Multicollinearity in factor analysis has negative effects, including unreliable factor structure, inconsistent loadings, inflated standard errors, reduced discriminant validity, and difficulties in interpreting factor...Multicollinearity in factor analysis has negative effects, including unreliable factor structure, inconsistent loadings, inflated standard errors, reduced discriminant validity, and difficulties in interpreting factors. It also leads to reduced stability, hindered factor replication, misinterpretation of factor importance, increased parameter estimation instability, reduced power to detect the true factor structure, compromised model fit indices, and biased factor loadings. Multicollinearity introduces uncertainty, complexity, and limited generalizability, hampering factor analysis. To address multicollinearity, researchers can examine the correlation matrix to identify variables with high correlation coefficients. The Variance Inflation Factor (VIF) measures the inflation of regression coefficients due to multicollinearity. Tolerance, the reciprocal of VIF, indicates the proportion of variance in a predictor variable not shared with others. Eigenvalues help assess multicollinearity, with values greater than 1 suggesting the retention of factors. Principal Component Analysis (PCA) reduces dimensionality and identifies highly correlated variables. Other diagnostic measures include the condition number and Cook’s distance. Researchers can center or standardize data, perform variable filtering, use PCA instead of factor analysis, employ factor scores, merge correlated variables, or apply clustering techniques for the solution of the multicollinearity problem. Further research is needed to explore different types of multicollinearity, assess method effectiveness, and investigate the relationship with other factor analysis issues.展开更多
The Darjeeling Himalayan region,characterized by its complex topography and vulnerability to multiple environmental hazards,faces significant challenges including landslides,earthquakes,flash floods,and soil loss that...The Darjeeling Himalayan region,characterized by its complex topography and vulnerability to multiple environmental hazards,faces significant challenges including landslides,earthquakes,flash floods,and soil loss that critically threaten ecosystem stability.Among these challenges,soil erosion emerges as a silent disaster-a gradual yet relentless process whose impacts accumulate over time,progressively degrading landscape integrity and disrupting ecological sustainability.Unlike catastrophic events with immediate visibility,soil erosion’s most devastating consequences often manifest decades later through diminished agricultural productivity,habitat fragmentation,and irreversible biodiversity loss.This study developed a scalable predictive framework employing Random Forest(RF)and Gradient Boosting Tree(GBT)machine learning models to assess and map soil erosion susceptibility across the region.A comprehensive geo-database was developed incorporating 11 erosion triggering factors:slope,elevation,rainfall,drainage density,topographic wetness index,normalized difference vegetation index,curvature,soil texture,land use,geology,and aspect.A total of 2,483 historical soil erosion locations were identified and randomly divided into two sets:70%for model building and 30%for validation purposes.The models revealed distinct spatial patterns of erosion risks,with GBT classifying 60.50%of the area as very low susceptibility,while RF identified 28.92%in this category.Notable differences emerged in high-risk zone identification,with GBT highlighting 7.42%and RF indicating 2.21%as very high erosion susceptibility areas.Both models demonstrated robust predictive capabilities,with GBT achieving 80.77%accuracy and 0.975 AUC,slightly outperforming RF’s 79.67%accuracy and 0.972 AUC.Analysis of predictor variables identified elevation,slope,rainfall and NDVI as the primary factors influencing erosion susceptibility,highlighting the complex interrelationship between geo-environmental factors and erosion processes.This research offers a strategic framework for targeted conservation and sustainable land management in the fragile Himalayan region,providing valuable insights to help policymakers implement effective soil erosion mitigation strategies and support long-term environmental sustainability.展开更多
Grain prices often dominate all other product prices,and an increase in their price is usually considered as a prelude to inflation.The three fairly serious inflations,in 1985,1988-1989,and 1993-1995 respectively,were...Grain prices often dominate all other product prices,and an increase in their price is usually considered as a prelude to inflation.The three fairly serious inflations,in 1985,1988-1989,and 1993-1995 respectively,were all preceded by grain price hikes.Furthermore,the money supply surged in the preceding year or during the same year in which these inflations occurred.This year has witnessed the same symptoms. High grain prices,which still have a possibility to go up further,have attracted wide attention across the world,including in China.As early as the end of last year,the State Council issued a circular that mandated the stabilization of grain prices in order to strictly crack down on illegal actions such as dishonest merchants driving up grain prices.One time,five State-level Departments led by National Development and Reform Commission,released an urgent announcement in order to safeguard the stability of grain prices in the domestic market.Wu Xiaoling,Vice Governor of the People's Bank of China,said that the negative influences exerted on other product prices by the rise in global grain price should not be ignored.According to Wu,the People's Bank of China will continue to closely watch the price changes. From a global and comprehensive viewpoint,the article analyzes the features of the recent grain price hike and the reasons for its dramatic rise,as well as,the impact it will have on the global economy.展开更多
文摘Multicollinearity in factor analysis has negative effects, including unreliable factor structure, inconsistent loadings, inflated standard errors, reduced discriminant validity, and difficulties in interpreting factors. It also leads to reduced stability, hindered factor replication, misinterpretation of factor importance, increased parameter estimation instability, reduced power to detect the true factor structure, compromised model fit indices, and biased factor loadings. Multicollinearity introduces uncertainty, complexity, and limited generalizability, hampering factor analysis. To address multicollinearity, researchers can examine the correlation matrix to identify variables with high correlation coefficients. The Variance Inflation Factor (VIF) measures the inflation of regression coefficients due to multicollinearity. Tolerance, the reciprocal of VIF, indicates the proportion of variance in a predictor variable not shared with others. Eigenvalues help assess multicollinearity, with values greater than 1 suggesting the retention of factors. Principal Component Analysis (PCA) reduces dimensionality and identifies highly correlated variables. Other diagnostic measures include the condition number and Cook’s distance. Researchers can center or standardize data, perform variable filtering, use PCA instead of factor analysis, employ factor scores, merge correlated variables, or apply clustering techniques for the solution of the multicollinearity problem. Further research is needed to explore different types of multicollinearity, assess method effectiveness, and investigate the relationship with other factor analysis issues.
文摘The Darjeeling Himalayan region,characterized by its complex topography and vulnerability to multiple environmental hazards,faces significant challenges including landslides,earthquakes,flash floods,and soil loss that critically threaten ecosystem stability.Among these challenges,soil erosion emerges as a silent disaster-a gradual yet relentless process whose impacts accumulate over time,progressively degrading landscape integrity and disrupting ecological sustainability.Unlike catastrophic events with immediate visibility,soil erosion’s most devastating consequences often manifest decades later through diminished agricultural productivity,habitat fragmentation,and irreversible biodiversity loss.This study developed a scalable predictive framework employing Random Forest(RF)and Gradient Boosting Tree(GBT)machine learning models to assess and map soil erosion susceptibility across the region.A comprehensive geo-database was developed incorporating 11 erosion triggering factors:slope,elevation,rainfall,drainage density,topographic wetness index,normalized difference vegetation index,curvature,soil texture,land use,geology,and aspect.A total of 2,483 historical soil erosion locations were identified and randomly divided into two sets:70%for model building and 30%for validation purposes.The models revealed distinct spatial patterns of erosion risks,with GBT classifying 60.50%of the area as very low susceptibility,while RF identified 28.92%in this category.Notable differences emerged in high-risk zone identification,with GBT highlighting 7.42%and RF indicating 2.21%as very high erosion susceptibility areas.Both models demonstrated robust predictive capabilities,with GBT achieving 80.77%accuracy and 0.975 AUC,slightly outperforming RF’s 79.67%accuracy and 0.972 AUC.Analysis of predictor variables identified elevation,slope,rainfall and NDVI as the primary factors influencing erosion susceptibility,highlighting the complex interrelationship between geo-environmental factors and erosion processes.This research offers a strategic framework for targeted conservation and sustainable land management in the fragile Himalayan region,providing valuable insights to help policymakers implement effective soil erosion mitigation strategies and support long-term environmental sustainability.
文摘Grain prices often dominate all other product prices,and an increase in their price is usually considered as a prelude to inflation.The three fairly serious inflations,in 1985,1988-1989,and 1993-1995 respectively,were all preceded by grain price hikes.Furthermore,the money supply surged in the preceding year or during the same year in which these inflations occurred.This year has witnessed the same symptoms. High grain prices,which still have a possibility to go up further,have attracted wide attention across the world,including in China.As early as the end of last year,the State Council issued a circular that mandated the stabilization of grain prices in order to strictly crack down on illegal actions such as dishonest merchants driving up grain prices.One time,five State-level Departments led by National Development and Reform Commission,released an urgent announcement in order to safeguard the stability of grain prices in the domestic market.Wu Xiaoling,Vice Governor of the People's Bank of China,said that the negative influences exerted on other product prices by the rise in global grain price should not be ignored.According to Wu,the People's Bank of China will continue to closely watch the price changes. From a global and comprehensive viewpoint,the article analyzes the features of the recent grain price hike and the reasons for its dramatic rise,as well as,the impact it will have on the global economy.