The virtuality and openness of online social platforms make networks a hotbed for the rapid propagation of various rumors.In order to block the outbreak of rumor,one of the most effective containment measures is sprea...The virtuality and openness of online social platforms make networks a hotbed for the rapid propagation of various rumors.In order to block the outbreak of rumor,one of the most effective containment measures is spreading positive information to counterbalance the diffusion of rumor.The spreading mechanism of rumors and effective suppression strategies are significant and challenging research issues.Firstly,in order to simulate the dissemination of multiple types of information,we propose a competitive linear threshold model with state transition(CLTST)to describe the spreading process of rumor and anti-rumor in the same network.Subsequently,we put forward a community-based rumor blocking(CRB)algorithm based on influence maximization theory in social networks.Its crucial step is to identify a set of influential seeds that propagate anti-rumor information to other nodes,which includes community detection,selection of candidate anti-rumor seeds and generation of anti-rumor seed set.Under the CLTST model,the CRB algorithm has been compared with six state-of-the-art algorithms on nine online social networks to verify the performance.Experimental results show that the proposed model can better reflect the process of rumor propagation,and review the propagation mechanism of rumor and anti-rumor in online social networks.Moreover,the proposed CRB algorithm has better performance in weakening the rumor dissemination ability,which can select anti-rumor seeds in networks more accurately and achieve better performance in influence spread,sensitivity analysis,seeds distribution and running time.展开更多
Influence maximization of temporal social networks(IMT)is a problem that aims to find the most influential set of nodes in the temporal network so that their information can be the most widely spread.To solve the IMT ...Influence maximization of temporal social networks(IMT)is a problem that aims to find the most influential set of nodes in the temporal network so that their information can be the most widely spread.To solve the IMT problem,we propose an influence maximization algorithm based on an improved K-shell method,namely improved K-shell in temporal social networks(KT).The algorithm takes into account the global and local structures of temporal social networks.First,to obtain the kernel value Ks of each node,in the global scope,it layers the network according to the temporal characteristic of nodes by improving the K-shell method.Then,in the local scope,the calculation method of comprehensive degree is proposed to weigh the influence of nodes.Finally,the node with the highest comprehensive degree in each core layer is selected as the seed.However,the seed selection strategy of KT can easily lose some influential nodes.Thus,by optimizing the seed selection strategy,this paper proposes an efficient heuristic algorithm called improved K-shell in temporal social networks for influence maximization(KTIM).According to the hierarchical distribution of cores,the algorithm adds nodes near the central core to the candidate seed set.It then searches for seeds in the candidate seed set according to the comprehensive degree.Experiments showthatKTIMis close to the best performing improved method for influence maximization of temporal graph(IMIT)algorithm in terms of effectiveness,but runs at least an order of magnitude faster than it.Therefore,considering the effectiveness and efficiency simultaneously in temporal social networks,the KTIM algorithm works better than other baseline algorithms.展开更多
The influence maximization is the problem of finding k seed nodes that maximize the scope of influence in a social network.Therefore,the comprehensive influence of node needs to be considered,when we choose the most i...The influence maximization is the problem of finding k seed nodes that maximize the scope of influence in a social network.Therefore,the comprehensive influence of node needs to be considered,when we choose the most influential node set consisted of k seed nodes.On account of the traditional methods used to measure the influence of nodes,such as degree centrality,betweenness centrality and closeness centrality,consider only a single aspect of the influence of node,so the influence measured by traditional methods mentioned above of node is not accurate.In this paper,we obtain the following result through experimental analysis:the influence of a node is relevant not only to its degree and coreness,but also to the degree and coreness of the n-order neighbor nodes.Hence,we propose a algorithm based on the mixed importance of nodes to measure the comprehensive influence of node,and the algorithm we proposed is simple and efficient.In addition,the performance of the algorithm we proposed is better than that of traditional influence maximization algorithms.展开更多
In view of the forwarding microblogging,secondhand smoke,happiness,and many other phenomena in real life,the spread characteristic of the secondary neighbor nodes in this kind of phenomenon and network scheduling is e...In view of the forwarding microblogging,secondhand smoke,happiness,and many other phenomena in real life,the spread characteristic of the secondary neighbor nodes in this kind of phenomenon and network scheduling is extracted,and sequence influence maximization problem based on the influence of neighbor nodes is proposed in this paper.That is,in the time sequential social network,the propagation characteristics of the second-level neighbor nodes are considered emphatically,and k nodes are found to maximize the information propagation.Firstly,the propagation probability between nodes is calculated by the improved degree estimation algorithm.Secondly,the weighted cascade model(WCM) based on static social network is not suitable for temporal social network.Therefore,an improved weighted cascade model(IWCM) is proposed,and a second-level neighbors time sequential maximizing influence algorithm(STIM) is put forward based on node degree.It combines the consideration of neighbor nodes and the problem of overlap of influence scope between nodes,and makes it chronological.Finally,the experiment verifies that STIM algorithm has stronger practicability,superiority in influence range and running time compared with similar algorithms,and is able to solve the problem of maximizing the timing influence based on the influence of neighbor nodes.展开更多
The problem of influence maximization in the social network G is to find k seed nodes with the maximum influence.The seed set S has a wider range of influence in the social network G than other same-size node sets.The...The problem of influence maximization in the social network G is to find k seed nodes with the maximum influence.The seed set S has a wider range of influence in the social network G than other same-size node sets.The influence of a node is usually established by using the IC model(Independent Cascade model)with a considerable amount of Monte Carlo simulations used to approximate the influence of the node.In addition,an approximate effect(11=e)is obtained,when the number of Monte Carlo simulations is 10000 and the probability of propagation is very small.In this paper,we analyze that the propagative range of influence of node set is limited in the IC model,and we find that the influence of node only spread to the t0-th neighbor.Therefore,we propose a greedy algorithm based on the improved IC model that we only consider the influence in the t0-th neighbor of node.Finally,we perform experiments on 10 real social network and achieve favorable results.展开更多
Influence maximization is one fundamental and important problem to identify a set of most influential individuals to develop effective viral marketing strategies in social network. Most existing studies mainly focus o...Influence maximization is one fundamental and important problem to identify a set of most influential individuals to develop effective viral marketing strategies in social network. Most existing studies mainly focus on designing efficient algorithms or heuristics to find Top-K influential individuals for static network. However, when the network is evolving over time, the static algorithms have to be re-executed which will incur tremendous execution time. In this paper, an incremental algorithm DIM is proposed which can efficiently identify the Top-K influential individuals in dynamic social network based on the previous information instead of calculating from scratch. DIM is designed for Linear Threshold Model and it consists of two phases: initial seeding and seeds updating. In order to further reduce the running time, two pruning strategies are designed for the seeds updating phase. We carried out extensive experiments on real dynamic social network and the experimental results demonstrate that our algorithms could achieve good performance in terms of influence spread and significantly outperform those traditional static algorithms with respect to running time.展开更多
Influence maximization is the problem to identify and find a set of the most influential nodes, whose aggregated influence in the network is maximized. This research is of great application value for advertising,viral...Influence maximization is the problem to identify and find a set of the most influential nodes, whose aggregated influence in the network is maximized. This research is of great application value for advertising,viral marketing and public opinion monitoring. However, we always ignore the tendency of nodes' behaviors and sentiment in the researches of influence maximization. On general, users' sentiment determines users behaviors, and users' behaviors reflect the influence between users in social network. In this paper, we design a training model of sentimental words to expand the existing sentimental dictionary with the marked-commentdata set, and propose an influence spread model considering both the tendency of users' behaviors and sentiment named as BSIS (Behavior and Sentiment Influence Spread) to depict and compute the influence between nodes. We also propose an algorithm for influence maximization named as BS-G (BSIS with Greedy Algorithm) to select the initial node. In the experiments, we use two real social network data sets on the Hadoop and Spark distributed cluster platform for experiments, and the experiment results show that BSIS model and BS-G algorithm on big data platform have better influence spread effects and higher quality of the selection of seed node comparing with the approaches with traditional IC, LT and CDNF models.展开更多
Maximizing the spread of influence is to select a set of seeds with specified size to maximize the spread of influence under a certain diffusion model in a social network. In the actual spread process, the activated p...Maximizing the spread of influence is to select a set of seeds with specified size to maximize the spread of influence under a certain diffusion model in a social network. In the actual spread process, the activated probability of node increases with its newly increasing activated neighbors, which also decreases with time. In this paper, we focus on the problem that selects k seeds based on the cascade model with diffusion decay to maximize the spread of influence in social networks. First, we extend the independent cascade model to incorporate the diffusion decay factor, called as the cascade model with diffusion decay and abbreviated as CMDD. Then, we discuss the objective function of maximizing the spread of influence under the CMDD, which is NP-hard. We further prove the monotonicity and submodularity of this objective function. Finally, we use the greedy algorithm to approximate the optimal result with the ration of 1 ? 1/e.展开更多
Influence Maximization(IM)aims to select a seed set of size k in a social network so that information can be spread most widely under a specific information propagation model through this set of nodes.However,most exi...Influence Maximization(IM)aims to select a seed set of size k in a social network so that information can be spread most widely under a specific information propagation model through this set of nodes.However,most existing studies on the IM problem focus on static social network features,while neglecting the features of temporal social networks.To bridge this gap,we focus on node features reflected by their historical interaction behavior in temporal social networks,i.e.,interaction attributes and self-similarity,and incorporate them into the influence maximization algorithm and information propagation model.Firstly,we propose a node feature-aware voting algorithm,called ISVoteRank,for seed nodes selection.Specifically,before voting,the algorithm sets the initial voting ability of nodes in a personalized manner by combining their features.During the voting process,voting weights are set based on the interaction strength between nodes,allowing nodes to vote at different extents and subsequently weakening their voting ability accordingly.The process concludes by selecting the top k nodes with the highest voting scores as seeds,avoiding the inefficiency of iterative seed selection in traditional voting-based algorithms.Secondly,we extend the Independent Cascade(IC)model and propose the Dynamic Independent Cascade(DIC)model,which aims to capture the dynamic features in the information propagation process by combining node features.Finally,experiments demonstrate that the ISVoteRank algorithm has been improved in both effectiveness and efficiency compared to baseline methods,and the influence spread through the DIC model is improved compared to the IC model.展开更多
This paper mainly studies the influence maximization problem of threshold models in hypergraphs,which aims to identify the most influential nodes in hypergraphs.Firstly,we introduce a novel information diffusion rule ...This paper mainly studies the influence maximization problem of threshold models in hypergraphs,which aims to identify the most influential nodes in hypergraphs.Firstly,we introduce a novel information diffusion rule in hypergraphs based on Threshold Models and conduct the stability analysis.Then we extend the CI-TM algorithm,originally designed for complex networks,to hypergraphs,denoted as the H-CI-TM algorithm.Secondly,we use an iterative approach to get the globally optimal solutions.The analysis reveals that our algorithm ultimately identifies the most influential set of nodes.Based on the numerical simulations,HCI-TM algorithm outperforms several competing algorithms in both synthetic and real-world hypergraphs.Essentially,when provided with the same number of initial seeds,our algorithm can achieve a larger activation size.Our method not only accurately assesses the influence of individual nodes but also identifies a set of nodes with greater impact.Furthermore,our results demonstrate good scalability when handling intricate relationships and large-scale hypergraphs.The outcomes of our research provide substantial support for the applications of the threshold models across diverse fields,including social network analysis and marketing strategies.展开更多
The influence maximization problem aims to select a small set of influential nodes, termed a seed set, to maximize their influence coverage in social networks. Although the methods that are based on a greedy strategy ...The influence maximization problem aims to select a small set of influential nodes, termed a seed set, to maximize their influence coverage in social networks. Although the methods that are based on a greedy strategy can obtain good accuracy, they come at the cost of enormous computational time, and are therefore not applicable to practical scenarios in large-scale networks. In addition, the centrality heuristic algorithms that are based on network topology can be completed in relatively less time. However, they tend to fail to achieve satisfactory results because of drawbacks such as overlapped influence spread. In this work, we propose a discrete two-stage metaheuristic optimization combining quantum-behaved particle swarm optimization with Lévy flight to identify a set of the most influential spreaders. According to the framework,first, the particles in the population are tasked to conduct an exploration in the global solution space to eventually converge to an acceptable solution through the crossover and replacement operations. Second, the Lévy flight mechanism is used to perform a wandering walk on the optimal candidate solution in the population to exploit the potentially unidentified influential nodes in the network. Experiments on six real-world social networks show that the proposed algorithm achieves more satisfactory results when compared to other well-known algorithms.展开更多
基金supported by the National Social Science Fund of China (Grant No.23BGL270)。
文摘The virtuality and openness of online social platforms make networks a hotbed for the rapid propagation of various rumors.In order to block the outbreak of rumor,one of the most effective containment measures is spreading positive information to counterbalance the diffusion of rumor.The spreading mechanism of rumors and effective suppression strategies are significant and challenging research issues.Firstly,in order to simulate the dissemination of multiple types of information,we propose a competitive linear threshold model with state transition(CLTST)to describe the spreading process of rumor and anti-rumor in the same network.Subsequently,we put forward a community-based rumor blocking(CRB)algorithm based on influence maximization theory in social networks.Its crucial step is to identify a set of influential seeds that propagate anti-rumor information to other nodes,which includes community detection,selection of candidate anti-rumor seeds and generation of anti-rumor seed set.Under the CLTST model,the CRB algorithm has been compared with six state-of-the-art algorithms on nine online social networks to verify the performance.Experimental results show that the proposed model can better reflect the process of rumor propagation,and review the propagation mechanism of rumor and anti-rumor in online social networks.Moreover,the proposed CRB algorithm has better performance in weakening the rumor dissemination ability,which can select anti-rumor seeds in networks more accurately and achieve better performance in influence spread,sensitivity analysis,seeds distribution and running time.
基金Thiswork is supported by theYouth Science and Technology Innovation Personnel Training Project of Heilongjiang(No.UNPYSCT-2020072)the FundamentalResearch Funds for the Universities of Heilongjiang(Nos.145109217,135509234)+1 种基金the Education Science Fourteenth Five-Year Plan 2021 Project of Heilongjiang(No.GJB1421344)the Innovative Research Projects for Postgraduates of Qiqihar University(No.YJSCX2022048).
文摘Influence maximization of temporal social networks(IMT)is a problem that aims to find the most influential set of nodes in the temporal network so that their information can be the most widely spread.To solve the IMT problem,we propose an influence maximization algorithm based on an improved K-shell method,namely improved K-shell in temporal social networks(KT).The algorithm takes into account the global and local structures of temporal social networks.First,to obtain the kernel value Ks of each node,in the global scope,it layers the network according to the temporal characteristic of nodes by improving the K-shell method.Then,in the local scope,the calculation method of comprehensive degree is proposed to weigh the influence of nodes.Finally,the node with the highest comprehensive degree in each core layer is selected as the seed.However,the seed selection strategy of KT can easily lose some influential nodes.Thus,by optimizing the seed selection strategy,this paper proposes an efficient heuristic algorithm called improved K-shell in temporal social networks for influence maximization(KTIM).According to the hierarchical distribution of cores,the algorithm adds nodes near the central core to the candidate seed set.It then searches for seeds in the candidate seed set according to the comprehensive degree.Experiments showthatKTIMis close to the best performing improved method for influence maximization of temporal graph(IMIT)algorithm in terms of effectiveness,but runs at least an order of magnitude faster than it.Therefore,considering the effectiveness and efficiency simultaneously in temporal social networks,the KTIM algorithm works better than other baseline algorithms.
基金This research was supported in part by the Chinese National Natural Science Foundation under grant Nos.61602202 and 61702441the Natural Science Foundation of Jiangsu Province under contracts BK20160428 and BK20161302the Six talent peaks project in Jiangsu Province under contract XYDXX-034 and the project in Jiangsu Association for science and technology.
文摘The influence maximization is the problem of finding k seed nodes that maximize the scope of influence in a social network.Therefore,the comprehensive influence of node needs to be considered,when we choose the most influential node set consisted of k seed nodes.On account of the traditional methods used to measure the influence of nodes,such as degree centrality,betweenness centrality and closeness centrality,consider only a single aspect of the influence of node,so the influence measured by traditional methods mentioned above of node is not accurate.In this paper,we obtain the following result through experimental analysis:the influence of a node is relevant not only to its degree and coreness,but also to the degree and coreness of the n-order neighbor nodes.Hence,we propose a algorithm based on the mixed importance of nodes to measure the comprehensive influence of node,and the algorithm we proposed is simple and efficient.In addition,the performance of the algorithm we proposed is better than that of traditional influence maximization algorithms.
基金Supported by the National Natural Science Foundation of China(No.62172352,61871465,42002138)the Natural Science Foundation of Hebei Province(No.F2019203157)the Science and Technology Research Project of Hebei(No.ZD2019004)。
文摘In view of the forwarding microblogging,secondhand smoke,happiness,and many other phenomena in real life,the spread characteristic of the secondary neighbor nodes in this kind of phenomenon and network scheduling is extracted,and sequence influence maximization problem based on the influence of neighbor nodes is proposed in this paper.That is,in the time sequential social network,the propagation characteristics of the second-level neighbor nodes are considered emphatically,and k nodes are found to maximize the information propagation.Firstly,the propagation probability between nodes is calculated by the improved degree estimation algorithm.Secondly,the weighted cascade model(WCM) based on static social network is not suitable for temporal social network.Therefore,an improved weighted cascade model(IWCM) is proposed,and a second-level neighbors time sequential maximizing influence algorithm(STIM) is put forward based on node degree.It combines the consideration of neighbor nodes and the problem of overlap of influence scope between nodes,and makes it chronological.Finally,the experiment verifies that STIM algorithm has stronger practicability,superiority in influence range and running time compared with similar algorithms,and is able to solve the problem of maximizing the timing influence based on the influence of neighbor nodes.
基金This research was supported in part by the Chinese National Natural Science Foundation under grant Nos.61602202 and 61702441the Natural Science Foundation of Jiangsu Province under contracts BK20160428 and BK20161302the Six talent peaks project in Jiangsu Province under contract XYDXX-034 and the project in Jiangsu Association for science and technology.
文摘The problem of influence maximization in the social network G is to find k seed nodes with the maximum influence.The seed set S has a wider range of influence in the social network G than other same-size node sets.The influence of a node is usually established by using the IC model(Independent Cascade model)with a considerable amount of Monte Carlo simulations used to approximate the influence of the node.In addition,an approximate effect(11=e)is obtained,when the number of Monte Carlo simulations is 10000 and the probability of propagation is very small.In this paper,we analyze that the propagative range of influence of node set is limited in the IC model,and we find that the influence of node only spread to the t0-th neighbor.Therefore,we propose a greedy algorithm based on the improved IC model that we only consider the influence in the t0-th neighbor of node.Finally,we perform experiments on 10 real social network and achieve favorable results.
文摘Influence maximization is one fundamental and important problem to identify a set of most influential individuals to develop effective viral marketing strategies in social network. Most existing studies mainly focus on designing efficient algorithms or heuristics to find Top-K influential individuals for static network. However, when the network is evolving over time, the static algorithms have to be re-executed which will incur tremendous execution time. In this paper, an incremental algorithm DIM is proposed which can efficiently identify the Top-K influential individuals in dynamic social network based on the previous information instead of calculating from scratch. DIM is designed for Linear Threshold Model and it consists of two phases: initial seeding and seeds updating. In order to further reduce the running time, two pruning strategies are designed for the seeds updating phase. We carried out extensive experiments on real dynamic social network and the experimental results demonstrate that our algorithms could achieve good performance in terms of influence spread and significantly outperform those traditional static algorithms with respect to running time.
文摘Influence maximization is the problem to identify and find a set of the most influential nodes, whose aggregated influence in the network is maximized. This research is of great application value for advertising,viral marketing and public opinion monitoring. However, we always ignore the tendency of nodes' behaviors and sentiment in the researches of influence maximization. On general, users' sentiment determines users behaviors, and users' behaviors reflect the influence between users in social network. In this paper, we design a training model of sentimental words to expand the existing sentimental dictionary with the marked-commentdata set, and propose an influence spread model considering both the tendency of users' behaviors and sentiment named as BSIS (Behavior and Sentiment Influence Spread) to depict and compute the influence between nodes. We also propose an algorithm for influence maximization named as BS-G (BSIS with Greedy Algorithm) to select the initial node. In the experiments, we use two real social network data sets on the Hadoop and Spark distributed cluster platform for experiments, and the experiment results show that BSIS model and BS-G algorithm on big data platform have better influence spread effects and higher quality of the selection of seed node comparing with the approaches with traditional IC, LT and CDNF models.
基金This paper was supported by the National Natural Science Foundation of China (61562091), Natural Science Foundation of Yunnan Province (2014FA023,201501CF00022), Program for Innovative Research Team in Yunnan University (XT412011), and Program for Excellent Young Talents of Yunnan University (XT412003).
文摘Maximizing the spread of influence is to select a set of seeds with specified size to maximize the spread of influence under a certain diffusion model in a social network. In the actual spread process, the activated probability of node increases with its newly increasing activated neighbors, which also decreases with time. In this paper, we focus on the problem that selects k seeds based on the cascade model with diffusion decay to maximize the spread of influence in social networks. First, we extend the independent cascade model to incorporate the diffusion decay factor, called as the cascade model with diffusion decay and abbreviated as CMDD. Then, we discuss the objective function of maximizing the spread of influence under the CMDD, which is NP-hard. We further prove the monotonicity and submodularity of this objective function. Finally, we use the greedy algorithm to approximate the optimal result with the ration of 1 ? 1/e.
基金supported by the Fundamental Research Funds for the Universities of Heilongjiang(Nos.145109217,135509234)the Youth Science and Technology Innovation Personnel Training Project of Heilongjiang(No.UNPYSCT-2020072)the Innovative Research Projects for Postgraduates of Qiqihar University(No.YJSCX2022048).
文摘Influence Maximization(IM)aims to select a seed set of size k in a social network so that information can be spread most widely under a specific information propagation model through this set of nodes.However,most existing studies on the IM problem focus on static social network features,while neglecting the features of temporal social networks.To bridge this gap,we focus on node features reflected by their historical interaction behavior in temporal social networks,i.e.,interaction attributes and self-similarity,and incorporate them into the influence maximization algorithm and information propagation model.Firstly,we propose a node feature-aware voting algorithm,called ISVoteRank,for seed nodes selection.Specifically,before voting,the algorithm sets the initial voting ability of nodes in a personalized manner by combining their features.During the voting process,voting weights are set based on the interaction strength between nodes,allowing nodes to vote at different extents and subsequently weakening their voting ability accordingly.The process concludes by selecting the top k nodes with the highest voting scores as seeds,avoiding the inefficiency of iterative seed selection in traditional voting-based algorithms.Secondly,we extend the Independent Cascade(IC)model and propose the Dynamic Independent Cascade(DIC)model,which aims to capture the dynamic features in the information propagation process by combining node features.Finally,experiments demonstrate that the ISVoteRank algorithm has been improved in both effectiveness and efficiency compared to baseline methods,and the influence spread through the DIC model is improved compared to the IC model.
基金Supported by the National Natural Science Foundation of China(Grant No.12371516)the Natural Science Foundation of Liaoning Province(Grant No.2022-MS-152)the Fundamental Research Funds for the Central Universities(Grant No.DUT22LAB305)。
文摘This paper mainly studies the influence maximization problem of threshold models in hypergraphs,which aims to identify the most influential nodes in hypergraphs.Firstly,we introduce a novel information diffusion rule in hypergraphs based on Threshold Models and conduct the stability analysis.Then we extend the CI-TM algorithm,originally designed for complex networks,to hypergraphs,denoted as the H-CI-TM algorithm.Secondly,we use an iterative approach to get the globally optimal solutions.The analysis reveals that our algorithm ultimately identifies the most influential set of nodes.Based on the numerical simulations,HCI-TM algorithm outperforms several competing algorithms in both synthetic and real-world hypergraphs.Essentially,when provided with the same number of initial seeds,our algorithm can achieve a larger activation size.Our method not only accurately assesses the influence of individual nodes but also identifies a set of nodes with greater impact.Furthermore,our results demonstrate good scalability when handling intricate relationships and large-scale hypergraphs.The outcomes of our research provide substantial support for the applications of the threshold models across diverse fields,including social network analysis and marketing strategies.
基金Project supported by the Zhejiang Provincial Natural Science Foundation (Grant No.LQ20F020011)the Gansu Provincial Foundation for Distinguished Young Scholars (Grant No.23JRRA766)+1 种基金the National Natural Science Foundation of China (Grant No.62162040)the National Key Research and Development Program of China (Grant No.2020YFB1713600)。
文摘The influence maximization problem aims to select a small set of influential nodes, termed a seed set, to maximize their influence coverage in social networks. Although the methods that are based on a greedy strategy can obtain good accuracy, they come at the cost of enormous computational time, and are therefore not applicable to practical scenarios in large-scale networks. In addition, the centrality heuristic algorithms that are based on network topology can be completed in relatively less time. However, they tend to fail to achieve satisfactory results because of drawbacks such as overlapped influence spread. In this work, we propose a discrete two-stage metaheuristic optimization combining quantum-behaved particle swarm optimization with Lévy flight to identify a set of the most influential spreaders. According to the framework,first, the particles in the population are tasked to conduct an exploration in the global solution space to eventually converge to an acceptable solution through the crossover and replacement operations. Second, the Lévy flight mechanism is used to perform a wandering walk on the optimal candidate solution in the population to exploit the potentially unidentified influential nodes in the network. Experiments on six real-world social networks show that the proposed algorithm achieves more satisfactory results when compared to other well-known algorithms.