Background Recovery colleges (RCs) support personal recovery through education, skill development and social support for people with mental health problems, carers and staff. Guided by co-production and adult learning...Background Recovery colleges (RCs) support personal recovery through education, skill development and social support for people with mental health problems, carers and staff. Guided by co-production and adult learning principles, RCs represent a recent mental health innovation. Since the first RC opened in England in 2009, RCs have expanded to 28 countries and territories. However, most RC research has been conducted in Western countries with similar cultural characteristics, limiting understanding of how RCs can be culturally adapted. The 12-item Recovery Colleges Characterisation and Testing (RECOLLECT) Fidelity Measure (RFM) evaluates the operational fidelity of RCs based on 12 components, but cultural influences on these components remain underexplored.Aims To assess associations between Hofstede’s cultural dimensions and RFM items to identify cultural influences on fidelity components.Methods A cross-sectional survey of RC managers was conducted across all 221 RCs. Mixed-effects regression models examined associations between Hofstede’s country-level cultural dimensions and item-level RFM scores, adjusted for healthcare expenditure and income inequality. Four cultural dimensions, obtained from Hofstede, were analysed: individualism (prioritising personal needs), indulgence (enjoyment-oriented), uncertainty avoidance (preference for predictability) and long-term orientation (future-focused).Results The RFM was completed by 169 (76%) RC managers. Seven RFM items showed associations with cultural dimensions. Equality was linked to short-term orientation, while learning was associated with individualism and uncertainty avoidance. Both individualism and indulgence influenced co-production and community focus. Commitment to recovery was shaped by all four cultural dimensions, with the strongest associations seen for individualism and indulgence. Individualism enhanced explicit focus on strengths-based practice, while uncertainty avoidance influenced course distinctiveness.Conclusions This study demonstrates how culture shapes RC fidelity components, providing actionable insights for cultural adaptation. Incorporating under-represented dimensions, such as collectivism and restraint, could improve the RFM’s global applicability, facilitating implementation. Future research should explore cultural nuances, engage diverse stakeholders and refine fidelity measures to enhance RC inclusivity and effectiveness worldwide.展开更多
The Shenhu Area in the South China Sea is rich in oil and gas resources and has many vertical gas chimneys,making it an excellent geological environment for hydrate accumulation.This paper examines the geological cond...The Shenhu Area in the South China Sea is rich in oil and gas resources and has many vertical gas chimneys,making it an excellent geological environment for hydrate accumulation.This paper examines the geological conditions governing these gas-chimneys.A numerical simulation method based on the partial-equilibrium reaction model of hydrate was applied to simulate the migration of methane gas and the resultant hydrate formation when the gas enters the hydrate stability zone under the seabed through gas-chimneys.The dynamics of this gaschimney hydrate accumulation were analyzed,and the influences of different factors―namely,the fluid supply time,rate,and temperature―on the formation temperature and ultimate distribution of the hydrate reservoir were evaluated.The simulation results indicate that the accumulation of hydrate via gas-chimneys is significantly affected by the temperature of the gas source,the transfer state of the methane gas,and the number of cycles of alternating gas-water invasion.Hydrate accumulation takes shape in an annular or semi-annular distribution pattern divided by fluid state as follows:a two-phase gas-water zone,a three-phase gas-water-hydrate zone,a two-phase water-hydrate zone,and a phase of water passing from the inside to the outside.Formation inclination and reservoir heterogeneity can greatly affect the distribution shape and abundance of the hydrate.A high fluid supply temperature,frequent alternating invasions of gas and water,and long-term pore-water invasion at a high rate can jointly cause a large central hydrate-free zone.In contrast,a long-term supply shutdown during the alternating gas-water invasion process,and a high gas rate with a low water rate in the gas-dominant invasion stage,foster the accumulation of hydrate in great abundance and with considerable thickness.The results of this study can help us understand the accumulation of hydrate through gas chimneys in the Shenhu Area.展开更多
Landfalling tropical cyclones(TCs)pose tremendous hazards to East Asian coastal areas,particularly in East China,a densely populated and economically vital center.This underscores the critical need for a more in-depth...Landfalling tropical cyclones(TCs)pose tremendous hazards to East Asian coastal areas,particularly in East China,a densely populated and economically vital center.This underscores the critical need for a more in-depth investigation into the evolving characteristics and influences of these landfalling TCs.In this study,we explored changes in landfalling TC activity during 1965–2022 and estimated their influences in East China.Our findings demonstrate that the annual frequency of landfalling TCs has exhibited a slight increase since the mid-1990s,while their overall influences have significantly intensified.This intensification is closely associated with the prolonged duration of TCs over land after landfall.The results also reveal that longer overland sustainment is attributed to the descending vertical wind shear(VWS)and ascending low-layer moisture supply over the corresponding areas.In addition,the annual mean genesis location of these landfalling TCs has shown a significant westward migration,which may be advantageous to the increase in TC influences.展开更多
Einstein–Podolsky–Rosen(EPR) steering is an example of nontrivial quantum nonlocality and characteristic in the non-classical world.The directivity(or asymmetry) is a fascinating trait of EPR steering,and it is diff...Einstein–Podolsky–Rosen(EPR) steering is an example of nontrivial quantum nonlocality and characteristic in the non-classical world.The directivity(or asymmetry) is a fascinating trait of EPR steering,and it is different from other quantum nonlocalities.Here,we consider the strategy in which two atoms compose a two-qubit X state,and the two atoms are owned by Alice and Bob,respectively.The atom of Alice suffers from a reservoir,and the atom of Bob couples with a bit flip channel.The influences of auxiliary qubits on EPR steering and its directions are revealed by means of the entropy uncertainty relation.The results indicate that EPR steering declines with growing time t when adding fewer auxiliary qubits.The EPR steering behaves as damped oscillation when introducing more auxiliary qubits in the strong coupling regime.In the weak coupling regime,the EPR steering monotonously decreases as t increases when coupling auxiliary qubits.The increases in auxiliary qubits are responsible for the fact that the steerability from Alice to Bob(or from Bob to Alice) can be more effectively revealed.Notably,the introductions of more auxiliary qubits can change the situation that steerability from Alice to Bob is certain to a situation in which steerability from Bob to Alice is certain.展开更多
基金This study is part of the RECOLLECT 2 programme,a five-year(2020-2025)project funded by the National Institute for Health and Care Research,which investigates the effectiveness and cost-effectiveness of recovery colleges.
文摘Background Recovery colleges (RCs) support personal recovery through education, skill development and social support for people with mental health problems, carers and staff. Guided by co-production and adult learning principles, RCs represent a recent mental health innovation. Since the first RC opened in England in 2009, RCs have expanded to 28 countries and territories. However, most RC research has been conducted in Western countries with similar cultural characteristics, limiting understanding of how RCs can be culturally adapted. The 12-item Recovery Colleges Characterisation and Testing (RECOLLECT) Fidelity Measure (RFM) evaluates the operational fidelity of RCs based on 12 components, but cultural influences on these components remain underexplored.Aims To assess associations between Hofstede’s cultural dimensions and RFM items to identify cultural influences on fidelity components.Methods A cross-sectional survey of RC managers was conducted across all 221 RCs. Mixed-effects regression models examined associations between Hofstede’s country-level cultural dimensions and item-level RFM scores, adjusted for healthcare expenditure and income inequality. Four cultural dimensions, obtained from Hofstede, were analysed: individualism (prioritising personal needs), indulgence (enjoyment-oriented), uncertainty avoidance (preference for predictability) and long-term orientation (future-focused).Results The RFM was completed by 169 (76%) RC managers. Seven RFM items showed associations with cultural dimensions. Equality was linked to short-term orientation, while learning was associated with individualism and uncertainty avoidance. Both individualism and indulgence influenced co-production and community focus. Commitment to recovery was shaped by all four cultural dimensions, with the strongest associations seen for individualism and indulgence. Individualism enhanced explicit focus on strengths-based practice, while uncertainty avoidance influenced course distinctiveness.Conclusions This study demonstrates how culture shapes RC fidelity components, providing actionable insights for cultural adaptation. Incorporating under-represented dimensions, such as collectivism and restraint, could improve the RFM’s global applicability, facilitating implementation. Future research should explore cultural nuances, engage diverse stakeholders and refine fidelity measures to enhance RC inclusivity and effectiveness worldwide.
基金supported by the Guangzhou Marine Geological Survey,China Geological Survey,Guangzhou,China(No.2022C-24-216)financed by the General Project of the Shandong Natural Science Foundation,China(No.ZR2020ME090).
文摘The Shenhu Area in the South China Sea is rich in oil and gas resources and has many vertical gas chimneys,making it an excellent geological environment for hydrate accumulation.This paper examines the geological conditions governing these gas-chimneys.A numerical simulation method based on the partial-equilibrium reaction model of hydrate was applied to simulate the migration of methane gas and the resultant hydrate formation when the gas enters the hydrate stability zone under the seabed through gas-chimneys.The dynamics of this gaschimney hydrate accumulation were analyzed,and the influences of different factors―namely,the fluid supply time,rate,and temperature―on the formation temperature and ultimate distribution of the hydrate reservoir were evaluated.The simulation results indicate that the accumulation of hydrate via gas-chimneys is significantly affected by the temperature of the gas source,the transfer state of the methane gas,and the number of cycles of alternating gas-water invasion.Hydrate accumulation takes shape in an annular or semi-annular distribution pattern divided by fluid state as follows:a two-phase gas-water zone,a three-phase gas-water-hydrate zone,a two-phase water-hydrate zone,and a phase of water passing from the inside to the outside.Formation inclination and reservoir heterogeneity can greatly affect the distribution shape and abundance of the hydrate.A high fluid supply temperature,frequent alternating invasions of gas and water,and long-term pore-water invasion at a high rate can jointly cause a large central hydrate-free zone.In contrast,a long-term supply shutdown during the alternating gas-water invasion process,and a high gas rate with a low water rate in the gas-dominant invasion stage,foster the accumulation of hydrate in great abundance and with considerable thickness.The results of this study can help us understand the accumulation of hydrate through gas chimneys in the Shenhu Area.
基金General Scientific Research Projects of Jiangsu Provincial Meteorological Service(KM202401)Young Scientists Found of the National Natural Science Foundation of China(42205197)+2 种基金Beijige Fund of Nanjing Joint Institute for Atmospheric Sciences(BJG202501)Joint Research Project for Meteorological Capacity Improvement(22NLTSY009)Key Scientific Research Projects of Jiangsu Provincial Meteorological Bureau(KZ202203)。
文摘Landfalling tropical cyclones(TCs)pose tremendous hazards to East Asian coastal areas,particularly in East China,a densely populated and economically vital center.This underscores the critical need for a more in-depth investigation into the evolving characteristics and influences of these landfalling TCs.In this study,we explored changes in landfalling TC activity during 1965–2022 and estimated their influences in East China.Our findings demonstrate that the annual frequency of landfalling TCs has exhibited a slight increase since the mid-1990s,while their overall influences have significantly intensified.This intensification is closely associated with the prolonged duration of TCs over land after landfall.The results also reveal that longer overland sustainment is attributed to the descending vertical wind shear(VWS)and ascending low-layer moisture supply over the corresponding areas.In addition,the annual mean genesis location of these landfalling TCs has shown a significant westward migration,which may be advantageous to the increase in TC influences.
基金Project supported by the National Natural Science Foundation of China(Grant No.12175001)the Key Project of Natural Science Research of West Anhui University(Grant No.WXZR202311)+7 种基金the Natural Science Research Key Project of Education Department of Anhui Province of China(Grant Nos.KJ2021A0943,2022AH051681,and 2023AH052648)the Open Fund of Anhui Undergrowth Crop Intelligent Equipment Engineering Research Center(Grant No.AUCIEERC-2022-01)Anhui Undergrowth Crop Intelligent Equipment Engineering Research Center(Grant No.2022AH010091)the University Synergy Innovation Program of Anhui Province(Grant No.GXXT-2021-026)the Anhui Provincial Natural Science Foundation(Grant Nos.2108085MA18 and 2008085MA20)Key Project of Program for Excellent Young Talents of Anhui Universities(Grant No.gxyq ZD2019042)the open project of the Key Laboratory of Functional Materials and Devices for Informatics of Anhui Higher Education Institutes(Grant No.FMDI202106)the research start-up funding project of High Level Talent of West Anhui University(Grant No.WGKQ2021048)。
文摘Einstein–Podolsky–Rosen(EPR) steering is an example of nontrivial quantum nonlocality and characteristic in the non-classical world.The directivity(or asymmetry) is a fascinating trait of EPR steering,and it is different from other quantum nonlocalities.Here,we consider the strategy in which two atoms compose a two-qubit X state,and the two atoms are owned by Alice and Bob,respectively.The atom of Alice suffers from a reservoir,and the atom of Bob couples with a bit flip channel.The influences of auxiliary qubits on EPR steering and its directions are revealed by means of the entropy uncertainty relation.The results indicate that EPR steering declines with growing time t when adding fewer auxiliary qubits.The EPR steering behaves as damped oscillation when introducing more auxiliary qubits in the strong coupling regime.In the weak coupling regime,the EPR steering monotonously decreases as t increases when coupling auxiliary qubits.The increases in auxiliary qubits are responsible for the fact that the steerability from Alice to Bob(or from Bob to Alice) can be more effectively revealed.Notably,the introductions of more auxiliary qubits can change the situation that steerability from Alice to Bob is certain to a situation in which steerability from Bob to Alice is certain.