The integration of renewable energy sources into modern power systems necessitates efficient and robust control strategies to address challenges such as power quality,stability,and dynamic environmental variations.Thi...The integration of renewable energy sources into modern power systems necessitates efficient and robust control strategies to address challenges such as power quality,stability,and dynamic environmental variations.This paper presents a novel sparrow search algorithm(SSA)-tuned proportional-integral(PI)controller for grid-connected photovoltaic(PV)systems,designed to optimize dynamic perfor-mance,energy extraction,and power quality.Key contributions include the development of a systematic SSA-based optimization frame-work for real-time PI parameter tuning,ensuring precise voltage and current regulation,improved maximum power point tracking(MPPT)efficiency,and minimized total harmonic distortion(THD).The proposed approach is evaluated against conventional PSO-based and P&O controllers through comprehensive simulations,demonstrating its superior performance across key metrics:a 39.47%faster response time compared to PSO,a 12.06%increase in peak active power relative to P&O,and a 52.38%reduction in THD,ensuring compliance with IEEE grid standards.Moreover,the SSA-tuned PI controller exhibits enhanced adaptability to dynamic irradiancefluc-tuations,rapid response time,and robust grid integration under varying conditions,making it highly suitable for real-time smart grid applications.This work establishes the SSA-tuned PI controller as a reliable and efficient solution for improving PV system performance in grid-connected scenarios,while also setting the foundation for future research into multi-objective optimization,experimental valida-tion,and hybrid renewable energy systems.展开更多
Background Interconnection of different power systems has a major effect on system stability.This study aims to design an optimal load frequency control(LFC)system based on a proportional-integral(PI)controller for a ...Background Interconnection of different power systems has a major effect on system stability.This study aims to design an optimal load frequency control(LFC)system based on a proportional-integral(PI)controller for a two-area power system.Methods Two areas were connected through an AC tie line in parallel with a DC link to stabilize the frequency of oscillations in both areas.The PI parameters were tuned using the cuckoo search algorithm(CSA)to minimize the integral absolute error(IAE).A state matrix was provided,and the stability of the system was verified by calculating the eigenvalues.The frequency response was investigated for load variation,changes in the generator rate constraint,the turbine time constant,and the governor time constant.Results The CSA was compared with particle swarm optimization algorithm(PSO)under identical conditions.The system was modeled based on a state-space mathematical representation and simulated using MATLAB.The results demonstrated the effectiveness of the proposed controller based on both algorithms and,it is clear that CSA is superior to PSO.Conclusion The CSA algorithm smoothens the system response,reduces ripples,decreases overshooting and settling time,and improves the overall system performance under different disturbances.展开更多
A simple control structure in servo system is occasionally needed for simple industrial application which precise and high control performance is not exessively important so that the cost production can be reduced eff...A simple control structure in servo system is occasionally needed for simple industrial application which precise and high control performance is not exessively important so that the cost production can be reduced efficiently. Simplified vector control, which has simple control structure, is utilized as the permanent magnet synchronous motor control algorithm and genetic algorithm is used to tune three PI controllers used in simplified vector control. The control performance is obtained from simulation and investigated to verify the feasibility of the algorithm to be applied in the real application. Simulation results show that the speed and torque responses of the system in both continuous time and discrete time can achieve good performances. Furthermore, simplified vector control combined with genetic algorithm has a similar perfofmance with conventional field oriented control algorithm and possible to be realized into the real simple application in the future.展开更多
Aiming at the problems of slow dynamic response and weak robustness of integer-order proportional integral(PI)controller in double closed loop vector control system of permanent magnet synchronous motor(PMSM),a method...Aiming at the problems of slow dynamic response and weak robustness of integer-order proportional integral(PI)controller in double closed loop vector control system of permanent magnet synchronous motor(PMSM),a method of combining dragonfly algorithm with fractional order PI control is proposed for off-line parameter tuning for the outer loop of speed of the system.The parameter to be optimized is used as the spatial position of the optimal individual searching for food sources in the search space,and the error performance index integrated time and absolute error(ITAE)is used as its target fitness function.The motor speed regulation performances of traditional engineering experience setting integer order PI,particle swarm optimization algorithm tuning fractional order PI and dragonfly algorithm tuning fractional order PI are compared,respectively.Results show that the fractional order PI controller optimized by dragonfly algorithm can improve the dynamic response performance of the system,reduce overshoot and enhance robustness,which proves the feasibility and superiority of the optimization strategy.展开更多
Since the establishment of the Collaboratory for the Study of Earthquake Predictability,China(CSEP-CN)center,no comprehensive study has been conducted on the parameter models of the Pattern Informatics(PI)method withi...Since the establishment of the Collaboratory for the Study of Earthquake Predictability,China(CSEP-CN)center,no comprehensive study has been conducted on the parameter models of the Pattern Informatics(PI)method within the China Seismic Experimental Site(CSES)region.Additionally,the boundary issues of the study area have been a subject of ongoing debate.Tian et al.(2024)indicates that variations in seismic activity within the region impact the predictive efficacy of the PI method.展开更多
针对采用直接电流控制策略的电压源换流器(voltage source converter,VSC)控制系统比例积分(PI)参数难以选取的问题,提出了一种优化外环PI控制器参数的方法。首先建立解耦后的外环参数整定模型,然后基于时间乘绝对误差积分(integral of ...针对采用直接电流控制策略的电压源换流器(voltage source converter,VSC)控制系统比例积分(PI)参数难以选取的问题,提出了一种优化外环PI控制器参数的方法。首先建立解耦后的外环参数整定模型,然后基于时间乘绝对误差积分(integral of time multiplied by the absolute value of error,ITAE)准则构造PI参数优化的性能泛函,针对此最优控制模型的特点,论文采用遗传算法进行求解,在PSCAD搭建VSC-HVDC模型进行仿真验证。展开更多
文摘The integration of renewable energy sources into modern power systems necessitates efficient and robust control strategies to address challenges such as power quality,stability,and dynamic environmental variations.This paper presents a novel sparrow search algorithm(SSA)-tuned proportional-integral(PI)controller for grid-connected photovoltaic(PV)systems,designed to optimize dynamic perfor-mance,energy extraction,and power quality.Key contributions include the development of a systematic SSA-based optimization frame-work for real-time PI parameter tuning,ensuring precise voltage and current regulation,improved maximum power point tracking(MPPT)efficiency,and minimized total harmonic distortion(THD).The proposed approach is evaluated against conventional PSO-based and P&O controllers through comprehensive simulations,demonstrating its superior performance across key metrics:a 39.47%faster response time compared to PSO,a 12.06%increase in peak active power relative to P&O,and a 52.38%reduction in THD,ensuring compliance with IEEE grid standards.Moreover,the SSA-tuned PI controller exhibits enhanced adaptability to dynamic irradiancefluc-tuations,rapid response time,and robust grid integration under varying conditions,making it highly suitable for real-time smart grid applications.This work establishes the SSA-tuned PI controller as a reliable and efficient solution for improving PV system performance in grid-connected scenarios,while also setting the foundation for future research into multi-objective optimization,experimental valida-tion,and hybrid renewable energy systems.
基金Supported by the Russian Science Foundation(Agreement 23-41-10001,https://rscf.ru/project/23-41-10001/).
文摘Background Interconnection of different power systems has a major effect on system stability.This study aims to design an optimal load frequency control(LFC)system based on a proportional-integral(PI)controller for a two-area power system.Methods Two areas were connected through an AC tie line in parallel with a DC link to stabilize the frequency of oscillations in both areas.The PI parameters were tuned using the cuckoo search algorithm(CSA)to minimize the integral absolute error(IAE).A state matrix was provided,and the stability of the system was verified by calculating the eigenvalues.The frequency response was investigated for load variation,changes in the generator rate constraint,the turbine time constant,and the governor time constant.Results The CSA was compared with particle swarm optimization algorithm(PSO)under identical conditions.The system was modeled based on a state-space mathematical representation and simulated using MATLAB.The results demonstrated the effectiveness of the proposed controller based on both algorithms and,it is clear that CSA is superior to PSO.Conclusion The CSA algorithm smoothens the system response,reduces ripples,decreases overshooting and settling time,and improves the overall system performance under different disturbances.
文摘A simple control structure in servo system is occasionally needed for simple industrial application which precise and high control performance is not exessively important so that the cost production can be reduced efficiently. Simplified vector control, which has simple control structure, is utilized as the permanent magnet synchronous motor control algorithm and genetic algorithm is used to tune three PI controllers used in simplified vector control. The control performance is obtained from simulation and investigated to verify the feasibility of the algorithm to be applied in the real application. Simulation results show that the speed and torque responses of the system in both continuous time and discrete time can achieve good performances. Furthermore, simplified vector control combined with genetic algorithm has a similar perfofmance with conventional field oriented control algorithm and possible to be realized into the real simple application in the future.
基金Supported by the National Natural Science Foundation of China(61603242)。
文摘Aiming at the problems of slow dynamic response and weak robustness of integer-order proportional integral(PI)controller in double closed loop vector control system of permanent magnet synchronous motor(PMSM),a method of combining dragonfly algorithm with fractional order PI control is proposed for off-line parameter tuning for the outer loop of speed of the system.The parameter to be optimized is used as the spatial position of the optimal individual searching for food sources in the search space,and the error performance index integrated time and absolute error(ITAE)is used as its target fitness function.The motor speed regulation performances of traditional engineering experience setting integer order PI,particle swarm optimization algorithm tuning fractional order PI and dragonfly algorithm tuning fractional order PI are compared,respectively.Results show that the fractional order PI controller optimized by dragonfly algorithm can improve the dynamic response performance of the system,reduce overshoot and enhance robustness,which proves the feasibility and superiority of the optimization strategy.
基金supported by the Joint Funds of the National Natural Science Foundation of China(Grant No.U2039207).
文摘Since the establishment of the Collaboratory for the Study of Earthquake Predictability,China(CSEP-CN)center,no comprehensive study has been conducted on the parameter models of the Pattern Informatics(PI)method within the China Seismic Experimental Site(CSES)region.Additionally,the boundary issues of the study area have been a subject of ongoing debate.Tian et al.(2024)indicates that variations in seismic activity within the region impact the predictive efficacy of the PI method.
文摘针对采用直接电流控制策略的电压源换流器(voltage source converter,VSC)控制系统比例积分(PI)参数难以选取的问题,提出了一种优化外环PI控制器参数的方法。首先建立解耦后的外环参数整定模型,然后基于时间乘绝对误差积分(integral of time multiplied by the absolute value of error,ITAE)准则构造PI参数优化的性能泛函,针对此最优控制模型的特点,论文采用遗传算法进行求解,在PSCAD搭建VSC-HVDC模型进行仿真验证。