous p-Laplace equation --△pu = |u|^q-1 u + λf(x) on Ω, and identify necessary and sufficient conditions on Ω and f(x) which ensure the existence, or multiplicities of nonnegative solutions for the problem under consideration.展开更多
The inhomogeneous broadening parameter and the internal loss of green LDs are determined by experiments and theoretical fitting. It is found that the inhomogeneous broadening plays an important role on the threshold c...The inhomogeneous broadening parameter and the internal loss of green LDs are determined by experiments and theoretical fitting. It is found that the inhomogeneous broadening plays an important role on the threshold current density of green LDs. The green LD with large inhomogeneous broadening even cannot lase. Therefore, reducing inhomogeneous broadening is a key issue to improve the performance of green LDs.展开更多
A finite-difference time-domain (FDTD) algorithm is applied to study the electromagnetic reflection of conduction plane covered with inhomogeneous time-varying plasma, homogeneous plasma and inhomogeneous plasma. The ...A finite-difference time-domain (FDTD) algorithm is applied to study the electromagnetic reflection of conduction plane covered with inhomogeneous time-varying plasma, homogeneous plasma and inhomogeneous plasma. The collision frequency of plasma is a function of electron density and plasma temperature. The number density profile follows a parabolic function. A discussion on the effect of various plasma parameters on the reflection coefficient is presented. Under the one-dimensional case, transient electromagnetic propagation through various plasmas has been obtained, and the reflection coefficients of EM wave through various plasmas are calculated under different conditions. The results illustrate that a plasma cloaking system can successfully absorb the incident EM wave.展开更多
Although synthetic rubbers show continuously improved mechanical properties,natural rubber (NR) remains irreplaceable in the rubber family due to its superior mechanical properties.A mainstream viewpoint regarding the...Although synthetic rubbers show continuously improved mechanical properties,natural rubber (NR) remains irreplaceable in the rubber family due to its superior mechanical properties.A mainstream viewpoint regarding the superiority of NR is that NR possesses a natural network formed by linking the poly(cis-l,4-isoprene) chain terminals to protein and phospholipid aggregates;after vulcanization,the natural network additionally contributes to rubber mechanics by both increasing the network density and promoting the strain-induced crystallization (SIC) behavior.However,the reason why the natural network promotes SIC is still unclear;in particular,only using the increased network density cannot explain our finding that the NR shows smaller onset strain of SIC than Gel (the gel component of NR with higher network density) and even vulcanized NR.Herein,we point out that the inhomogeneous chain deformation is the alternative reason why SIC of NR takes place at smaller strain than that of Gel.More specifically,although the natural network is homogenous on the subchain length scale based on the proton double-quantum NMR results,it is essentially inhomogeneous on mesoscale (100 nm),as revealed by the small angle X-ray scattering analysis.This inhomogeneous network also leads to the mesoscale deformation inhomogeneity,as detected by the orientation of stearic acid (SA) probe,thus resulting in the smaller onset strain of SIC of NR.Based on the experimental results,a mesoscale model is proposed to qualitatively describe the crucial roles of inhomogeneous structure and deformation of natural network in NR?s mechanical properties,providing a clue from nature to guide the development of high-performance rubbers with controlled structures at mesoscale.展开更多
Stability assessment of slopes has historically been performed assuming soils to be homogeneous in two-dimensional(2D) cases. In real cases, soils are usually inhomogeneous, and each slope collapse indicates a three-d...Stability assessment of slopes has historically been performed assuming soils to be homogeneous in two-dimensional(2D) cases. In real cases, soils are usually inhomogeneous, and each slope collapse indicates a three-dimensional(3D) nature. Based on a 3D rotational failure mechanism, this work develops an approach to account for the impact of the vertical strength inhomogeneity on the 3D stability of stepped slopes. Seismic actions are taken into account by introducing the concept of a horizontal seismic coefficient. An upper-bound expression for stability factors is derived in the light of the kinematic approach, and the most critical solution is obtained from an optimization programming. In comparison with the previously published solutions, the validity of the proposed method is shown. A sensitivity analysis is carried out to discuss parametric effects on the stability of 3D stepped inhomogeneous slopes.展开更多
The changs of stress state in cold rolled aluminium sheet with large pass reduction,the combining activation process of slip systems as well as the formation mechanism of corresponding shear textures were investigated...The changs of stress state in cold rolled aluminium sheet with large pass reduction,the combining activation process of slip systems as well as the formation mechanism of corresponding shear textures were investigated.It is shown that the rolling deformation with large pass reduction produces not only the general rolling stresses but also a strong shear stress in aluminium sheet.With increasing additional shear stress the general rolling textures,i.e.{112}<111>,{123}<634>,{110}<1I2>and{110}<001>decrease,and the shear texture,i.e.{001}<110>as well as{111}fibre texture become stronger.The internal relation of these two kinds of textures was also discussed.展开更多
The nonlinear effects of unsteady multi-scale shale gas percolation,such as desorption,slippage,diffusion,pressure-dependent viscosity,and compressibility,are investigated by numerical simulation.A new general mathema...The nonlinear effects of unsteady multi-scale shale gas percolation,such as desorption,slippage,diffusion,pressure-dependent viscosity,and compressibility,are investigated by numerical simulation.A new general mathematical model of the problem is built,in which the Gaussian distribution is used to describe the inhomogeneous intrinsic permeability.Based on the Boltzmann transformation,an efficient semi-analytical method is proposed.The problem is then converted into a nonlinear equation in an integral form for the pressure field,and a related explicit iteration scheme is constructed by numerical discretization.The validation examples show that the proposed method has good convergence,and the simulation results also agree well with the results obtained from both numerical and actual data of two vertical fractured test wells in the literature.Desorption,slippage,and diffusion have significant influence on shale gas flows.The accuracy of the usual technique that the product of viscosity and compressibility is approximated as its value at the average formation pressure is examined.展开更多
Complex function and general conformal mapping methods are used to investigate the scattering of elastic shear waves by an elliptical cylindrical cavity in a radially inhomogeneous medium. The conformal mappings are i...Complex function and general conformal mapping methods are used to investigate the scattering of elastic shear waves by an elliptical cylindrical cavity in a radially inhomogeneous medium. The conformal mappings are introduced to solve scattering by an arbitrary cavity for the Helmholtz equation with variable coefficient through the transformed standard Helmholtz equation with a circular cavity. The medium density depends on the distance from the origin with a power-law variation and the shear elastic modulus is constant. The complex-value displacements and stresses of the in.homogeneous medium are explicitly obtained and the distributions of the dynamic stress for the case of an elliptical cavity are discussed. The accuracy of the present approach is verified by comparing the present solution results with the available published data. Numerical results demonstrate that the wave number, inhomogeneous parameters and different values of aspect ratio have significant influence on the dynamic stress concentration factors around the elliptical cavity.展开更多
Dark solitons in the inhomogeneous optical fiber are studied in this manuscript via a higher-order nonlinear Schr?dinger equation,since dark solitons can be applied in waveguide optics as dynamic switches and junction...Dark solitons in the inhomogeneous optical fiber are studied in this manuscript via a higher-order nonlinear Schr?dinger equation,since dark solitons can be applied in waveguide optics as dynamic switches and junctions or optical logic devices.Based on the Lax pair,the binary Darboux transformation is constructed under certain constraints,thus the multi-dark soliton solutions are presented.Soliton propagation and collision are graphically discussed with the group-velocity dispersion,third-and fourth-order dispersions,which can affect the solitons’velocities but have no effect on the shapes.Elastic collisions between the two dark solitons and among the three dark solitons are displayed,while the elasticity cannot be influenced by the above three coefficients.展开更多
We studied synchronization behaviours of spiral waves in a two-layer coupled inhomogeneous excitable system. It was found that phase synchronization can be observed under weak coupling strength. By increasing the coup...We studied synchronization behaviours of spiral waves in a two-layer coupled inhomogeneous excitable system. It was found that phase synchronization can be observed under weak coupling strength. By increasing the coupling strength, the synchronization is broken down. With the further increase of the coupling strength, complete synchronization and phase synchronization occur again. We also found that the inhomogeneity in excitable systems is helpful to the synchronization.展开更多
Having studied the initial state energy loss versus nuclear shadowing for the Drell-Yan dimuon pairproduction in the color string model,the inhomogeneous shadowing effect is considered in this paper.We find thatthe in...Having studied the initial state energy loss versus nuclear shadowing for the Drell-Yan dimuon pairproduction in the color string model,the inhomogeneous shadowing effect is considered in this paper.We find thatthe inhomogeneous shadowing effect does amend the rate of energy loss per unit path length,-dE/dz.Finally,thetheoretical results for the Drell-Yan differential cross-section ratios are compared with the E772 and E866 data.It isfound that the theoretical results are in good agreement with the experimental data.展开更多
We theoretically study the selection of the quantum path in high-order harmonics(HHG) and isolated attosecond pulse generation from a one-dimensional(1D) model of a H_2~+ molecule in few-cycle inhomogeneous laser...We theoretically study the selection of the quantum path in high-order harmonics(HHG) and isolated attosecond pulse generation from a one-dimensional(1D) model of a H_2~+ molecule in few-cycle inhomogeneous laser fields.We show that the inhomogeneity of the laser fields play an important role in the HHG process.The cutoff of the harmonics can be extended remarkably,and the harmonic spectrum becomes smooth and has fewer modulations.We investigate the time-frequency profile of the time-dependent dipole,which shows that the short quantum path is enhanced and the long quantum path disappears in spatially inhomogeneous fields.The semi-classical three-step model is also applied to illustrate the physical mechanism of HHG.The influence of driving field carrier-envelop phase(CEP) on HHG is also discussed.By superposing a series of properly selected harmonics,an isolated attosecond pulse(IAP) with duration 53 as can be obtained by a 15-fs,1600-nm laser pulse with the parameter ε = 0.0013(e is the parameter that determines the order of inhomogeneity of the laser field).展开更多
Some cylindrically symmetric inhomogeneous viscous fluid string cosmological models with magnetic field and cosmological term A varying with time are investigated. To get the deterministic solution, it has been assume...Some cylindrically symmetric inhomogeneous viscous fluid string cosmological models with magnetic field and cosmological term A varying with time are investigated. To get the deterministic solution, it has been assumed that the expansion (θ) in the model is proportional to the eigen value σ^11 of the shear tensor σ^ij. The value of cosmological constant for the model is found to be small and positive, which is supported by the results from recent supernovae Ia observations. The effect of bulk viscosity is to produce a change in perfect fluid and hence exhibits essential influence on the character of the solution. The physical and geometric properties of the models are also discussed in presence and absence of magnetic field.展开更多
基金supported by the NSFC(12101358,12471095)the Natural Science Foundation of Hubei Province in China(2024AFC020)the Fundamental Research Funds for the Central Universities,South-Central MinZu University(CZY23010)。
文摘this paper,we study the exponential non-uniform Berry-Esseen bound for the maximum likelihood estimator of some time inhomogeneous diffusion process.As applications,the optimal uniform Berry-Esseen bound and optimal Cramer-type moderate deviations of the Ornstein-Uhlenbeck process andα-Brownian bridge can be obtained.The main methods are the change of measure method and asymptotic analysis technique.
基金supported by the National Natural Science Foundation of China (Grant No. 12074329)Nanhu Scholars Program for Young Scholars of Xinyang Normal University。
文摘With a three-dimensional semiclassical ensemble method, we theoretically investigated the nonsequential double ionization of Ar driven by the spatially inhomogeneous few-cycle negatively chirped laser pulses. Our results show that the recollision time window can be precisely controlled within an isolated time interval of several hundred attoseconds, which is useful for understanding the subcycle correlated electron dynamics. More interestingly, the correlated electron momentum distribution (CEMD) exhibits a strong dependence on laser intensity. That is, at lower laser intensity, CEMD is located in the first quadrant. As the laser intensity increases,CEMD shifts almost completely to the second and fourth quadrants, and then gradually to the third quadrant.The underlying physics governing the CEMD's dependence on laser intensity is explained.
基金the Fundamental Research Funds for the Central Universities under Grant No.HEUCFZ1125National Natural Science Foundation of China under Grant No.10972064
文摘The dynamic inhomogeneous finite element method is studied for use in the transient analysis of one dimensional inhomogeneous media. The general formula of the inhomogeneous consistent mass matrix is established based on the shape function. In order to research the advantages of this method, it is compared with the general finite element method. A linear bar element is chosen for the discretization tests of material parameters with two fictitious distributions. And, a numerical example is solved to observe the differences in the results between these two methods. Some characteristics of the dynamic inhomogeneous finite element method that demonstrate its advantages are obtained through comparison with the general finite element method. It is found that the method can be used to solve elastic wave motion problems with a large element scale and a large number of iteration steps.
文摘Homogeneous and inhornogeneous differential realizations of the OSP(2,1)superalgebra on the spaces of homogeneous and inhomogeneous polynomials and the corresponding boson-fermioii realizations are studied.The new indecomposable and irreducible representations of the OSP(2,1)are given on subspaces and quotient spaces of the universal enveloping algebras of Heisenberg-Weyl superalgebra.All the finite dimensional irreducible representation of the OSP(2,1)superalgebra is naturally obtained as special cases.
基金supported by the National Natural Science Foundation of China(10772018,30872720)
文摘It is well known that subtle changes in structure and tissue composition of articular cartilage can lead to its degeneration. The present paper puts forward a modified layered inhomogeneous triphasic model with four parameters based on the inhomogeneous triphasic model proposed by Narmoneva et al. Incorporating a piecewise fitting optimization criterion, the new model was used to obtain the uniaxial modulus Ha, and predict swelling pattern for the articular cartilage based on ultrasound-measured swelling strain data. The results show that the new method can be used to provide more accurate estimation on the uniaxial modulus than the inhomogeneous triphasic model with three parameters and the homogeneous mode, and predict effectively the swell- ing strains of highly nonuniform distribution of degenerated articular cartilages. This study can provide supplementary information for exploring mechanical and material properties of the cartilage, and thus be helpful for the diagnosis of osteoarthritis-related diseases.
基金Item Sponsored by National Basic Research Program(973Program)of China(2011CB012903)National Natural Science Foundation of China(51075270)
文摘Based on hot compression tests by a Gleeble-1500D thermo-mechanical simulator, the flow stress model and microstructure evolution model for SA508-3 steel were established through the classical theories on work hardening and softening. The developed models were integrated into 3D thermal-mechanical coupled rigid plastic finite element software DEFORM3D. The inhomogeneous hot deformation (IHD) experiments of SA508 3 steel were designed and carried out. Meanwhile, numerical simulation was implemented to investigate the effect of temperature, strain and strain rate on microstructure during IHD process through measuring grain sizes at given positions. The simulated grain sizes were basically in agreement with the experimental ones. The results of experiment and simulation demonstrated that temperature is the main factor for the initiation of dynamic recrystallization (DRX), and higher temperature means lower critical strain so that DRX can be facilitated to obtain uniform fine microstructure.
文摘Inhomogeneous calcium alginate ion cross\|linking gel microspheres, a novel ion absorbent, were prepared by dropping a sodium alginate solution to a calcium chloride solution via an electronic droplet generator. Calcium alginate microspheres have uniform particle sizes, a smooth surface and a microporous structure. The electrode probe reveals the inhomogeneous distribution of calcium ions with the highest concentration on the surface, and the lowest concentration in the cores of the spheres. As a novel ion adsorbent, calcium alginate gel microspheres have a lower limiting adsorption mass concentration, a higher enrichment capacity and a higher adsorption capacity for Pb 2+ than usual ion exchange resins. The highest percentage of the adsorption is 99 79%. The limiting adsorption mass concentration is 0 0426 mg/L. The adsorption capacity for Pb 2+ is 644 mg/g. Calcium alginate gel microspheres have a much faster ion exchange velocity than D418 chelating resin and D113 polyacrylate resin. The moving boundary model was employed to interpret the ion exchange kinetics process, which indicates that the ion exchange process is controlled by intraparticle diffusion of adsorbable ions. So the formation of inhomogeneous gel microspheres reduces the diffusion distance of adsorbable ions within the spheres and enhances the ion exchange velocity. Alginate has a higher selectivity for Pb 2+ than for Ca 2+ and the selectivity coefficient K Pb Ca is 316. As an ion cross\|linking gel, calcium alginate inhomogeneous microspheres can effectively adsorb heavy metal Pb 2+ at a higher selectivity and a higher adsorption velocity. It is a novel and good ion adsorbent.
基金This work is supported by NNSF of China (10171029).
文摘Let Ω be a smooth bounded domain in R^n. In this article, we consider the homogeneous boundary Dirichlet problem of inhomogeneous p-Laplace equation --△pu = |u|^q-1 u + λf(x) on Ω, and identify necessary and sufficient conditions on Ω and f(x) which ensure the existence, or multiplicities of nonnegative solutions for the problem under consideration.
基金supported by the National Key Research and Development Program of China(Grant Nos.2017YFB0405000,2016YFB0401803)the National Natural Science Foundation of China(Grant Nos.61834008,61574160,and 61704184)support of the Chinese Academy of Science Visiting Professorship for Senior International Scientists (Grant No.2013T2J0048)
文摘The inhomogeneous broadening parameter and the internal loss of green LDs are determined by experiments and theoretical fitting. It is found that the inhomogeneous broadening plays an important role on the threshold current density of green LDs. The green LD with large inhomogeneous broadening even cannot lase. Therefore, reducing inhomogeneous broadening is a key issue to improve the performance of green LDs.
基金The project supported by the 863 project (NO. 2002AA731181)Key Laboratory of Defense Technology (NO. 51483010301KG0102)
文摘A finite-difference time-domain (FDTD) algorithm is applied to study the electromagnetic reflection of conduction plane covered with inhomogeneous time-varying plasma, homogeneous plasma and inhomogeneous plasma. The collision frequency of plasma is a function of electron density and plasma temperature. The number density profile follows a parabolic function. A discussion on the effect of various plasma parameters on the reflection coefficient is presented. Under the one-dimensional case, transient electromagnetic propagation through various plasmas has been obtained, and the reflection coefficients of EM wave through various plasmas are calculated under different conditions. The results illustrate that a plasma cloaking system can successfully absorb the incident EM wave.
基金financially supported by the National Natural Science Foundation of China (No. 51333003)Special Fund for Agro-scientific Research in the Public Interest (No. 201403066-1)
文摘Although synthetic rubbers show continuously improved mechanical properties,natural rubber (NR) remains irreplaceable in the rubber family due to its superior mechanical properties.A mainstream viewpoint regarding the superiority of NR is that NR possesses a natural network formed by linking the poly(cis-l,4-isoprene) chain terminals to protein and phospholipid aggregates;after vulcanization,the natural network additionally contributes to rubber mechanics by both increasing the network density and promoting the strain-induced crystallization (SIC) behavior.However,the reason why the natural network promotes SIC is still unclear;in particular,only using the increased network density cannot explain our finding that the NR shows smaller onset strain of SIC than Gel (the gel component of NR with higher network density) and even vulcanized NR.Herein,we point out that the inhomogeneous chain deformation is the alternative reason why SIC of NR takes place at smaller strain than that of Gel.More specifically,although the natural network is homogenous on the subchain length scale based on the proton double-quantum NMR results,it is essentially inhomogeneous on mesoscale (100 nm),as revealed by the small angle X-ray scattering analysis.This inhomogeneous network also leads to the mesoscale deformation inhomogeneity,as detected by the orientation of stearic acid (SA) probe,thus resulting in the smaller onset strain of SIC of NR.Based on the experimental results,a mesoscale model is proposed to qualitatively describe the crucial roles of inhomogeneous structure and deformation of natural network in NR?s mechanical properties,providing a clue from nature to guide the development of high-performance rubbers with controlled structures at mesoscale.
基金Project(51378510)supported by the National Natural Science Foundation of China
文摘Stability assessment of slopes has historically been performed assuming soils to be homogeneous in two-dimensional(2D) cases. In real cases, soils are usually inhomogeneous, and each slope collapse indicates a three-dimensional(3D) nature. Based on a 3D rotational failure mechanism, this work develops an approach to account for the impact of the vertical strength inhomogeneity on the 3D stability of stepped slopes. Seismic actions are taken into account by introducing the concept of a horizontal seismic coefficient. An upper-bound expression for stability factors is derived in the light of the kinematic approach, and the most critical solution is obtained from an optimization programming. In comparison with the previously published solutions, the validity of the proposed method is shown. A sensitivity analysis is carried out to discuss parametric effects on the stability of 3D stepped inhomogeneous slopes.
文摘The changs of stress state in cold rolled aluminium sheet with large pass reduction,the combining activation process of slip systems as well as the formation mechanism of corresponding shear textures were investigated.It is shown that the rolling deformation with large pass reduction produces not only the general rolling stresses but also a strong shear stress in aluminium sheet.With increasing additional shear stress the general rolling textures,i.e.{112}<111>,{123}<634>,{110}<1I2>and{110}<001>decrease,and the shear texture,i.e.{001}<110>as well as{111}fibre texture become stronger.The internal relation of these two kinds of textures was also discussed.
基金Project supported by the National Program on Key Basic Research Project(973 Program)(No.2013CB228002)
文摘The nonlinear effects of unsteady multi-scale shale gas percolation,such as desorption,slippage,diffusion,pressure-dependent viscosity,and compressibility,are investigated by numerical simulation.A new general mathematical model of the problem is built,in which the Gaussian distribution is used to describe the inhomogeneous intrinsic permeability.Based on the Boltzmann transformation,an efficient semi-analytical method is proposed.The problem is then converted into a nonlinear equation in an integral form for the pressure field,and a related explicit iteration scheme is constructed by numerical discretization.The validation examples show that the proposed method has good convergence,and the simulation results also agree well with the results obtained from both numerical and actual data of two vertical fractured test wells in the literature.Desorption,slippage,and diffusion have significant influence on shale gas flows.The accuracy of the usual technique that the product of viscosity and compressibility is approximated as its value at the average formation pressure is examined.
基金National Science&Technology Pillar Program under Grant No.2015BAK17B06Natural Science Foundation of Heilongjiang Province,China under Grant No.A201310+1 种基金Scientific Research Starting Foundation for Post Doctorate of Heilongjiang Province,China under Grant No.LBH-Q13040the Fundamental Research Funds for the Central Universities of China under Grant No.HEUCF150203
文摘Complex function and general conformal mapping methods are used to investigate the scattering of elastic shear waves by an elliptical cylindrical cavity in a radially inhomogeneous medium. The conformal mappings are introduced to solve scattering by an arbitrary cavity for the Helmholtz equation with variable coefficient through the transformed standard Helmholtz equation with a circular cavity. The medium density depends on the distance from the origin with a power-law variation and the shear elastic modulus is constant. The complex-value displacements and stresses of the in.homogeneous medium are explicitly obtained and the distributions of the dynamic stress for the case of an elliptical cavity are discussed. The accuracy of the present approach is verified by comparing the present solution results with the available published data. Numerical results demonstrate that the wave number, inhomogeneous parameters and different values of aspect ratio have significant influence on the dynamic stress concentration factors around the elliptical cavity.
基金supported by the National Natural Science Foundation of China under grant no.11905061by the Fundamental Research Funds for the Central Universities(No.9161718004)。
文摘Dark solitons in the inhomogeneous optical fiber are studied in this manuscript via a higher-order nonlinear Schr?dinger equation,since dark solitons can be applied in waveguide optics as dynamic switches and junctions or optical logic devices.Based on the Lax pair,the binary Darboux transformation is constructed under certain constraints,thus the multi-dark soliton solutions are presented.Soliton propagation and collision are graphically discussed with the group-velocity dispersion,third-and fourth-order dispersions,which can affect the solitons’velocities but have no effect on the shapes.Elastic collisions between the two dark solitons and among the three dark solitons are displayed,while the elasticity cannot be influenced by the above three coefficients.
基金Project supported by the National Natural Science Foundation of China (Grant No 10305005)the Fundamental Research Fund for Physics and Mathematics of Lanzhou University, China
文摘We studied synchronization behaviours of spiral waves in a two-layer coupled inhomogeneous excitable system. It was found that phase synchronization can be observed under weak coupling strength. By increasing the coupling strength, the synchronization is broken down. With the further increase of the coupling strength, complete synchronization and phase synchronization occur again. We also found that the inhomogeneity in excitable systems is helpful to the synchronization.
基金the Innovation Foundation of the Academy of Armored Forces Engineering of PLA under Grant 20062L10
文摘Having studied the initial state energy loss versus nuclear shadowing for the Drell-Yan dimuon pairproduction in the color string model,the inhomogeneous shadowing effect is considered in this paper.We find thatthe inhomogeneous shadowing effect does amend the rate of energy loss per unit path length,-dE/dz.Finally,thetheoretical results for the Drell-Yan differential cross-section ratios are compared with the E772 and E866 data.It isfound that the theoretical results are in good agreement with the experimental data.
基金supported by the National Natural Science Foundation of China(Grant Nos.11174108,11104108,and 11271158)
文摘We theoretically study the selection of the quantum path in high-order harmonics(HHG) and isolated attosecond pulse generation from a one-dimensional(1D) model of a H_2~+ molecule in few-cycle inhomogeneous laser fields.We show that the inhomogeneity of the laser fields play an important role in the HHG process.The cutoff of the harmonics can be extended remarkably,and the harmonic spectrum becomes smooth and has fewer modulations.We investigate the time-frequency profile of the time-dependent dipole,which shows that the short quantum path is enhanced and the long quantum path disappears in spatially inhomogeneous fields.The semi-classical three-step model is also applied to illustrate the physical mechanism of HHG.The influence of driving field carrier-envelop phase(CEP) on HHG is also discussed.By superposing a series of properly selected harmonics,an isolated attosecond pulse(IAP) with duration 53 as can be obtained by a 15-fs,1600-nm laser pulse with the parameter ε = 0.0013(e is the parameter that determines the order of inhomogeneity of the laser field).
文摘Some cylindrically symmetric inhomogeneous viscous fluid string cosmological models with magnetic field and cosmological term A varying with time are investigated. To get the deterministic solution, it has been assumed that the expansion (θ) in the model is proportional to the eigen value σ^11 of the shear tensor σ^ij. The value of cosmological constant for the model is found to be small and positive, which is supported by the results from recent supernovae Ia observations. The effect of bulk viscosity is to produce a change in perfect fluid and hence exhibits essential influence on the character of the solution. The physical and geometric properties of the models are also discussed in presence and absence of magnetic field.