Information was a frequently used concept in many fields of investigation. However, this concept is still not really understood, when it is referred for instance to consciousness and its informational structure. In th...Information was a frequently used concept in many fields of investigation. However, this concept is still not really understood, when it is referred for instance to consciousness and its informational structure. In this paper it is followed the concept of information from philosophical to physics perspective, showing especially how this concept could be extended to matter in general and to the living in particular, as a result of the intimate interaction between matter and information, the human body appearing as a bipolar informed-matter structure. It is detailed on this way how this concept could be referred to consciousness, and an informational modeling of consciousness as an informational system of the human body is presented. Based on the anatomic architecture of the organism and on the inference of the specific information concepts, it is shown that the informational system of the human body could be described by seven informational subsystems, which are reflected in consciousness as corresponding cognitive centers. These results are able to explain the main properties of consciousness, both the cognitive and extra-cognitive properties of the mind, like that observed during the near-death experiences and other similar phenomena. Moreover, the results of such a modeling are compared with the existing empirical concepts and models on the energetic architecture of the organism, showing their relevance for the understanding of consciousness.展开更多
With the development of smart cities and smart technologies,parks,as functional units of the city,are facing smart transformation.The development of smart parks can help address challenges of technology integration wi...With the development of smart cities and smart technologies,parks,as functional units of the city,are facing smart transformation.The development of smart parks can help address challenges of technology integration within urban spaces and serve as testbeds for exploring smart city planning and governance models.Information models facilitate the effective integration of technology into space.Building Information Modeling(BIM)and City Information Modeling(CIM)have been widely used in urban construction.However,the existing information models have limitations in the application of the park,so it is necessary to develop an information model suitable for the park.This paper first traces the evolution of park smart transformation,reviews the global landscape of smart park development,and identifies key trends and persistent challenges.Addressing the particularities of parks,the concept of Park Information Modeling(PIM)is proposed.PIM leverages smart technologies such as artificial intelligence,digital twins,and collaborative sensing to help form a‘space-technology-system’smart structure,enabling systematic management of diverse park spaces,addressing the deficiency in park-level information models,and aiming to achieve scale articulation between BIM and CIM.Finally,through a detailed top-level design application case study of the Nanjing Smart Education Park in China,this paper illustrates the translation process of the PIM concept into practice,showcasing its potential to provide smart management tools for park managers and enhance services for park stakeholders,although further empirical validation is required.展开更多
The management of large-scale architectural engineering projects(e.g.,airports,hospitals)is plagued by information silos,cost overruns,and scheduling delays.While building information modeling(BIM)has improved 3D desi...The management of large-scale architectural engineering projects(e.g.,airports,hospitals)is plagued by information silos,cost overruns,and scheduling delays.While building information modeling(BIM)has improved 3D design coordination,its static nature limits its utility in real-time construction management and operational phases.This paper proposes a novel synergistic framework that integrates the static,deep data of BIM with the dynamic,real-time capabilities of digital twin(DT)technology.The framework establishes a closed-loop data flow from design(BIM)to construction(IoT,drones,BIM 360)to operation(DT platform).We detail the technological stack required,including IoT sensors,cloud computing,and AI-driven analytics.The application of this framework is illustrated through a simulated case study of a mega-terminal airport construction project,demonstrating potential reductions in rework by 15%,improvement in labor productivity by 10%,and enhanced predictive maintenance capabilities.This research contributes to the field of construction engineering by providing a practical model for achieving full lifecycle digitalization and intelligent project management.展开更多
Underground pipeline networks constitute a major component of urban infrastructure,and thus,it is imperative to have an efficient mechanism to manage them.This study introduces a secondary development system to effici...Underground pipeline networks constitute a major component of urban infrastructure,and thus,it is imperative to have an efficient mechanism to manage them.This study introduces a secondary development system to efficiently model underground pipeline networks,using the building information modeling(BIM)-based software Revit.The system comprises separate pipe point and tubulation models.Using a Revit application programming interface(API),the spatial position and attribute data of the pipe points are extracted from a pipeline database,and the corresponding tubulation data are extracted from a tubulation database.Using the Family class in Revit API,the cluster in the self-built library of pipe point is inserted into the spatial location and the attribute data is added;in the same way,all pipeline instances in the pipeline system are created.The extension and localization of the model accelerated the modeling speed.The system was then used in a real construction project.The expansion of the model database and rapid modeling made the application of BIM technology in three-dimensional visualization of underground pipeline networks more convenient.Furthermore,it has applications in pipeline engineering construction and management.展开更多
Motion simulation and performance analysis of mechanism are important methods for analyzing assembly quality after finishing assembly simulation in virtual assembly environment. However, most simulation systems have n...Motion simulation and performance analysis of mechanism are important methods for analyzing assembly quality after finishing assembly simulation in virtual assembly environment. However, most simulation systems have no function of mechanism motion simulation due to the randomicity of mechanism and lack of universal mechanism modeling method. In order to realize the simulation of any mechanism after finishing assembly simulation in a virtual environment, a new universal mechanism modeling method is presented. Two main models are contained in the mechanism model: information model and mathematical model. Firstly, the information model of mechanism is proposed to describe the data structure of mechanism which contains bottom geometry data, information of constraint, link, kinematic pair and physical data. Because the object of mechanism simulation is the assembly, which is assembled during the process of assembly simulation, the information of mechanism can be obtained automatically through mechanism automatic search method. Secondly, mathematical model of mechanism is presented. The mathematical model uses mathematical method to express the mechanism. In order to realize the automatic expression of any random mechanism, basic constraint library is presented, consequently random mechanism can be described based on the basic constraint library. Finally, two examples are introduced to validate the method in the prototype system named VAPP(Virtual Assembly Process Planning). The validation result shows that the mechanism modeling provides a universal modeling method for mechanism motion simulation in virtual assembly environment. This research has important effect on the development both of mechanism motion simulation and virtual assembly.展开更多
As-built building information model (BIM) is an urgent need of the architecture, engineering, construction and facilities management (AEC/FM) community. However, its creation procedure is still labor-intensive and...As-built building information model (BIM) is an urgent need of the architecture, engineering, construction and facilities management (AEC/FM) community. However, its creation procedure is still labor-intensive and far from maturity. Taking advantage of prevalence of digital cameras and the development of advanced computer vision technology, the paper proposes to reconstruct a building facade and recognize its surface materials from images taken from various points of view. These can serve as initial steps towards automatic generation of as-built BIM. Specifically, 3D point clouds are generated from multiple images using structure from motion method and then segmented into planar components, which are further recognized as different structural components through knowledge based reasoning. Windows are detected through a multilayered complementary strategy by combining detection results from every semantic layer. A novel machine learning based 3D material recognition strategy is presented. Binary classifiers are trained through support vector machines. Material type at a given 3D location is predicted by all its corresponding 2D feature points. Experimental results from three existing buildings validate the proposed system.展开更多
The vehicle routing and scheduling (VRS) problem with multi-objective and multi-constraint is analyzed, considering the complexity of the modern logistics in city economy and daily life based on the system engineering...The vehicle routing and scheduling (VRS) problem with multi-objective and multi-constraint is analyzed, considering the complexity of the modern logistics in city economy and daily life based on the system engineering. The objective and constraint includes loading, the dispatch and arrival time, transportation conditions,total cost,etc. An information model and a mathematical model are built,and a method based on knowledge and biologic immunity is put forward for optimizing and evaluating the programs dimensions in vehicle routing and scheduling with multi-objective and multi-constraints. The proposed model and method are illustrated in a case study concerning a transport network, and the result shows that more optimization solutions can be easily obtained and the method is efficient and feasible. Comparing with the standard GA and the standard GA without time constraint,the computational time of the algorithm is less in this paper. And the probability of gaining optimal solution is bigger and the result is better under the condition of multi-constraint.展开更多
For the interaction relation between geological object and engineering object in some fields related to water conservancy and hydropower, a unified modeling idea was proposed. On the basis of summarizing both advantag...For the interaction relation between geological object and engineering object in some fields related to water conservancy and hydropower, a unified modeling idea was proposed. On the basis of summarizing both advantages and disadvantages of existing modeling methods, an automatic unified modeling method of both engineering and geological objects based on tri-prism(TP) model was presented. Through the lossless correction algorithm of deviated drill holes contained in this method, the real deviated drill holes could be corrected into the equivalent virtual vertical ones. And the correction accuracy fully meets the requirements of unified modeling. With the virtual vertical drilling data, TIN construction of both cover layer and other stratums would be built in order to obtain the 3D geological model. Then, the engineering design data would be introduced into the 3D geological model for achieving unified modeling. For this process, the volume subdividing and restructuring principles were introduced to deal with the spatial relationships between engineering object and geological object. In order to improve the efficiency of unified modeling, the reconstruction of TIN based on constraint information was also applied in this method. At last, the feasibility and validation of the unified modeling method as well as its relevant key algorithms were verified by specific experiments and analysis of results.展开更多
为了保证运维阶段桥梁结构安全,提升桥梁运维工作的效率,开展公路混凝土梁式桥运维阶段建筑信息模型(building information modeling,BIM)技术应用研究。在对公路桥梁现行编码体系进行扩展的基础上,提出1种参数化快速建模方法,以快速完...为了保证运维阶段桥梁结构安全,提升桥梁运维工作的效率,开展公路混凝土梁式桥运维阶段建筑信息模型(building information modeling,BIM)技术应用研究。在对公路桥梁现行编码体系进行扩展的基础上,提出1种参数化快速建模方法,以快速完成桥梁构件族的创建与整体模型的集成。借助Autodesk Revit软件应用程序编程接口(application programming interface,API),采用C#语言,开发公路混凝土梁式桥智慧运维状态评估系统,以实际工程应用进行验证分析。研究结果表明:全面统一的桥梁信息编码体系,能够提高桥梁信息统计与检索效率;提出的快速建模方法能够显著减少建模工作量,建模时间较传统建模方法可减少60%,并保证模型的准确性与规范性;运维状态评估系统能够实现养护数据的充分利用与桥梁评定工作的自动化,通过对桥梁运维信息的有效组织,实现服役性能的长期追踪,从而确保运营期桥梁结构状态安全稳定。研究结果可为公路混凝土梁式桥运维管理提供技术支撑,提升桥梁运维的数字化水平。展开更多
A projection of the Canadian population shows that in 2024 one in five Canadians will be over 65 years old. This shift forces designers to consider the entire lifetime of occupants during the design of new buildings. ...A projection of the Canadian population shows that in 2024 one in five Canadians will be over 65 years old. This shift forces designers to consider the entire lifetime of occupants during the design of new buildings. Universal Design (UD), which is a design that accommodates all people to the greatest extent possible and aging in place design that is deeply rooted in the principles of UD, aim to house people irrespective of their age, ability, and chronic health conditions. Building Information Modeling (BIM) significantly helps advance the development of the Architecture, Engineering, and Construction (AEC) industry in a more collaborative and automated way. Integrating BIM and UD allows designers to incorporate UD standards easily and efficiently at the conceptual design stage of buildings by using the functionalities and capabilities of BIM tools. Therefore, this study presents the development of an automated computer model to facilitate the adoption of UD standards and processes. The novelty highlighted in this model resides in the creation of an automated method that employs a newly created plug-in and databases to assist designers to incorporate UD standards at the conceptual stage in a timely and cost-effective manner. Furthermore, the study introduces the methodology consisting of collecting, categorizing, and storing data from various universal design and accessible design guidelines in the developed databases and developing new plug-ins in BIM tool to link the developed databases in order to automate the process of retrieving necessary information and components to help designers and owners select optimal design alternatives based on their predefined criteria.展开更多
The whole-process project cost management based on building information modeling(BIM)is a new management method,aiming to realize the comprehensive optimization and improvement of project cost management through the a...The whole-process project cost management based on building information modeling(BIM)is a new management method,aiming to realize the comprehensive optimization and improvement of project cost management through the application of BIM technology.This paper summarizes and analyzes the whole-process project cost management based on BIM,aiming to explore its application and development prospects in the construction industry.Firstly,this paper introduces the role and advantages of BIM technology in engineering cost management,including information integration,data sharing,and collaborative work.Secondly,the paper analyzes the key technologies and methods of the whole-process project cost management based on BIM,including model construction,data management,and cost control.In addition,the paper also discusses the challenges and limitations of the whole-process BIM project cost management,such as the inconsistency of technical standards,personnel training,and consciousness change.Finally,the paper summarizes the advantages and development prospects of the whole-process project cost management based on BIM and puts forward the direction and suggestions for future research.Through the research of this paper,it can provide a reference for construction cost management and promote innovation and development in the construction industry.展开更多
In order to enhance modeling efficiency and accuracy,we utilized 3D laser point cloud data for indoor space modeling.Point cloud data was obtained with a 3D laser scanner and optimized with Autodesk Recap and Revit so...In order to enhance modeling efficiency and accuracy,we utilized 3D laser point cloud data for indoor space modeling.Point cloud data was obtained with a 3D laser scanner and optimized with Autodesk Recap and Revit software to extract geometric information about the indoor environment.Furthermore,we proposed a method for constructing indoor elements based on parametric components.The research outcomes of this paper will offer new methods and tools for indoor space modeling and design.The approach of indoor space modeling based on 3D laser point cloud data and parametric component construction can enhance modeling efficiency and accuracy,providing architects,interior designers,and decorators with a better working platform and design reference.展开更多
Life Cycle Cost Analysis (LCCA) provides a systematic approach to assess the total cost associated with owning, operating, and maintaining assets throughout their entire life. BIM empowers architects and designers to ...Life Cycle Cost Analysis (LCCA) provides a systematic approach to assess the total cost associated with owning, operating, and maintaining assets throughout their entire life. BIM empowers architects and designers to perform real-time evaluations to explore various design options. However, when integrated with LCCA, BIM provides a comprehensive economic perspective that helps stakeholders understand the long-term financial implications of design decisions. This study presents a methodology for developing a model that seamlessly integrates BIM and LCCA during the conceptual design stage of buildings. This integration allows for a comprehensive evaluation and analysis of the design process, ensuring that the development aligns with the principles of low carbon emissions by employing modular construction, 3D concrete printing methods, and different building design alternatives. The model considers the initial construction costs in addition to all the long-term operational, maintenance, and salvage values. It combines various tools and data through different modules, including energy analysis, Life Cycle Assessment (LCA), and Life Cycle Cost Analysis (LCCA) to execute a comprehensive assessment of the financial implications of a specific design option throughout the lifecycle of building projects. The development of the said model and its implementation involves the creation of a new plug-in for the BIM tool (i.e., Autodesk Revit) to enhance its functionalities and capabilities in forecasting the life-cycle costs of buildings in addition to generating associated cash flows, creating scenarios, and sensitivity analyses in an automatic manner. This model empowers designers to evaluate and justify their initial investments while designing and selecting potential construction methods for buildings, and enabling stakeholders to make informed decisions by assessing different design alternatives based on long-term financial considerations during the early stages of design.展开更多
Building envelope is a fence that controls heat exchange between interior and exterior and plays an essential role in providing thermal comfort conditions of residents. In recent years, due to the necessity of conserv...Building envelope is a fence that controls heat exchange between interior and exterior and plays an essential role in providing thermal comfort conditions of residents. In recent years, due to the necessity of conserving energy and also preventing increased environmental pollution, the importance of sustainable construction has been doubled. Checking the problems of thermal behavior of the building envelope materials, and what influences in the heating and cooling loads exerted and energy consumption of buildings, are the questions that this research seeks to answer. In this regard, building information modelling analysis (BIM) has worthy contribution in the completion process of sustainable design;thus using software Design Builder, it is paid attention to simulation of the thermal behavior of two types of defined materials for the building envelope that was designed as a Research Institute of Renewable Energy of Yazd University. For Type 1 materials, two layers of brick have been selected, and for Type 2 a thermal insulation layer also added it. Results of the analysis showed that the use of materials Type 2 in the cooling load %4.8 and in the thermal load %62.5 reduction can be achieved which means reducing the load on active system and thus reducing the initial cost of building. Also reduction in annual energy consumption by almost %2.4 for cooling and %62.9 for heating buildings have been achieved, which makes saving non-renewable energy consumption, and consequently reducing environmental pollution as well as reducing current costs will be established.展开更多
The building sector is the largest consumer of energy in industrial countries. Saving energy in new buildings or building renovations can thus lead to significant global environmental impacts. In this endeavor, buildi...The building sector is the largest consumer of energy in industrial countries. Saving energy in new buildings or building renovations can thus lead to significant global environmental impacts. In this endeavor, building information <span>modeling (BIM) and building energy modeling (BEM) are two important to</span>ols to make the transition to net-zero energy buildings (NZEB). So far, little attention has been devoted, in the literature, to discuss the connection between BIM, BEM, and Life-cycle assessment (LCA), which is the main topic of this article. A literature review of 157 journal articles and conference proceedings published between 1990 and 2020 is presented. This review outlines knowledge gaps concerning BIM, BEM, and environmental impact assessment. It suggests that defining the process with the right technology (at the right time) would result in a more integrated design process (IDP) and bridge current gaps. The most efficient way to improve process and technology is related to the competences of the architects, engineers and constructors (AEC). The review also indicates that the IDP in the early design phases (EDP) is in need of improvement for architects and engineers, where a better connection between design phases, specific levels of development (LOD) and BIM tools is needed. <span>Competences, process and technology are the three main themes addressed in the review. Their relation to design phases and LOD is discussed. The aim </span>is to propose possible solutions to the current hinders in BIM-to-BEM (BIM2BEM) and BIM-for-LCA (BIM4LCA) integration.展开更多
We propose an integrated method of data-driven and mechanism models for well logging formation evaluation,explicitly focusing on predicting reservoir parameters,such as porosity and water saturation.Accurately interpr...We propose an integrated method of data-driven and mechanism models for well logging formation evaluation,explicitly focusing on predicting reservoir parameters,such as porosity and water saturation.Accurately interpreting these parameters is crucial for effectively exploring and developing oil and gas.However,with the increasing complexity of geological conditions in this industry,there is a growing demand for improved accuracy in reservoir parameter prediction,leading to higher costs associated with manual interpretation.The conventional logging interpretation methods rely on empirical relationships between logging data and reservoir parameters,which suffer from low interpretation efficiency,intense subjectivity,and suitability for ideal conditions.The application of artificial intelligence in the interpretation of logging data provides a new solution to the problems existing in traditional methods.It is expected to improve the accuracy and efficiency of the interpretation.If large and high-quality datasets exist,data-driven models can reveal relationships of arbitrary complexity.Nevertheless,constructing sufficiently large logging datasets with reliable labels remains challenging,making it difficult to apply data-driven models effectively in logging data interpretation.Furthermore,data-driven models often act as“black boxes”without explaining their predictions or ensuring compliance with primary physical constraints.This paper proposes a machine learning method with strong physical constraints by integrating mechanism and data-driven models.Prior knowledge of logging data interpretation is embedded into machine learning regarding network structure,loss function,and optimization algorithm.We employ the Physically Informed Auto-Encoder(PIAE)to predict porosity and water saturation,which can be trained without labeled reservoir parameters using self-supervised learning techniques.This approach effectively achieves automated interpretation and facilitates generalization across diverse datasets.展开更多
Indoor environmental comfort is fundamental to human health as people spend 90%of their time indoors.This aspect is even more crucial in hospitals,where the concept of health is closely linked to well-being,ethics and...Indoor environmental comfort is fundamental to human health as people spend 90%of their time indoors.This aspect is even more crucial in hospitals,where the concept of health is closely linked to well-being,ethics and environmental aspects.Emerging methodologies and technologies such as digital twin,building information modelling,the internet of things,sensing technologies and data analytics offer new opportunities to ensure healthier environments and more efficient building management.This paper provides an assessment of how digitalisation can support decision-making processes related to maintaining high levels of indoor environmental comfort in hospital settings,particularly by analysing how real-time data processing and the application of machine learning can promote proactive interventions in these facilities.The methodological approach was based on four phases:defining the objectives of the digital twin,identifying the input data to build and feed the digital model,defining the KPIs to evaluate the system's correct functioning and identifying the enabling technologies to be integrated into the system to achieve the set goal.The result is a digital twin for managing the operating room and its related services,with the aim of guiding decisions based on accurate data and improving operational efficiency,levels of environmental comfort,and safety regarding the diffusion of medical gases.展开更多
Accurately forecasting the operational performance of a tunnel boring machine(TBM)in advance is useful for making timely adjustments to boring parameters,thereby enhancing overall boring efficiency.In this study,we us...Accurately forecasting the operational performance of a tunnel boring machine(TBM)in advance is useful for making timely adjustments to boring parameters,thereby enhancing overall boring efficiency.In this study,we used the Informer model to predict a critical performance parameter of the TBM,namely thrust.Leveraging data from the Guangzhou Metro Line 22 project on the big data platform in China,the model’s performance was validated,while data from Line 18 were used to assess its generalization capability.Results revealed that the Informer model surpasses random forest(RF),extreme gradient boosting(XGB),support vector regression(SVR),k-nearest neighbors(KNN),back propagation(BP),and long short-term memory(LSTM)models in both prediction accuracy and generalization performance.In addition,the optimal input lengths for maximizing accuracy in the single-time-step output model are within the range of 8–24,while for the multiple-time-step output model,the optimal input length is 8.Furthermore,the last predicted value in the case of multiple-time-step outputs showed the highest accuracy.It was also found that relaxation of the Pearson analysis method metrics to 0.95 improved the performance of the model.Finally,the prediction results were most affected by earth pressure,rotation speed,torque,boring speed,and the surrounding rock grade.The model can provide useful guidance for constructors when adjusting TBM operation parameters.展开更多
To explore the influence of emergency evacuation signs on passenger behavior during subway fires and improve evacuation efficiency in emergencies,this paper proposes a dynamic emergency evacuation sign system.A simula...To explore the influence of emergency evacuation signs on passenger behavior during subway fires and improve evacuation efficiency in emergencies,this paper proposes a dynamic emergency evacuation sign system.A simulation platform integrating building information modeling(BIM)and virtual reality(VR)technologies was em-ployed to create subway fire evacuation scenarios using both the current and proposed dynamic emergency evacuation signage systems.Through simulation experiments,fine-grained microscopic data on passenger behavior was collected.Seven indicators were selected to assess evacuation efficiency and wayfinding difficulty.The analysis explored the influence of evacuation signs on passenger behavior in both overall and decision-making areas,thereby validating the effectiveness of the new emergency evacuation signage system.The results show that the dynamic evacuation signage system significantly improves overall passenger evacuation efficiency and reduces decision-making errors.It also improves wayfinding efficiency in critical decision areas by reducing the need for direction identification,minimizing stopping times,and lowering the frequency of decision errors.The method for evaluating the effects of emergency evacuation signs on passenger evacuation behavior proposed in this study provides a robust theoretical basis for the design and optimization of emergency-oriented signs.展开更多
Purpose-The rapid development of China’s railway construction has led to an increase in data generated by the high-speed rail(HSR)catenary system.Traditional management methods struggle with challenges such as poor i...Purpose-The rapid development of China’s railway construction has led to an increase in data generated by the high-speed rail(HSR)catenary system.Traditional management methods struggle with challenges such as poor information sharing,disconnected business applications and insufficient intelligence throughout the lifecycle.This study aims to address these issues by applying building information modeling(BIM)technology to improve lifecycle management efficiency for HSR catenary systems.Design/methodology/approach-Based on the lifecycle management needs of catenary engineering,incorporating the intelligent HSR“Model-Data Driven,Axis-Plane Coordination”philosophy,this paper constructs a BIM-based lifecycle management framework for HSR catenary engineering.Findings-This study investigates the full-process lifecycle management of the catenary system across various stages of design,manufacture,construction and operation,exploring integrated BIM models and data transmission methods,along with key technologies for BIM model transmission,transformation and lightweighting.Originality/value-This study establishes a lossless information circulation and transmission system for HSR catenary lifecycle management.Multi-stage applications are verified through the construction of the Chongqing-Kunming High-Speed Railway,comprehensive advancing the intelligent promotion and highquality development of catenary engineering.展开更多
文摘Information was a frequently used concept in many fields of investigation. However, this concept is still not really understood, when it is referred for instance to consciousness and its informational structure. In this paper it is followed the concept of information from philosophical to physics perspective, showing especially how this concept could be extended to matter in general and to the living in particular, as a result of the intimate interaction between matter and information, the human body appearing as a bipolar informed-matter structure. It is detailed on this way how this concept could be referred to consciousness, and an informational modeling of consciousness as an informational system of the human body is presented. Based on the anatomic architecture of the organism and on the inference of the specific information concepts, it is shown that the informational system of the human body could be described by seven informational subsystems, which are reflected in consciousness as corresponding cognitive centers. These results are able to explain the main properties of consciousness, both the cognitive and extra-cognitive properties of the mind, like that observed during the near-death experiences and other similar phenomena. Moreover, the results of such a modeling are compared with the existing empirical concepts and models on the energetic architecture of the organism, showing their relevance for the understanding of consciousness.
基金Under the auspices of National Natural Science Foundation of China(No.42330510)。
文摘With the development of smart cities and smart technologies,parks,as functional units of the city,are facing smart transformation.The development of smart parks can help address challenges of technology integration within urban spaces and serve as testbeds for exploring smart city planning and governance models.Information models facilitate the effective integration of technology into space.Building Information Modeling(BIM)and City Information Modeling(CIM)have been widely used in urban construction.However,the existing information models have limitations in the application of the park,so it is necessary to develop an information model suitable for the park.This paper first traces the evolution of park smart transformation,reviews the global landscape of smart park development,and identifies key trends and persistent challenges.Addressing the particularities of parks,the concept of Park Information Modeling(PIM)is proposed.PIM leverages smart technologies such as artificial intelligence,digital twins,and collaborative sensing to help form a‘space-technology-system’smart structure,enabling systematic management of diverse park spaces,addressing the deficiency in park-level information models,and aiming to achieve scale articulation between BIM and CIM.Finally,through a detailed top-level design application case study of the Nanjing Smart Education Park in China,this paper illustrates the translation process of the PIM concept into practice,showcasing its potential to provide smart management tools for park managers and enhance services for park stakeholders,although further empirical validation is required.
文摘The management of large-scale architectural engineering projects(e.g.,airports,hospitals)is plagued by information silos,cost overruns,and scheduling delays.While building information modeling(BIM)has improved 3D design coordination,its static nature limits its utility in real-time construction management and operational phases.This paper proposes a novel synergistic framework that integrates the static,deep data of BIM with the dynamic,real-time capabilities of digital twin(DT)technology.The framework establishes a closed-loop data flow from design(BIM)to construction(IoT,drones,BIM 360)to operation(DT platform).We detail the technological stack required,including IoT sensors,cloud computing,and AI-driven analytics.The application of this framework is illustrated through a simulated case study of a mega-terminal airport construction project,demonstrating potential reductions in rework by 15%,improvement in labor productivity by 10%,and enhanced predictive maintenance capabilities.This research contributes to the field of construction engineering by providing a practical model for achieving full lifecycle digitalization and intelligent project management.
基金supported by a grant(No.14DZ2292800,http://www.greengeo.net/)from“Technology Service Platform of Civil Engineering”of Science and Technology Commission of Shanghai Municipality.
文摘Underground pipeline networks constitute a major component of urban infrastructure,and thus,it is imperative to have an efficient mechanism to manage them.This study introduces a secondary development system to efficiently model underground pipeline networks,using the building information modeling(BIM)-based software Revit.The system comprises separate pipe point and tubulation models.Using a Revit application programming interface(API),the spatial position and attribute data of the pipe points are extracted from a pipeline database,and the corresponding tubulation data are extracted from a tubulation database.Using the Family class in Revit API,the cluster in the self-built library of pipe point is inserted into the spatial location and the attribute data is added;in the same way,all pipeline instances in the pipeline system are created.The extension and localization of the model accelerated the modeling speed.The system was then used in a real construction project.The expansion of the model database and rapid modeling made the application of BIM technology in three-dimensional visualization of underground pipeline networks more convenient.Furthermore,it has applications in pipeline engineering construction and management.
基金supported by National Natural Science Foundation of China(Grant No. 51275047)
文摘Motion simulation and performance analysis of mechanism are important methods for analyzing assembly quality after finishing assembly simulation in virtual assembly environment. However, most simulation systems have no function of mechanism motion simulation due to the randomicity of mechanism and lack of universal mechanism modeling method. In order to realize the simulation of any mechanism after finishing assembly simulation in a virtual environment, a new universal mechanism modeling method is presented. Two main models are contained in the mechanism model: information model and mathematical model. Firstly, the information model of mechanism is proposed to describe the data structure of mechanism which contains bottom geometry data, information of constraint, link, kinematic pair and physical data. Because the object of mechanism simulation is the assembly, which is assembled during the process of assembly simulation, the information of mechanism can be obtained automatically through mechanism automatic search method. Secondly, mathematical model of mechanism is presented. The mathematical model uses mathematical method to express the mechanism. In order to realize the automatic expression of any random mechanism, basic constraint library is presented, consequently random mechanism can be described based on the basic constraint library. Finally, two examples are introduced to validate the method in the prototype system named VAPP(Virtual Assembly Process Planning). The validation result shows that the mechanism modeling provides a universal modeling method for mechanism motion simulation in virtual assembly environment. This research has important effect on the development both of mechanism motion simulation and virtual assembly.
基金supported by National Natural Science Foundation of China(No.51208425)Research Foundation of Northwestern Polytechnical University(No.JCY20130127)
文摘As-built building information model (BIM) is an urgent need of the architecture, engineering, construction and facilities management (AEC/FM) community. However, its creation procedure is still labor-intensive and far from maturity. Taking advantage of prevalence of digital cameras and the development of advanced computer vision technology, the paper proposes to reconstruct a building facade and recognize its surface materials from images taken from various points of view. These can serve as initial steps towards automatic generation of as-built BIM. Specifically, 3D point clouds are generated from multiple images using structure from motion method and then segmented into planar components, which are further recognized as different structural components through knowledge based reasoning. Windows are detected through a multilayered complementary strategy by combining detection results from every semantic layer. A novel machine learning based 3D material recognition strategy is presented. Binary classifiers are trained through support vector machines. Material type at a given 3D location is predicted by all its corresponding 2D feature points. Experimental results from three existing buildings validate the proposed system.
基金National natural science foundation (No:70371040)
文摘The vehicle routing and scheduling (VRS) problem with multi-objective and multi-constraint is analyzed, considering the complexity of the modern logistics in city economy and daily life based on the system engineering. The objective and constraint includes loading, the dispatch and arrival time, transportation conditions,total cost,etc. An information model and a mathematical model are built,and a method based on knowledge and biologic immunity is put forward for optimizing and evaluating the programs dimensions in vehicle routing and scheduling with multi-objective and multi-constraints. The proposed model and method are illustrated in a case study concerning a transport network, and the result shows that more optimization solutions can be easily obtained and the method is efficient and feasible. Comparing with the standard GA and the standard GA without time constraint,the computational time of the algorithm is less in this paper. And the probability of gaining optimal solution is bigger and the result is better under the condition of multi-constraint.
基金Project(BK2012812)supported by the Natural Science Foundation of Jiangsu Province,ChinaProject(51079053)supported by the National Natural Science Foundation of China+2 种基金Project(KYLX_0493)supported by the Scientific Research and Innovation Program for College Graduates of Jiangsu Province,ChinaProject(2014B38814)supported by the Fundamental Research Funds for Central Universities,ChinaProject(2014.1526)supported by the Open Research Fund Program of Key Laboratory of Geological Information of Ministry of Land and Resources,China
文摘For the interaction relation between geological object and engineering object in some fields related to water conservancy and hydropower, a unified modeling idea was proposed. On the basis of summarizing both advantages and disadvantages of existing modeling methods, an automatic unified modeling method of both engineering and geological objects based on tri-prism(TP) model was presented. Through the lossless correction algorithm of deviated drill holes contained in this method, the real deviated drill holes could be corrected into the equivalent virtual vertical ones. And the correction accuracy fully meets the requirements of unified modeling. With the virtual vertical drilling data, TIN construction of both cover layer and other stratums would be built in order to obtain the 3D geological model. Then, the engineering design data would be introduced into the 3D geological model for achieving unified modeling. For this process, the volume subdividing and restructuring principles were introduced to deal with the spatial relationships between engineering object and geological object. In order to improve the efficiency of unified modeling, the reconstruction of TIN based on constraint information was also applied in this method. At last, the feasibility and validation of the unified modeling method as well as its relevant key algorithms were verified by specific experiments and analysis of results.
文摘A projection of the Canadian population shows that in 2024 one in five Canadians will be over 65 years old. This shift forces designers to consider the entire lifetime of occupants during the design of new buildings. Universal Design (UD), which is a design that accommodates all people to the greatest extent possible and aging in place design that is deeply rooted in the principles of UD, aim to house people irrespective of their age, ability, and chronic health conditions. Building Information Modeling (BIM) significantly helps advance the development of the Architecture, Engineering, and Construction (AEC) industry in a more collaborative and automated way. Integrating BIM and UD allows designers to incorporate UD standards easily and efficiently at the conceptual design stage of buildings by using the functionalities and capabilities of BIM tools. Therefore, this study presents the development of an automated computer model to facilitate the adoption of UD standards and processes. The novelty highlighted in this model resides in the creation of an automated method that employs a newly created plug-in and databases to assist designers to incorporate UD standards at the conceptual stage in a timely and cost-effective manner. Furthermore, the study introduces the methodology consisting of collecting, categorizing, and storing data from various universal design and accessible design guidelines in the developed databases and developing new plug-ins in BIM tool to link the developed databases in order to automate the process of retrieving necessary information and components to help designers and owners select optimal design alternatives based on their predefined criteria.
文摘The whole-process project cost management based on building information modeling(BIM)is a new management method,aiming to realize the comprehensive optimization and improvement of project cost management through the application of BIM technology.This paper summarizes and analyzes the whole-process project cost management based on BIM,aiming to explore its application and development prospects in the construction industry.Firstly,this paper introduces the role and advantages of BIM technology in engineering cost management,including information integration,data sharing,and collaborative work.Secondly,the paper analyzes the key technologies and methods of the whole-process project cost management based on BIM,including model construction,data management,and cost control.In addition,the paper also discusses the challenges and limitations of the whole-process BIM project cost management,such as the inconsistency of technical standards,personnel training,and consciousness change.Finally,the paper summarizes the advantages and development prospects of the whole-process project cost management based on BIM and puts forward the direction and suggestions for future research.Through the research of this paper,it can provide a reference for construction cost management and promote innovation and development in the construction industry.
基金supported by the Innovation and Entrepreneurship Training Program Topic for College Students of North China University of Technology in 2023.
文摘In order to enhance modeling efficiency and accuracy,we utilized 3D laser point cloud data for indoor space modeling.Point cloud data was obtained with a 3D laser scanner and optimized with Autodesk Recap and Revit software to extract geometric information about the indoor environment.Furthermore,we proposed a method for constructing indoor elements based on parametric components.The research outcomes of this paper will offer new methods and tools for indoor space modeling and design.The approach of indoor space modeling based on 3D laser point cloud data and parametric component construction can enhance modeling efficiency and accuracy,providing architects,interior designers,and decorators with a better working platform and design reference.
文摘Life Cycle Cost Analysis (LCCA) provides a systematic approach to assess the total cost associated with owning, operating, and maintaining assets throughout their entire life. BIM empowers architects and designers to perform real-time evaluations to explore various design options. However, when integrated with LCCA, BIM provides a comprehensive economic perspective that helps stakeholders understand the long-term financial implications of design decisions. This study presents a methodology for developing a model that seamlessly integrates BIM and LCCA during the conceptual design stage of buildings. This integration allows for a comprehensive evaluation and analysis of the design process, ensuring that the development aligns with the principles of low carbon emissions by employing modular construction, 3D concrete printing methods, and different building design alternatives. The model considers the initial construction costs in addition to all the long-term operational, maintenance, and salvage values. It combines various tools and data through different modules, including energy analysis, Life Cycle Assessment (LCA), and Life Cycle Cost Analysis (LCCA) to execute a comprehensive assessment of the financial implications of a specific design option throughout the lifecycle of building projects. The development of the said model and its implementation involves the creation of a new plug-in for the BIM tool (i.e., Autodesk Revit) to enhance its functionalities and capabilities in forecasting the life-cycle costs of buildings in addition to generating associated cash flows, creating scenarios, and sensitivity analyses in an automatic manner. This model empowers designers to evaluate and justify their initial investments while designing and selecting potential construction methods for buildings, and enabling stakeholders to make informed decisions by assessing different design alternatives based on long-term financial considerations during the early stages of design.
文摘Building envelope is a fence that controls heat exchange between interior and exterior and plays an essential role in providing thermal comfort conditions of residents. In recent years, due to the necessity of conserving energy and also preventing increased environmental pollution, the importance of sustainable construction has been doubled. Checking the problems of thermal behavior of the building envelope materials, and what influences in the heating and cooling loads exerted and energy consumption of buildings, are the questions that this research seeks to answer. In this regard, building information modelling analysis (BIM) has worthy contribution in the completion process of sustainable design;thus using software Design Builder, it is paid attention to simulation of the thermal behavior of two types of defined materials for the building envelope that was designed as a Research Institute of Renewable Energy of Yazd University. For Type 1 materials, two layers of brick have been selected, and for Type 2 a thermal insulation layer also added it. Results of the analysis showed that the use of materials Type 2 in the cooling load %4.8 and in the thermal load %62.5 reduction can be achieved which means reducing the load on active system and thus reducing the initial cost of building. Also reduction in annual energy consumption by almost %2.4 for cooling and %62.9 for heating buildings have been achieved, which makes saving non-renewable energy consumption, and consequently reducing environmental pollution as well as reducing current costs will be established.
文摘The building sector is the largest consumer of energy in industrial countries. Saving energy in new buildings or building renovations can thus lead to significant global environmental impacts. In this endeavor, building information <span>modeling (BIM) and building energy modeling (BEM) are two important to</span>ols to make the transition to net-zero energy buildings (NZEB). So far, little attention has been devoted, in the literature, to discuss the connection between BIM, BEM, and Life-cycle assessment (LCA), which is the main topic of this article. A literature review of 157 journal articles and conference proceedings published between 1990 and 2020 is presented. This review outlines knowledge gaps concerning BIM, BEM, and environmental impact assessment. It suggests that defining the process with the right technology (at the right time) would result in a more integrated design process (IDP) and bridge current gaps. The most efficient way to improve process and technology is related to the competences of the architects, engineers and constructors (AEC). The review also indicates that the IDP in the early design phases (EDP) is in need of improvement for architects and engineers, where a better connection between design phases, specific levels of development (LOD) and BIM tools is needed. <span>Competences, process and technology are the three main themes addressed in the review. Their relation to design phases and LOD is discussed. The aim </span>is to propose possible solutions to the current hinders in BIM-to-BEM (BIM2BEM) and BIM-for-LCA (BIM4LCA) integration.
基金supported by National Key Research and Development Program (2019YFA0708301)National Natural Science Foundation of China (51974337)+2 种基金the Strategic Cooperation Projects of CNPC and CUPB (ZLZX2020-03)Science and Technology Innovation Fund of CNPC (2021DQ02-0403)Open Fund of Petroleum Exploration and Development Research Institute of CNPC (2022-KFKT-09)
文摘We propose an integrated method of data-driven and mechanism models for well logging formation evaluation,explicitly focusing on predicting reservoir parameters,such as porosity and water saturation.Accurately interpreting these parameters is crucial for effectively exploring and developing oil and gas.However,with the increasing complexity of geological conditions in this industry,there is a growing demand for improved accuracy in reservoir parameter prediction,leading to higher costs associated with manual interpretation.The conventional logging interpretation methods rely on empirical relationships between logging data and reservoir parameters,which suffer from low interpretation efficiency,intense subjectivity,and suitability for ideal conditions.The application of artificial intelligence in the interpretation of logging data provides a new solution to the problems existing in traditional methods.It is expected to improve the accuracy and efficiency of the interpretation.If large and high-quality datasets exist,data-driven models can reveal relationships of arbitrary complexity.Nevertheless,constructing sufficiently large logging datasets with reliable labels remains challenging,making it difficult to apply data-driven models effectively in logging data interpretation.Furthermore,data-driven models often act as“black boxes”without explaining their predictions or ensuring compliance with primary physical constraints.This paper proposes a machine learning method with strong physical constraints by integrating mechanism and data-driven models.Prior knowledge of logging data interpretation is embedded into machine learning regarding network structure,loss function,and optimization algorithm.We employ the Physically Informed Auto-Encoder(PIAE)to predict porosity and water saturation,which can be trained without labeled reservoir parameters using self-supervised learning techniques.This approach effectively achieves automated interpretation and facilitates generalization across diverse datasets.
基金supported by Agenzia Del Demanio(Grant 0002716).
文摘Indoor environmental comfort is fundamental to human health as people spend 90%of their time indoors.This aspect is even more crucial in hospitals,where the concept of health is closely linked to well-being,ethics and environmental aspects.Emerging methodologies and technologies such as digital twin,building information modelling,the internet of things,sensing technologies and data analytics offer new opportunities to ensure healthier environments and more efficient building management.This paper provides an assessment of how digitalisation can support decision-making processes related to maintaining high levels of indoor environmental comfort in hospital settings,particularly by analysing how real-time data processing and the application of machine learning can promote proactive interventions in these facilities.The methodological approach was based on four phases:defining the objectives of the digital twin,identifying the input data to build and feed the digital model,defining the KPIs to evaluate the system's correct functioning and identifying the enabling technologies to be integrated into the system to achieve the set goal.The result is a digital twin for managing the operating room and its related services,with the aim of guiding decisions based on accurate data and improving operational efficiency,levels of environmental comfort,and safety regarding the diffusion of medical gases.
基金supported by the National Natural Science Foundation of China(No.41827807)the Foundation of the Guangdong Provincial Key Laboratory of Modern Civil Engineering Technology(No.2021B1212040003),China.
文摘Accurately forecasting the operational performance of a tunnel boring machine(TBM)in advance is useful for making timely adjustments to boring parameters,thereby enhancing overall boring efficiency.In this study,we used the Informer model to predict a critical performance parameter of the TBM,namely thrust.Leveraging data from the Guangzhou Metro Line 22 project on the big data platform in China,the model’s performance was validated,while data from Line 18 were used to assess its generalization capability.Results revealed that the Informer model surpasses random forest(RF),extreme gradient boosting(XGB),support vector regression(SVR),k-nearest neighbors(KNN),back propagation(BP),and long short-term memory(LSTM)models in both prediction accuracy and generalization performance.In addition,the optimal input lengths for maximizing accuracy in the single-time-step output model are within the range of 8–24,while for the multiple-time-step output model,the optimal input length is 8.Furthermore,the last predicted value in the case of multiple-time-step outputs showed the highest accuracy.It was also found that relaxation of the Pearson analysis method metrics to 0.95 improved the performance of the model.Finally,the prediction results were most affected by earth pressure,rotation speed,torque,boring speed,and the surrounding rock grade.The model can provide useful guidance for constructors when adjusting TBM operation parameters.
基金Beijing Natural Science Foundation-Fengtai Rail Transit Frontier Research Joint Foundation(No.L211024),the National Natural Science Foundation of China(No.52072012).
文摘To explore the influence of emergency evacuation signs on passenger behavior during subway fires and improve evacuation efficiency in emergencies,this paper proposes a dynamic emergency evacuation sign system.A simulation platform integrating building information modeling(BIM)and virtual reality(VR)technologies was em-ployed to create subway fire evacuation scenarios using both the current and proposed dynamic emergency evacuation signage systems.Through simulation experiments,fine-grained microscopic data on passenger behavior was collected.Seven indicators were selected to assess evacuation efficiency and wayfinding difficulty.The analysis explored the influence of evacuation signs on passenger behavior in both overall and decision-making areas,thereby validating the effectiveness of the new emergency evacuation signage system.The results show that the dynamic evacuation signage system significantly improves overall passenger evacuation efficiency and reduces decision-making errors.It also improves wayfinding efficiency in critical decision areas by reducing the need for direction identification,minimizing stopping times,and lowering the frequency of decision errors.The method for evaluating the effects of emergency evacuation signs on passenger evacuation behavior proposed in this study provides a robust theoretical basis for the design and optimization of emergency-oriented signs.
基金supported by China Academy of Railway Sciences Foundation(Research on Multi Agent Collaborative Mechanism of Intelligent High Speed Rail System Based on Complex Adaptive System Theory,Grant 2023YJ392).
文摘Purpose-The rapid development of China’s railway construction has led to an increase in data generated by the high-speed rail(HSR)catenary system.Traditional management methods struggle with challenges such as poor information sharing,disconnected business applications and insufficient intelligence throughout the lifecycle.This study aims to address these issues by applying building information modeling(BIM)technology to improve lifecycle management efficiency for HSR catenary systems.Design/methodology/approach-Based on the lifecycle management needs of catenary engineering,incorporating the intelligent HSR“Model-Data Driven,Axis-Plane Coordination”philosophy,this paper constructs a BIM-based lifecycle management framework for HSR catenary engineering.Findings-This study investigates the full-process lifecycle management of the catenary system across various stages of design,manufacture,construction and operation,exploring integrated BIM models and data transmission methods,along with key technologies for BIM model transmission,transformation and lightweighting.Originality/value-This study establishes a lossless information circulation and transmission system for HSR catenary lifecycle management.Multi-stage applications are verified through the construction of the Chongqing-Kunming High-Speed Railway,comprehensive advancing the intelligent promotion and highquality development of catenary engineering.