Accurately forecasting the operational performance of a tunnel boring machine(TBM)in advance is useful for making timely adjustments to boring parameters,thereby enhancing overall boring efficiency.In this study,we us...Accurately forecasting the operational performance of a tunnel boring machine(TBM)in advance is useful for making timely adjustments to boring parameters,thereby enhancing overall boring efficiency.In this study,we used the Informer model to predict a critical performance parameter of the TBM,namely thrust.Leveraging data from the Guangzhou Metro Line 22 project on the big data platform in China,the model’s performance was validated,while data from Line 18 were used to assess its generalization capability.Results revealed that the Informer model surpasses random forest(RF),extreme gradient boosting(XGB),support vector regression(SVR),k-nearest neighbors(KNN),back propagation(BP),and long short-term memory(LSTM)models in both prediction accuracy and generalization performance.In addition,the optimal input lengths for maximizing accuracy in the single-time-step output model are within the range of 8–24,while for the multiple-time-step output model,the optimal input length is 8.Furthermore,the last predicted value in the case of multiple-time-step outputs showed the highest accuracy.It was also found that relaxation of the Pearson analysis method metrics to 0.95 improved the performance of the model.Finally,the prediction results were most affected by earth pressure,rotation speed,torque,boring speed,and the surrounding rock grade.The model can provide useful guidance for constructors when adjusting TBM operation parameters.展开更多
With the development of smart cities and smart technologies,parks,as functional units of the city,are facing smart transformation.The development of smart parks can help address challenges of technology integration wi...With the development of smart cities and smart technologies,parks,as functional units of the city,are facing smart transformation.The development of smart parks can help address challenges of technology integration within urban spaces and serve as testbeds for exploring smart city planning and governance models.Information models facilitate the effective integration of technology into space.Building Information Modeling(BIM)and City Information Modeling(CIM)have been widely used in urban construction.However,the existing information models have limitations in the application of the park,so it is necessary to develop an information model suitable for the park.This paper first traces the evolution of park smart transformation,reviews the global landscape of smart park development,and identifies key trends and persistent challenges.Addressing the particularities of parks,the concept of Park Information Modeling(PIM)is proposed.PIM leverages smart technologies such as artificial intelligence,digital twins,and collaborative sensing to help form a‘space-technology-system’smart structure,enabling systematic management of diverse park spaces,addressing the deficiency in park-level information models,and aiming to achieve scale articulation between BIM and CIM.Finally,through a detailed top-level design application case study of the Nanjing Smart Education Park in China,this paper illustrates the translation process of the PIM concept into practice,showcasing its potential to provide smart management tools for park managers and enhance services for park stakeholders,although further empirical validation is required.展开更多
We propose an integrated method of data-driven and mechanism models for well logging formation evaluation,explicitly focusing on predicting reservoir parameters,such as porosity and water saturation.Accurately interpr...We propose an integrated method of data-driven and mechanism models for well logging formation evaluation,explicitly focusing on predicting reservoir parameters,such as porosity and water saturation.Accurately interpreting these parameters is crucial for effectively exploring and developing oil and gas.However,with the increasing complexity of geological conditions in this industry,there is a growing demand for improved accuracy in reservoir parameter prediction,leading to higher costs associated with manual interpretation.The conventional logging interpretation methods rely on empirical relationships between logging data and reservoir parameters,which suffer from low interpretation efficiency,intense subjectivity,and suitability for ideal conditions.The application of artificial intelligence in the interpretation of logging data provides a new solution to the problems existing in traditional methods.It is expected to improve the accuracy and efficiency of the interpretation.If large and high-quality datasets exist,data-driven models can reveal relationships of arbitrary complexity.Nevertheless,constructing sufficiently large logging datasets with reliable labels remains challenging,making it difficult to apply data-driven models effectively in logging data interpretation.Furthermore,data-driven models often act as“black boxes”without explaining their predictions or ensuring compliance with primary physical constraints.This paper proposes a machine learning method with strong physical constraints by integrating mechanism and data-driven models.Prior knowledge of logging data interpretation is embedded into machine learning regarding network structure,loss function,and optimization algorithm.We employ the Physically Informed Auto-Encoder(PIAE)to predict porosity and water saturation,which can be trained without labeled reservoir parameters using self-supervised learning techniques.This approach effectively achieves automated interpretation and facilitates generalization across diverse datasets.展开更多
The management of large-scale architectural engineering projects(e.g.,airports,hospitals)is plagued by information silos,cost overruns,and scheduling delays.While building information modeling(BIM)has improved 3D desi...The management of large-scale architectural engineering projects(e.g.,airports,hospitals)is plagued by information silos,cost overruns,and scheduling delays.While building information modeling(BIM)has improved 3D design coordination,its static nature limits its utility in real-time construction management and operational phases.This paper proposes a novel synergistic framework that integrates the static,deep data of BIM with the dynamic,real-time capabilities of digital twin(DT)technology.The framework establishes a closed-loop data flow from design(BIM)to construction(IoT,drones,BIM 360)to operation(DT platform).We detail the technological stack required,including IoT sensors,cloud computing,and AI-driven analytics.The application of this framework is illustrated through a simulated case study of a mega-terminal airport construction project,demonstrating potential reductions in rework by 15%,improvement in labor productivity by 10%,and enhanced predictive maintenance capabilities.This research contributes to the field of construction engineering by providing a practical model for achieving full lifecycle digitalization and intelligent project management.展开更多
Underground pipeline networks constitute a major component of urban infrastructure,and thus,it is imperative to have an efficient mechanism to manage them.This study introduces a secondary development system to effici...Underground pipeline networks constitute a major component of urban infrastructure,and thus,it is imperative to have an efficient mechanism to manage them.This study introduces a secondary development system to efficiently model underground pipeline networks,using the building information modeling(BIM)-based software Revit.The system comprises separate pipe point and tubulation models.Using a Revit application programming interface(API),the spatial position and attribute data of the pipe points are extracted from a pipeline database,and the corresponding tubulation data are extracted from a tubulation database.Using the Family class in Revit API,the cluster in the self-built library of pipe point is inserted into the spatial location and the attribute data is added;in the same way,all pipeline instances in the pipeline system are created.The extension and localization of the model accelerated the modeling speed.The system was then used in a real construction project.The expansion of the model database and rapid modeling made the application of BIM technology in three-dimensional visualization of underground pipeline networks more convenient.Furthermore,it has applications in pipeline engineering construction and management.展开更多
Slope aspect is one of the indispensable internal factors besides lithology, relative elevation and slope degree. In this paper authors use information value model with Geo graphical Information System (GIS) technol...Slope aspect is one of the indispensable internal factors besides lithology, relative elevation and slope degree. In this paper authors use information value model with Geo graphical Information System (GIS) technology to study how slope aspect contributes to landslide growth from Yunyang to Wushan segment in the Three Gorges Reservoir area, and the relationship between aspect and landslide growth is quantified. Through the research on 205 landslides examples, it is found that the slope contributes most whose aspect is towards south,southeast and southwest aspect contribute moderately, and other five aspects contribute little. The research result inosculates preferably with the fact. The result of this paper can provide potent gist to the construction of Three Gorges Reservoir area in future.展开更多
Computer vision-based inspection methods show promise for automating post-earthquake building inspections.These methods survey a building with unmanned aerial vehicles and automatically detect damage in the collected ...Computer vision-based inspection methods show promise for automating post-earthquake building inspections.These methods survey a building with unmanned aerial vehicles and automatically detect damage in the collected images.Nevertheless,assessing the damage′s impact on structural safety requires localizing damage to specific building components with known design and function.This paper proposes a BIM-based automated inspection framework to provide context for visual surveys.A deep learning-based semantic segmentation algorithm is trained to automatically identify damage in images.The BIM automatically associates any identified damage with specific building components.Then,components are classified into damage states consistent with component fragility models for integration with a structural analysis.To demonstrate the framework,methods are developed to photorealistically simulate severe structural damage in a synthetic computer graphics environment.A graphics model of a real building in Urbana,Illinois,is generated to test the framework;the model is integrated with a structural analysis to apply earthquake damage in a physically realistic manner.A simulated UAV survey is flown of the graphics model and the framework is applied.The method achieves high accuracy in assigning damage states to visible structural components.This assignment enables integration with a performance-based earthquake assessment to classify building safety.展开更多
Motion simulation and performance analysis of mechanism are important methods for analyzing assembly quality after finishing assembly simulation in virtual assembly environment. However, most simulation systems have n...Motion simulation and performance analysis of mechanism are important methods for analyzing assembly quality after finishing assembly simulation in virtual assembly environment. However, most simulation systems have no function of mechanism motion simulation due to the randomicity of mechanism and lack of universal mechanism modeling method. In order to realize the simulation of any mechanism after finishing assembly simulation in a virtual environment, a new universal mechanism modeling method is presented. Two main models are contained in the mechanism model: information model and mathematical model. Firstly, the information model of mechanism is proposed to describe the data structure of mechanism which contains bottom geometry data, information of constraint, link, kinematic pair and physical data. Because the object of mechanism simulation is the assembly, which is assembled during the process of assembly simulation, the information of mechanism can be obtained automatically through mechanism automatic search method. Secondly, mathematical model of mechanism is presented. The mathematical model uses mathematical method to express the mechanism. In order to realize the automatic expression of any random mechanism, basic constraint library is presented, consequently random mechanism can be described based on the basic constraint library. Finally, two examples are introduced to validate the method in the prototype system named VAPP(Virtual Assembly Process Planning). The validation result shows that the mechanism modeling provides a universal modeling method for mechanism motion simulation in virtual assembly environment. This research has important effect on the development both of mechanism motion simulation and virtual assembly.展开更多
As-built building information model (BIM) is an urgent need of the architecture, engineering, construction and facilities management (AEC/FM) community. However, its creation procedure is still labor-intensive and...As-built building information model (BIM) is an urgent need of the architecture, engineering, construction and facilities management (AEC/FM) community. However, its creation procedure is still labor-intensive and far from maturity. Taking advantage of prevalence of digital cameras and the development of advanced computer vision technology, the paper proposes to reconstruct a building facade and recognize its surface materials from images taken from various points of view. These can serve as initial steps towards automatic generation of as-built BIM. Specifically, 3D point clouds are generated from multiple images using structure from motion method and then segmented into planar components, which are further recognized as different structural components through knowledge based reasoning. Windows are detected through a multilayered complementary strategy by combining detection results from every semantic layer. A novel machine learning based 3D material recognition strategy is presented. Binary classifiers are trained through support vector machines. Material type at a given 3D location is predicted by all its corresponding 2D feature points. Experimental results from three existing buildings validate the proposed system.展开更多
There are heterogeneous problems between the CAD model and the assembly process document.In the planning stage of assembly process,these heterogeneous problems can decrease the efficiency of information interaction.Ba...There are heterogeneous problems between the CAD model and the assembly process document.In the planning stage of assembly process,these heterogeneous problems can decrease the efficiency of information interaction.Based on knowledge graph,this paper proposes an assembly information model(KGAM)to integrate geometric information from CAD model,non-geometric information and semantic information from assembly process document.KGAM describes the integrated assembly process information as a knowledge graph in the form of“entity-relationship-entity”and“entity-attribute-value”,which can improve the efficiency of information interaction.Taking the trial assembly stage of a certain type of aeroengine compressor rotor component as an example,KGAM is used to get its assembly process knowledge graph.The trial data show the query and update rate of assembly attribute information is improved by more than once.And the query and update rate of assembly semantic information is improved by more than twice.In conclusion,KGAM can solve the heterogeneous problems between the CAD model and the assembly process document and improve the information interaction efficiency.展开更多
The vehicle routing and scheduling (VRS) problem with multi-objective and multi-constraint is analyzed, considering the complexity of the modern logistics in city economy and daily life based on the system engineering...The vehicle routing and scheduling (VRS) problem with multi-objective and multi-constraint is analyzed, considering the complexity of the modern logistics in city economy and daily life based on the system engineering. The objective and constraint includes loading, the dispatch and arrival time, transportation conditions,total cost,etc. An information model and a mathematical model are built,and a method based on knowledge and biologic immunity is put forward for optimizing and evaluating the programs dimensions in vehicle routing and scheduling with multi-objective and multi-constraints. The proposed model and method are illustrated in a case study concerning a transport network, and the result shows that more optimization solutions can be easily obtained and the method is efficient and feasible. Comparing with the standard GA and the standard GA without time constraint,the computational time of the algorithm is less in this paper. And the probability of gaining optimal solution is bigger and the result is better under the condition of multi-constraint.展开更多
A hybrid model that is based on the Combination of keywords and concept was put forward. The hybrid model is built on vector space model and probabilistic reasoning network. It not only can exert the advantages of key...A hybrid model that is based on the Combination of keywords and concept was put forward. The hybrid model is built on vector space model and probabilistic reasoning network. It not only can exert the advantages of keywords retrieval and concept retrieval but also can compensate for their shortcomings. Their parameters can be adjusted according to different usage in order to accept the best information retrieval result, and it has been proved by our experiments.展开更多
Information model is adopted to integrate factors of various geosciences to estimate the susceptibility of geological hazards. Further combining the dynamic rainfall observations, Logistic regression is used for model...Information model is adopted to integrate factors of various geosciences to estimate the susceptibility of geological hazards. Further combining the dynamic rainfall observations, Logistic regression is used for modeling the probabilities of geological hazard occurrences, upon which hierarchical warnings for rainfall-induced geological hazards are produced. The forecasting and warning model takes numerical precipitation forecasts on grid points as its dynamic input, forecasts the probabilities of geological hazard occurrences on the same grid, and translates the results into likelihoods in the form of a 5-level hierarchy. Validation of the model with observational data for the year 2004 shows that 80% of the geological hazards of the year have been identified as "likely enough to release warning messages". The model can satisfy the requirements of an operational warning system, thus is an effective way to improve the meteorological warnings for geological hazards.展开更多
Information was a frequently used concept in many fields of investigation. However, this concept is still not really understood, when it is referred for instance to consciousness and its informational structure. In th...Information was a frequently used concept in many fields of investigation. However, this concept is still not really understood, when it is referred for instance to consciousness and its informational structure. In this paper it is followed the concept of information from philosophical to physics perspective, showing especially how this concept could be extended to matter in general and to the living in particular, as a result of the intimate interaction between matter and information, the human body appearing as a bipolar informed-matter structure. It is detailed on this way how this concept could be referred to consciousness, and an informational modeling of consciousness as an informational system of the human body is presented. Based on the anatomic architecture of the organism and on the inference of the specific information concepts, it is shown that the informational system of the human body could be described by seven informational subsystems, which are reflected in consciousness as corresponding cognitive centers. These results are able to explain the main properties of consciousness, both the cognitive and extra-cognitive properties of the mind, like that observed during the near-death experiences and other similar phenomena. Moreover, the results of such a modeling are compared with the existing empirical concepts and models on the energetic architecture of the organism, showing their relevance for the understanding of consciousness.展开更多
The experiment of granular materials, barley, drying in a fluidized bed was carried out to investigate the influence of the factors, inlet air temperature, air moisture, bed height and original moisture content of th...The experiment of granular materials, barley, drying in a fluidized bed was carried out to investigate the influence of the factors, inlet air temperature, air moisture, bed height and original moisture content of the dried materials on drying process. Based on the experimental data, a corresponding mathematical model is presented. As a conclusion, a higher inlet air temperature and a reasonable bed height should be used so as to increase the dring rate and to improve the product quality.展开更多
BACKGROUND Cerebrovascular disease(CVD)poses a serious threat to human health and safety.Thus,developing a reasonable exercise program plays an important role in the long-term recovery and prognosis for patients with ...BACKGROUND Cerebrovascular disease(CVD)poses a serious threat to human health and safety.Thus,developing a reasonable exercise program plays an important role in the long-term recovery and prognosis for patients with CVD.Studies have shown that predictive nursing can improve the quality of care and that the information–knowledge–attitude–practice(IKAP)nursing model has a positive impact on patients who suffered a stroke.Few studies have combined these two nursing models to treat CVD.AIM To explore the effect of the IKAP nursing model combined with predictive nursing on the Fugl–Meyer motor function(FMA)score,Barthel index score,and disease knowledge mastery rate in patients with CVD.METHODS A total of 140 patients with CVD treated at our hospital between December 2019 and September 2021 were randomly divided into two groups,with 70 patients in each.The control group received routine nursing,while the observation group received the IKAP nursing model combined with predictive nursing.Both groups were observed for self-care ability,motor function,and disease knowledge mastery rate after one month of nursing.RESULTS There was no clear difference between the Barthel index and FMA scores of the two groups before nursing(P>0.05);however,their scores increased after nursing.This increase was more apparent in the observation group,and the difference was statistically significant(P<0.05).The rates of disease knowledge mastery,timely medication,appropriate exercise,and reasonable diet were significantly higher in the observation group than in the control group(P<0.05).The satisfaction rate in the observation group(97.14%)was significantly higher than that in the control group(81.43%;P<0.05).CONCLUSION The IKAP nursing model,combined with predictive nursing,is more effective than routine nursing in the care of patients with CVD,and it can significantly improve the Barthel index and FMA scores with better knowledge acquisition,as well as produce high satisfaction in patients.Moreover,they can be widely used in the clinical setting.展开更多
In accordance with the requirements of expanding Machine-To-Machine communication (M2M), the network overlay is in progress in several domains such as Smart Grid. Consequently, it is predictable that opportunities and...In accordance with the requirements of expanding Machine-To-Machine communication (M2M), the network overlay is in progress in several domains such as Smart Grid. Consequently, it is predictable that opportunities and cases of integrating yielded data from devices such as sensors will increase more. Accordingly, the importance of Ontology and Information Models (IM) which normalize the semantics including sensor expressions, have increased, and the standards of these definitions have been more important as well. So far, there have been multiple initiatives for standardizing the Ontology and IM in regards to the sensors expression such as Sensor Standards Harmonization by the National Institute of Standards and Technology (NIST), W3C Semantic Sensor Network (SSN) and the recent W3C IoT-Lite Ontology. However, there is still room to improve the current level of the Ontology and IM on the viewpoint of the implementing structure. This paper presents a set of IMs on abstract sensors and contexts in regards to the phenomenon around these sensors from the point of view of a structure implementing these specified sensors. As several previous studies have pointed out, multiple aspects on the sensors should be modeled. Accordingly, multiple sets of Ontology and IM on these sensors should be defined. Our study has intended to clarify the relationship between configurations and physical measured quantities of the structures implementing a set of sensors. Up to present, they have not been generalized and have remained unformulated. Consequently, due to the result of this analysis, it is expected to implement a more generalized translator module easily, which aggregates the measured data from the sensors on the middleware level managing these Ontology and IM, instead of the layer of user application programs.展开更多
This paper analyzes the semantics structure of enterprise process metric and gives guidelines to describe the semantics of metric for collecting metric data automatically. Based on domain ontology, a structure called ...This paper analyzes the semantics structure of enterprise process metric and gives guidelines to describe the semantics of metric for collecting metric data automatically. Based on domain ontology, a structure called semantic tree is defined to de- scribe the semantics relationships among measured entity, meas- urable attribute and constraints, which provides the same method to define semantics of process metrics and data elements in enterprise information model. The arithmetic to map process metrics to enterprise information model is put forward, which can compute the query conditions to retrieve process metrics data from enterprise information systems accurately. This arithmetic has been applied in an information project.展开更多
Product information model for welding structure plays an important role for the integration of welding CAD/CAPP/CAM. However, existing CAD modeling systems are not capable of providing enough information for subsequen...Product information model for welding structure plays an important role for the integration of welding CAD/CAPP/CAM. However, existing CAD modeling systems are not capable of providing enough information for subsequent manufacturing activities such as CAPP and CAM. A new design approach using feature technique and object oriented programming method is put forward in this paper in order to create the product information model of welding structure. With this approach, the product information model is able to effectively support computer aided welding process planning, fixturing, assembling, path planning of welding robot and other manufacturing activities. The feature classification and representing scheme of welding structure are discussed. A prototype system is developed based on feature and object oriented programming. Its structure and functions are given in detail.展开更多
基金supported by the National Natural Science Foundation of China(No.41827807)the Foundation of the Guangdong Provincial Key Laboratory of Modern Civil Engineering Technology(No.2021B1212040003),China.
文摘Accurately forecasting the operational performance of a tunnel boring machine(TBM)in advance is useful for making timely adjustments to boring parameters,thereby enhancing overall boring efficiency.In this study,we used the Informer model to predict a critical performance parameter of the TBM,namely thrust.Leveraging data from the Guangzhou Metro Line 22 project on the big data platform in China,the model’s performance was validated,while data from Line 18 were used to assess its generalization capability.Results revealed that the Informer model surpasses random forest(RF),extreme gradient boosting(XGB),support vector regression(SVR),k-nearest neighbors(KNN),back propagation(BP),and long short-term memory(LSTM)models in both prediction accuracy and generalization performance.In addition,the optimal input lengths for maximizing accuracy in the single-time-step output model are within the range of 8–24,while for the multiple-time-step output model,the optimal input length is 8.Furthermore,the last predicted value in the case of multiple-time-step outputs showed the highest accuracy.It was also found that relaxation of the Pearson analysis method metrics to 0.95 improved the performance of the model.Finally,the prediction results were most affected by earth pressure,rotation speed,torque,boring speed,and the surrounding rock grade.The model can provide useful guidance for constructors when adjusting TBM operation parameters.
基金Under the auspices of National Natural Science Foundation of China(No.42330510)。
文摘With the development of smart cities and smart technologies,parks,as functional units of the city,are facing smart transformation.The development of smart parks can help address challenges of technology integration within urban spaces and serve as testbeds for exploring smart city planning and governance models.Information models facilitate the effective integration of technology into space.Building Information Modeling(BIM)and City Information Modeling(CIM)have been widely used in urban construction.However,the existing information models have limitations in the application of the park,so it is necessary to develop an information model suitable for the park.This paper first traces the evolution of park smart transformation,reviews the global landscape of smart park development,and identifies key trends and persistent challenges.Addressing the particularities of parks,the concept of Park Information Modeling(PIM)is proposed.PIM leverages smart technologies such as artificial intelligence,digital twins,and collaborative sensing to help form a‘space-technology-system’smart structure,enabling systematic management of diverse park spaces,addressing the deficiency in park-level information models,and aiming to achieve scale articulation between BIM and CIM.Finally,through a detailed top-level design application case study of the Nanjing Smart Education Park in China,this paper illustrates the translation process of the PIM concept into practice,showcasing its potential to provide smart management tools for park managers and enhance services for park stakeholders,although further empirical validation is required.
基金supported by National Key Research and Development Program (2019YFA0708301)National Natural Science Foundation of China (51974337)+2 种基金the Strategic Cooperation Projects of CNPC and CUPB (ZLZX2020-03)Science and Technology Innovation Fund of CNPC (2021DQ02-0403)Open Fund of Petroleum Exploration and Development Research Institute of CNPC (2022-KFKT-09)
文摘We propose an integrated method of data-driven and mechanism models for well logging formation evaluation,explicitly focusing on predicting reservoir parameters,such as porosity and water saturation.Accurately interpreting these parameters is crucial for effectively exploring and developing oil and gas.However,with the increasing complexity of geological conditions in this industry,there is a growing demand for improved accuracy in reservoir parameter prediction,leading to higher costs associated with manual interpretation.The conventional logging interpretation methods rely on empirical relationships between logging data and reservoir parameters,which suffer from low interpretation efficiency,intense subjectivity,and suitability for ideal conditions.The application of artificial intelligence in the interpretation of logging data provides a new solution to the problems existing in traditional methods.It is expected to improve the accuracy and efficiency of the interpretation.If large and high-quality datasets exist,data-driven models can reveal relationships of arbitrary complexity.Nevertheless,constructing sufficiently large logging datasets with reliable labels remains challenging,making it difficult to apply data-driven models effectively in logging data interpretation.Furthermore,data-driven models often act as“black boxes”without explaining their predictions or ensuring compliance with primary physical constraints.This paper proposes a machine learning method with strong physical constraints by integrating mechanism and data-driven models.Prior knowledge of logging data interpretation is embedded into machine learning regarding network structure,loss function,and optimization algorithm.We employ the Physically Informed Auto-Encoder(PIAE)to predict porosity and water saturation,which can be trained without labeled reservoir parameters using self-supervised learning techniques.This approach effectively achieves automated interpretation and facilitates generalization across diverse datasets.
文摘The management of large-scale architectural engineering projects(e.g.,airports,hospitals)is plagued by information silos,cost overruns,and scheduling delays.While building information modeling(BIM)has improved 3D design coordination,its static nature limits its utility in real-time construction management and operational phases.This paper proposes a novel synergistic framework that integrates the static,deep data of BIM with the dynamic,real-time capabilities of digital twin(DT)technology.The framework establishes a closed-loop data flow from design(BIM)to construction(IoT,drones,BIM 360)to operation(DT platform).We detail the technological stack required,including IoT sensors,cloud computing,and AI-driven analytics.The application of this framework is illustrated through a simulated case study of a mega-terminal airport construction project,demonstrating potential reductions in rework by 15%,improvement in labor productivity by 10%,and enhanced predictive maintenance capabilities.This research contributes to the field of construction engineering by providing a practical model for achieving full lifecycle digitalization and intelligent project management.
基金supported by a grant(No.14DZ2292800,http://www.greengeo.net/)from“Technology Service Platform of Civil Engineering”of Science and Technology Commission of Shanghai Municipality.
文摘Underground pipeline networks constitute a major component of urban infrastructure,and thus,it is imperative to have an efficient mechanism to manage them.This study introduces a secondary development system to efficiently model underground pipeline networks,using the building information modeling(BIM)-based software Revit.The system comprises separate pipe point and tubulation models.Using a Revit application programming interface(API),the spatial position and attribute data of the pipe points are extracted from a pipeline database,and the corresponding tubulation data are extracted from a tubulation database.Using the Family class in Revit API,the cluster in the self-built library of pipe point is inserted into the spatial location and the attribute data is added;in the same way,all pipeline instances in the pipeline system are created.The extension and localization of the model accelerated the modeling speed.The system was then used in a real construction project.The expansion of the model database and rapid modeling made the application of BIM technology in three-dimensional visualization of underground pipeline networks more convenient.Furthermore,it has applications in pipeline engineering construction and management.
文摘Slope aspect is one of the indispensable internal factors besides lithology, relative elevation and slope degree. In this paper authors use information value model with Geo graphical Information System (GIS) technology to study how slope aspect contributes to landslide growth from Yunyang to Wushan segment in the Three Gorges Reservoir area, and the relationship between aspect and landslide growth is quantified. Through the research on 205 landslides examples, it is found that the slope contributes most whose aspect is towards south,southeast and southwest aspect contribute moderately, and other five aspects contribute little. The research result inosculates preferably with the fact. The result of this paper can provide potent gist to the construction of Three Gorges Reservoir area in future.
基金Financial support for this research was provided in part by the US Army Corps of Engineers through a subaward from the University of California,San Diego,USA。
文摘Computer vision-based inspection methods show promise for automating post-earthquake building inspections.These methods survey a building with unmanned aerial vehicles and automatically detect damage in the collected images.Nevertheless,assessing the damage′s impact on structural safety requires localizing damage to specific building components with known design and function.This paper proposes a BIM-based automated inspection framework to provide context for visual surveys.A deep learning-based semantic segmentation algorithm is trained to automatically identify damage in images.The BIM automatically associates any identified damage with specific building components.Then,components are classified into damage states consistent with component fragility models for integration with a structural analysis.To demonstrate the framework,methods are developed to photorealistically simulate severe structural damage in a synthetic computer graphics environment.A graphics model of a real building in Urbana,Illinois,is generated to test the framework;the model is integrated with a structural analysis to apply earthquake damage in a physically realistic manner.A simulated UAV survey is flown of the graphics model and the framework is applied.The method achieves high accuracy in assigning damage states to visible structural components.This assignment enables integration with a performance-based earthquake assessment to classify building safety.
基金supported by National Natural Science Foundation of China(Grant No. 51275047)
文摘Motion simulation and performance analysis of mechanism are important methods for analyzing assembly quality after finishing assembly simulation in virtual assembly environment. However, most simulation systems have no function of mechanism motion simulation due to the randomicity of mechanism and lack of universal mechanism modeling method. In order to realize the simulation of any mechanism after finishing assembly simulation in a virtual environment, a new universal mechanism modeling method is presented. Two main models are contained in the mechanism model: information model and mathematical model. Firstly, the information model of mechanism is proposed to describe the data structure of mechanism which contains bottom geometry data, information of constraint, link, kinematic pair and physical data. Because the object of mechanism simulation is the assembly, which is assembled during the process of assembly simulation, the information of mechanism can be obtained automatically through mechanism automatic search method. Secondly, mathematical model of mechanism is presented. The mathematical model uses mathematical method to express the mechanism. In order to realize the automatic expression of any random mechanism, basic constraint library is presented, consequently random mechanism can be described based on the basic constraint library. Finally, two examples are introduced to validate the method in the prototype system named VAPP(Virtual Assembly Process Planning). The validation result shows that the mechanism modeling provides a universal modeling method for mechanism motion simulation in virtual assembly environment. This research has important effect on the development both of mechanism motion simulation and virtual assembly.
基金supported by National Natural Science Foundation of China(No.51208425)Research Foundation of Northwestern Polytechnical University(No.JCY20130127)
文摘As-built building information model (BIM) is an urgent need of the architecture, engineering, construction and facilities management (AEC/FM) community. However, its creation procedure is still labor-intensive and far from maturity. Taking advantage of prevalence of digital cameras and the development of advanced computer vision technology, the paper proposes to reconstruct a building facade and recognize its surface materials from images taken from various points of view. These can serve as initial steps towards automatic generation of as-built BIM. Specifically, 3D point clouds are generated from multiple images using structure from motion method and then segmented into planar components, which are further recognized as different structural components through knowledge based reasoning. Windows are detected through a multilayered complementary strategy by combining detection results from every semantic layer. A novel machine learning based 3D material recognition strategy is presented. Binary classifiers are trained through support vector machines. Material type at a given 3D location is predicted by all its corresponding 2D feature points. Experimental results from three existing buildings validate the proposed system.
基金the National Natural Science Foundation of China(No.51805079)。
文摘There are heterogeneous problems between the CAD model and the assembly process document.In the planning stage of assembly process,these heterogeneous problems can decrease the efficiency of information interaction.Based on knowledge graph,this paper proposes an assembly information model(KGAM)to integrate geometric information from CAD model,non-geometric information and semantic information from assembly process document.KGAM describes the integrated assembly process information as a knowledge graph in the form of“entity-relationship-entity”and“entity-attribute-value”,which can improve the efficiency of information interaction.Taking the trial assembly stage of a certain type of aeroengine compressor rotor component as an example,KGAM is used to get its assembly process knowledge graph.The trial data show the query and update rate of assembly attribute information is improved by more than once.And the query and update rate of assembly semantic information is improved by more than twice.In conclusion,KGAM can solve the heterogeneous problems between the CAD model and the assembly process document and improve the information interaction efficiency.
基金National natural science foundation (No:70371040)
文摘The vehicle routing and scheduling (VRS) problem with multi-objective and multi-constraint is analyzed, considering the complexity of the modern logistics in city economy and daily life based on the system engineering. The objective and constraint includes loading, the dispatch and arrival time, transportation conditions,total cost,etc. An information model and a mathematical model are built,and a method based on knowledge and biologic immunity is put forward for optimizing and evaluating the programs dimensions in vehicle routing and scheduling with multi-objective and multi-constraints. The proposed model and method are illustrated in a case study concerning a transport network, and the result shows that more optimization solutions can be easily obtained and the method is efficient and feasible. Comparing with the standard GA and the standard GA without time constraint,the computational time of the algorithm is less in this paper. And the probability of gaining optimal solution is bigger and the result is better under the condition of multi-constraint.
文摘A hybrid model that is based on the Combination of keywords and concept was put forward. The hybrid model is built on vector space model and probabilistic reasoning network. It not only can exert the advantages of keywords retrieval and concept retrieval but also can compensate for their shortcomings. Their parameters can be adjusted according to different usage in order to accept the best information retrieval result, and it has been proved by our experiments.
基金the New Technology Generalization Project of China Meteorological Administration (CMATG2004M05)
文摘Information model is adopted to integrate factors of various geosciences to estimate the susceptibility of geological hazards. Further combining the dynamic rainfall observations, Logistic regression is used for modeling the probabilities of geological hazard occurrences, upon which hierarchical warnings for rainfall-induced geological hazards are produced. The forecasting and warning model takes numerical precipitation forecasts on grid points as its dynamic input, forecasts the probabilities of geological hazard occurrences on the same grid, and translates the results into likelihoods in the form of a 5-level hierarchy. Validation of the model with observational data for the year 2004 shows that 80% of the geological hazards of the year have been identified as "likely enough to release warning messages". The model can satisfy the requirements of an operational warning system, thus is an effective way to improve the meteorological warnings for geological hazards.
文摘Information was a frequently used concept in many fields of investigation. However, this concept is still not really understood, when it is referred for instance to consciousness and its informational structure. In this paper it is followed the concept of information from philosophical to physics perspective, showing especially how this concept could be extended to matter in general and to the living in particular, as a result of the intimate interaction between matter and information, the human body appearing as a bipolar informed-matter structure. It is detailed on this way how this concept could be referred to consciousness, and an informational modeling of consciousness as an informational system of the human body is presented. Based on the anatomic architecture of the organism and on the inference of the specific information concepts, it is shown that the informational system of the human body could be described by seven informational subsystems, which are reflected in consciousness as corresponding cognitive centers. These results are able to explain the main properties of consciousness, both the cognitive and extra-cognitive properties of the mind, like that observed during the near-death experiences and other similar phenomena. Moreover, the results of such a modeling are compared with the existing empirical concepts and models on the energetic architecture of the organism, showing their relevance for the understanding of consciousness.
基金This work is financed by an operating grant from the Doctoral Foundation Program of the Miniscy of National Education, China.
文摘The experiment of granular materials, barley, drying in a fluidized bed was carried out to investigate the influence of the factors, inlet air temperature, air moisture, bed height and original moisture content of the dried materials on drying process. Based on the experimental data, a corresponding mathematical model is presented. As a conclusion, a higher inlet air temperature and a reasonable bed height should be used so as to increase the dring rate and to improve the product quality.
基金Supported by Basic scientific research industry of Heilongjiang Provincial undergraduate universities in 2019,No.2019-KYYWF-1213.
文摘BACKGROUND Cerebrovascular disease(CVD)poses a serious threat to human health and safety.Thus,developing a reasonable exercise program plays an important role in the long-term recovery and prognosis for patients with CVD.Studies have shown that predictive nursing can improve the quality of care and that the information–knowledge–attitude–practice(IKAP)nursing model has a positive impact on patients who suffered a stroke.Few studies have combined these two nursing models to treat CVD.AIM To explore the effect of the IKAP nursing model combined with predictive nursing on the Fugl–Meyer motor function(FMA)score,Barthel index score,and disease knowledge mastery rate in patients with CVD.METHODS A total of 140 patients with CVD treated at our hospital between December 2019 and September 2021 were randomly divided into two groups,with 70 patients in each.The control group received routine nursing,while the observation group received the IKAP nursing model combined with predictive nursing.Both groups were observed for self-care ability,motor function,and disease knowledge mastery rate after one month of nursing.RESULTS There was no clear difference between the Barthel index and FMA scores of the two groups before nursing(P>0.05);however,their scores increased after nursing.This increase was more apparent in the observation group,and the difference was statistically significant(P<0.05).The rates of disease knowledge mastery,timely medication,appropriate exercise,and reasonable diet were significantly higher in the observation group than in the control group(P<0.05).The satisfaction rate in the observation group(97.14%)was significantly higher than that in the control group(81.43%;P<0.05).CONCLUSION The IKAP nursing model,combined with predictive nursing,is more effective than routine nursing in the care of patients with CVD,and it can significantly improve the Barthel index and FMA scores with better knowledge acquisition,as well as produce high satisfaction in patients.Moreover,they can be widely used in the clinical setting.
文摘In accordance with the requirements of expanding Machine-To-Machine communication (M2M), the network overlay is in progress in several domains such as Smart Grid. Consequently, it is predictable that opportunities and cases of integrating yielded data from devices such as sensors will increase more. Accordingly, the importance of Ontology and Information Models (IM) which normalize the semantics including sensor expressions, have increased, and the standards of these definitions have been more important as well. So far, there have been multiple initiatives for standardizing the Ontology and IM in regards to the sensors expression such as Sensor Standards Harmonization by the National Institute of Standards and Technology (NIST), W3C Semantic Sensor Network (SSN) and the recent W3C IoT-Lite Ontology. However, there is still room to improve the current level of the Ontology and IM on the viewpoint of the implementing structure. This paper presents a set of IMs on abstract sensors and contexts in regards to the phenomenon around these sensors from the point of view of a structure implementing these specified sensors. As several previous studies have pointed out, multiple aspects on the sensors should be modeled. Accordingly, multiple sets of Ontology and IM on these sensors should be defined. Our study has intended to clarify the relationship between configurations and physical measured quantities of the structures implementing a set of sensors. Up to present, they have not been generalized and have remained unformulated. Consequently, due to the result of this analysis, it is expected to implement a more generalized translator module easily, which aggregates the measured data from the sensors on the middleware level managing these Ontology and IM, instead of the layer of user application programs.
基金Supported by the National High Technology Research and Development Program of China (863 Progam) (2006AA09A102-15)the National Major Project of Science and Technology of China (2008ZX05023-05-05)
文摘This paper analyzes the semantics structure of enterprise process metric and gives guidelines to describe the semantics of metric for collecting metric data automatically. Based on domain ontology, a structure called semantic tree is defined to de- scribe the semantics relationships among measured entity, meas- urable attribute and constraints, which provides the same method to define semantics of process metrics and data elements in enterprise information model. The arithmetic to map process metrics to enterprise information model is put forward, which can compute the query conditions to retrieve process metrics data from enterprise information systems accurately. This arithmetic has been applied in an information project.
文摘Product information model for welding structure plays an important role for the integration of welding CAD/CAPP/CAM. However, existing CAD modeling systems are not capable of providing enough information for subsequent manufacturing activities such as CAPP and CAM. A new design approach using feature technique and object oriented programming method is put forward in this paper in order to create the product information model of welding structure. With this approach, the product information model is able to effectively support computer aided welding process planning, fixturing, assembling, path planning of welding robot and other manufacturing activities. The feature classification and representing scheme of welding structure are discussed. A prototype system is developed based on feature and object oriented programming. Its structure and functions are given in detail.