In this paper, on the basis of the logarithmic barrier function and KKT conditions, we propose a combined homotopy infeasible interior-point method (CHIIP) for convex nonlinear programming problems. For any convex n...In this paper, on the basis of the logarithmic barrier function and KKT conditions, we propose a combined homotopy infeasible interior-point method (CHIIP) for convex nonlinear programming problems. For any convex nonlinear programming, without strict convexity for the logarithmic barrier function, we get different solutions of the convex programming in different cases by CHIIP method.展开更多
This paper proposes an infeasible interior-point algorithm with full-Newton step for linear complementarity problem,which is an extension of Roos about linear optimization. The main iteration of the algorithm consists...This paper proposes an infeasible interior-point algorithm with full-Newton step for linear complementarity problem,which is an extension of Roos about linear optimization. The main iteration of the algorithm consists of a feasibility step and several centrality steps. At last,we prove that the algorithm has O(nlog n/ε) polynomial complexity,which coincides with the best known one for the infeasible interior-point algorithm at present.展开更多
On the basis of the formulations of the logarithmic barrier function and the idea of following the path of minimizers for the logarithmic barrier family of problems the so called "centralpath" for linear pro...On the basis of the formulations of the logarithmic barrier function and the idea of following the path of minimizers for the logarithmic barrier family of problems the so called "centralpath" for linear programming, we propose a new framework of primal-dual infeasible interiorpoint method for linear programming problems. Without the strict convexity of the logarithmic barrier function, we get the following results: (a) if the homotopy parameterμcan not reach to zero,then the feasible set of these programming problems is empty; (b) if the strictly feasible set is nonempty and the solution set is bounded, then for any initial point x, we can obtain a solution of the problems by this method; (c) if the strictly feasible set is nonempty and the solution set is unbounded, then for any initial point x, we can obtain a (?)-solution; and(d) if the strictly feasible set is nonempty and the solution set is empty, then we can get the curve x(μ), which towards to the generalized solutions.展开更多
This paper proposes a new full Nesterov-Todd(NT) step infeasible interior-point algorithm for semidefinite programming. Our algorithm uses a specific kernel function, which is adopted by Liu and Sun, to deduce the fea...This paper proposes a new full Nesterov-Todd(NT) step infeasible interior-point algorithm for semidefinite programming. Our algorithm uses a specific kernel function, which is adopted by Liu and Sun, to deduce the feasibility step. By using the step, it is remarkable that in each iteration of the algorithm it needs only one full-NT step, and can obtain an iterate approximate to the central path. Moreover, it is proved that the iterative bound corresponds with the known optimal one for semidefinite optimization problems.展开更多
A primal-dual infeasible interior point algorithm for multiple objective linear programming(MOLP)problems was presented.In contrast to the current MOLP algorithm.moving through the interior of polytope but not confini...A primal-dual infeasible interior point algorithm for multiple objective linear programming(MOLP)problems was presented.In contrast to the current MOLP algorithm.moving through the interior of polytope but not confining the iterates within the feasible region in our proposed algorithm result in a solution approach that is quite different and less sensitive to problem size,so providing the potential to dramatically improve the practical computation effectiveness.展开更多
This paper proposes an infeasible interior-point algorithm for linear complementarity problem with full-Newton steps.The main iteration consists of a feasibility step and several centrality steps.No more than O(n log...This paper proposes an infeasible interior-point algorithm for linear complementarity problem with full-Newton steps.The main iteration consists of a feasibility step and several centrality steps.No more than O(n log(n /ε))iterations are required for getting ε-solution of the problem at hand,which coincides with the best-known bound for infeasible interior-point algorithms.展开更多
In this paper, we propose a new infeasible interior-point algorithm with full NesterovTodd (NT) steps for semidefinite programming (SDP). The main iteration consists of a feasibility step and several centrality steps....In this paper, we propose a new infeasible interior-point algorithm with full NesterovTodd (NT) steps for semidefinite programming (SDP). The main iteration consists of a feasibility step and several centrality steps. We used a specific kernel function to induce the feasibility step. The analysis is more simplified. The iteration bound coincides with the currently best known bound for infeasible interior-point methods.展开更多
This paper treats multi-objective problem for manufacturing process design. A purpose of the process design is to decide combinations of work elements assigned to different work centers. Multiple work elements are ord...This paper treats multi-objective problem for manufacturing process design. A purpose of the process design is to decide combinations of work elements assigned to different work centers. Multiple work elements are ordinarily assigned to each center. Here, infeasible solutions are easily generated by precedence relationship of work elements in process design. The number of infeasible solutions generated is ordinarily larger than that of feasible solutions generated in the process. Therefore, feasible and infeasible solutions are located in any neighborhood in solution space. It is difficult to seek high quality Pareto solutions in this problem by using conventional multi-objective evolutional algorithms. We consider that the problem includes difficulty to seek high quality solutions by the following characteristics: (1) Since infeasible solutions are resemble to good feasible solutions, many infeasible solutions which have good values of objective functions are easily sought in the search process, (2) Infeasible solutions are useful to select new variable conditions generating good feasible solutions in search process. In this study, a multi-objective genetic algorithm including local search is proposed using these characteristics. Maximum value of average operation times and maximum value of dispersion of operation time in all work centers are used as objective functions to promote productivity. The optimal weighted coefficient is introduced to control the ratio of feasible solutions to all solutions selected in crossover and selection process in the algorithm. This paper shows the effectiveness of the proposed algorithm on simple model.展开更多
In this paper, we propose a theoretical framework of an infeasible interior-point algorithm for solving monotone linear cornplementarity problems over symmetric cones (SCLCP). The new algorithm gets Newton-like dire...In this paper, we propose a theoretical framework of an infeasible interior-point algorithm for solving monotone linear cornplementarity problems over symmetric cones (SCLCP). The new algorithm gets Newton-like directions from the Chen-Harker-Kanzow-Smale (CHKS) smoothing equation of the SCLCP. It possesses the following features: The starting point is easily chosen; one approximate Newton step is computed and accepted at each iteration; the iterative point with unit stepsize automatically remains in the neighborhood of central path; the iterative sequence is bounded and possesses (9(rL) polynomial-time complexity under the monotonicity and solvability of the SCLCP.展开更多
This paper proposes a new infeasible interior-point algorithm with full-Newton steps for P_*(κ) linear complementarity problem(LCP),which is an extension of the work by Roos(SIAM J.Optim.,2006,16(4):1110-1136).The ma...This paper proposes a new infeasible interior-point algorithm with full-Newton steps for P_*(κ) linear complementarity problem(LCP),which is an extension of the work by Roos(SIAM J.Optim.,2006,16(4):1110-1136).The main iteration consists of a feasibility step and several centrality steps.The authors introduce a specific kernel function instead of the classic logarithmical barrier function to induce the feasibility step,so the analysis of the feasibility step is different from that of Roos' s.This kernel function has a finite value on the boundary.The result of iteration complexity coincides with the currently known best one for infeasible interior-point methods for P_*(κ) LCP.Some numerical results are reported as well.展开更多
We present a modified and simplified version of an infeasible interior-point method for second-order cone optimization published in 2013(Zangiabadi et al.in J Optim Theory Appl,2013).In the earlier version,each iterat...We present a modified and simplified version of an infeasible interior-point method for second-order cone optimization published in 2013(Zangiabadi et al.in J Optim Theory Appl,2013).In the earlier version,each iteration consisted of one socalled feasibility step and a few centering steps.Here,each iteration consists of only a feasibility step.Thus,the new algorithm improves the number of iterations and the improvement is due to a lemma which gives an upper bound for the proximity after the feasibility step.The complexity result coincides with the best-known iteration bound for infeasible interior-point methods.展开更多
In this paper,we present a path-following infeasible interior-point method for P∗(κ)horizontal linear complementarity problems(P∗(κ)-HLCPs).The algorithm is based on a simple kernel function for finding the search d...In this paper,we present a path-following infeasible interior-point method for P∗(κ)horizontal linear complementarity problems(P∗(κ)-HLCPs).The algorithm is based on a simple kernel function for finding the search directions and defining the neighborhood of the central path.The algorithm follows the central path related to some perturbations of the original problem,using the so-called feasibility and centering steps,along with only full such steps.Therefore,it has the advantage that the calculation of the step sizes at each iteration is avoided.The complexity result shows that the full-Newton step infeasible interior-point algorithm based on the simple kernel function enjoys the best-known iteration complexity for P∗(κ)-HLCPs.展开更多
The quadratic penalty function is considered for finding the weighted analytic center ofa polytope.By an-alyzing the properties of the penalty function,an exterior central path is introduced.It is shown that the exter...The quadratic penalty function is considered for finding the weighted analytic center ofa polytope.By an-alyzing the properties of the penalty function,an exterior central path is introduced.It is shown that the exterior cen-tral path has some similar properties as the interior one in a line ar programming case,If the starting point is close to the path,by following the path with an appropriate step,a polynomia1 algorithm is derived.Usually,the starting point is not in the polytope,the method can be seen as an infeasible interior point one.It is also discussed how to get an appropriate starting point.展开更多
In this paper, the structure of infeasible solutions to Job Shop Scheduling Problem (JSSP) is quantitatively analyzed, and a necessary and sufficient condition of the deadlock for JSSP is also given. For a simple JSSP...In this paper, the structure of infeasible solutions to Job Shop Scheduling Problem (JSSP) is quantitatively analyzed, and a necessary and sufficient condition of the deadlock for JSSP is also given. For a simple JSSP with 2 machines and N jobs, a formula for calculating the infeasible solutions is proposed, which shows that the infeasible solution possesses the majority of search space and only those heuristic algorithms which do not produce infeasible solutions are valid.展开更多
The proximal alternating linearized minimization(PALM)method suits well for solving blockstructured optimization problems,which are ubiquitous in real applications.In the cases where subproblems do not have closed-for...The proximal alternating linearized minimization(PALM)method suits well for solving blockstructured optimization problems,which are ubiquitous in real applications.In the cases where subproblems do not have closed-form solutions,e.g.,due to complex constraints,infeasible subsolvers are indispensable,giving rise to an infeasible inexact PALM(PALM-I).Numerous efforts have been devoted to analyzing the feasible PALM,while little attention has been paid to the PALM-I.The usage of the PALM-I thus lacks a theoretical guarantee.The essential difficulty of analysis consists in the objective value nonmonotonicity induced by the infeasibility.We study in the present work the convergence properties of the PALM-I.In particular,we construct a surrogate sequence to surmount the nonmonotonicity issue and devise an implementable inexact criterion.Based upon these,we manage to establish the stationarity of any accumulation point,and moreover,show the iterate convergence and the asymptotic convergence rates under the assumption of the Lojasiewicz property.The prominent advantages of the PALM-I on CPU time are illustrated via numerical experiments on problems arising from quantum physics and 3-dimensional anisotropic frictional contact.展开更多
An approach for parameter estimation of proportional-integral-derivative(PID) control system using a new nonlinear programming(NLP) algorithm was proposed.SQP/IIPM algorithm is a sequential quadratic programming(SQP) ...An approach for parameter estimation of proportional-integral-derivative(PID) control system using a new nonlinear programming(NLP) algorithm was proposed.SQP/IIPM algorithm is a sequential quadratic programming(SQP) based algorithm that derives its search directions by solving quadratic programming(QP) subproblems via an infeasible interior point method(IIPM) and evaluates step length adaptively via a simple line search and/or a quadratic search algorithm depending on the termination of the IIPM solver.The task of tuning PI/PID parameters for the first-and second-order systems was modeled as constrained NLP problem. SQP/IIPM algorithm was applied to determining the optimum parameters for the PI/PID control systems.To assess the performance of the proposed method,a Matlab simulation of PID controller tuning was conducted to compare the proposed SQP/IIPM algorithm with the gain and phase margin(GPM) method and Ziegler-Nichols(ZN) method.The results reveal that,for both step and impulse response tests,the PI/PID controller using SQP/IIPM optimization algorithm consistently reduce rise time,settling-time and remarkably lower overshoot compared to GPM and ZN methods,and the proposed method improves the robustness and effectiveness of numerical optimization of PID control systems.展开更多
To diagnose the feasibility of the solution of a job-shop scheduling problem(JSSP),a test algorithm based on diagraph and heuristic search is developed and verified through a case study.Meanwhile,a new repair algori...To diagnose the feasibility of the solution of a job-shop scheduling problem(JSSP),a test algorithm based on diagraph and heuristic search is developed and verified through a case study.Meanwhile,a new repair algorithm for modifying an infeasible solution of the JSSP to become a feasible solution is proposed for the general JSSP.The computational complexity of the test algorithm and the repair algorithm is both O(n) under the worst-case scenario,and O(2J+M) for the repair algorithm under the best-case scenario.The repair algorithm is not limited to specific optimization methods,such as local tabu search,genetic algorithms and shifting bottleneck procedures for job shop scheduling,but applicable to generic infeasible solutions for the JSSP to achieve feasibility.展开更多
Based on the ideas of infeasible interior-point methods and predictor-corrector algorithms, two interior-point predictor-corrector algorithms for the second-order cone programming (SOCP) are presented. The two algor...Based on the ideas of infeasible interior-point methods and predictor-corrector algorithms, two interior-point predictor-corrector algorithms for the second-order cone programming (SOCP) are presented. The two algorithms use the Newton direction and the Euler direction as the predictor directions, respectively. The corrector directions belong to the category of the Alizadeh-Haeberly-Overton (AHO) directions. These algorithms are suitable to the cases of feasible and infeasible interior iterative points. A simpler neighborhood of the central path for the SOCP is proposed, which is the pivotal difference from other interior-point predictor-corrector algorithms. Under some assumptions, the algorithms possess the global, linear, and quadratic convergence. The complexity bound O(rln(εo/ε)) is obtained, where r denotes the number of the second-order cones in the SOCP problem. The numerical results show that the proposed algorithms are effective.展开更多
In order to effectively diagnose the infeasible linear programming (LP) model of production planning in refinery, the article proposed three stages strategy based on constraints’ classification and infeasibility anal...In order to effectively diagnose the infeasible linear programming (LP) model of production planning in refinery, the article proposed three stages strategy based on constraints’ classification and infeasibility analysis. Generally, infeasibility sources involve structural inconsistencies and data errors, and the data errors are further classified intoⅠ, Ⅱ and Ⅲ. The three stages strategy are: (1) Check data when they are inputted to detect data error Ⅰ and repair them; (2) Inspect data whether they are accorded with material balance before solving the LP model to identify data error Ⅱ and repair them; (3) Find irreducible inconsistent system of infeasible LP model and give diagnosis information priority-ranked to recognize data error Ⅲ and structural inconsistencies. These stages could be automatically executed by computer, and the approach has been applied to diagnose the infeasible model well in our graphic I/O petro-chemical industry modeling system.展开更多
In this paper we discuss about infeasibility diagnosis and infeasibility resolution, when the constraint method is used for solving multi objective linear programming problems. We propose an algorithm for resolution o...In this paper we discuss about infeasibility diagnosis and infeasibility resolution, when the constraint method is used for solving multi objective linear programming problems. We propose an algorithm for resolution of infeasibility, which is a combination of interactive, weighting and constraint methods.Numerical examples are provided to illustrate the techniques developed.展开更多
文摘In this paper, on the basis of the logarithmic barrier function and KKT conditions, we propose a combined homotopy infeasible interior-point method (CHIIP) for convex nonlinear programming problems. For any convex nonlinear programming, without strict convexity for the logarithmic barrier function, we get different solutions of the convex programming in different cases by CHIIP method.
基金Supported by the National Natural Science Fund Finances Projects(71071119)
文摘This paper proposes an infeasible interior-point algorithm with full-Newton step for linear complementarity problem,which is an extension of Roos about linear optimization. The main iteration of the algorithm consists of a feasibility step and several centrality steps. At last,we prove that the algorithm has O(nlog n/ε) polynomial complexity,which coincides with the best known one for the infeasible interior-point algorithm at present.
文摘On the basis of the formulations of the logarithmic barrier function and the idea of following the path of minimizers for the logarithmic barrier family of problems the so called "centralpath" for linear programming, we propose a new framework of primal-dual infeasible interiorpoint method for linear programming problems. Without the strict convexity of the logarithmic barrier function, we get the following results: (a) if the homotopy parameterμcan not reach to zero,then the feasible set of these programming problems is empty; (b) if the strictly feasible set is nonempty and the solution set is bounded, then for any initial point x, we can obtain a solution of the problems by this method; (c) if the strictly feasible set is nonempty and the solution set is unbounded, then for any initial point x, we can obtain a (?)-solution; and(d) if the strictly feasible set is nonempty and the solution set is empty, then we can get the curve x(μ), which towards to the generalized solutions.
基金Sponsored by the National Natural Science Foundation of China(Grant No.11461021)the Natural Science Basic Research Plan in Shaanxi Province of China(Grant No.2017JM1014)Scientific Research Project of Hezhou University(Grant Nos.2014YBZK06 and 2016HZXYSX03)
文摘This paper proposes a new full Nesterov-Todd(NT) step infeasible interior-point algorithm for semidefinite programming. Our algorithm uses a specific kernel function, which is adopted by Liu and Sun, to deduce the feasibility step. By using the step, it is remarkable that in each iteration of the algorithm it needs only one full-NT step, and can obtain an iterate approximate to the central path. Moreover, it is proved that the iterative bound corresponds with the known optimal one for semidefinite optimization problems.
基金Supported by the Doctoral Educational Foundation of China of the Ministry of Education(20020486035)
文摘A primal-dual infeasible interior point algorithm for multiple objective linear programming(MOLP)problems was presented.In contrast to the current MOLP algorithm.moving through the interior of polytope but not confining the iterates within the feasible region in our proposed algorithm result in a solution approach that is quite different and less sensitive to problem size,so providing the potential to dramatically improve the practical computation effectiveness.
基金Supported by the National Natural Science Foundation of China(71071119)
文摘This paper proposes an infeasible interior-point algorithm for linear complementarity problem with full-Newton steps.The main iteration consists of a feasibility step and several centrality steps.No more than O(n log(n /ε))iterations are required for getting ε-solution of the problem at hand,which coincides with the best-known bound for infeasible interior-point algorithms.
文摘In this paper, we propose a new infeasible interior-point algorithm with full NesterovTodd (NT) steps for semidefinite programming (SDP). The main iteration consists of a feasibility step and several centrality steps. We used a specific kernel function to induce the feasibility step. The analysis is more simplified. The iteration bound coincides with the currently best known bound for infeasible interior-point methods.
文摘This paper treats multi-objective problem for manufacturing process design. A purpose of the process design is to decide combinations of work elements assigned to different work centers. Multiple work elements are ordinarily assigned to each center. Here, infeasible solutions are easily generated by precedence relationship of work elements in process design. The number of infeasible solutions generated is ordinarily larger than that of feasible solutions generated in the process. Therefore, feasible and infeasible solutions are located in any neighborhood in solution space. It is difficult to seek high quality Pareto solutions in this problem by using conventional multi-objective evolutional algorithms. We consider that the problem includes difficulty to seek high quality solutions by the following characteristics: (1) Since infeasible solutions are resemble to good feasible solutions, many infeasible solutions which have good values of objective functions are easily sought in the search process, (2) Infeasible solutions are useful to select new variable conditions generating good feasible solutions in search process. In this study, a multi-objective genetic algorithm including local search is proposed using these characteristics. Maximum value of average operation times and maximum value of dispersion of operation time in all work centers are used as objective functions to promote productivity. The optimal weighted coefficient is introduced to control the ratio of feasible solutions to all solutions selected in crossover and selection process in the algorithm. This paper shows the effectiveness of the proposed algorithm on simple model.
基金Supported by the National Natural Science Foundation of China(No.10671010)Specialized Research Fund for the Doctoral Program of Higher Education(200800040024)
文摘In this paper, we propose a theoretical framework of an infeasible interior-point algorithm for solving monotone linear cornplementarity problems over symmetric cones (SCLCP). The new algorithm gets Newton-like directions from the Chen-Harker-Kanzow-Smale (CHKS) smoothing equation of the SCLCP. It possesses the following features: The starting point is easily chosen; one approximate Newton step is computed and accepted at each iteration; the iterative point with unit stepsize automatically remains in the neighborhood of central path; the iterative sequence is bounded and possesses (9(rL) polynomial-time complexity under the monotonicity and solvability of the SCLCP.
基金supported by the Natural Science Foundation of Hubei Province under Grant No.2008CDZ047
文摘This paper proposes a new infeasible interior-point algorithm with full-Newton steps for P_*(κ) linear complementarity problem(LCP),which is an extension of the work by Roos(SIAM J.Optim.,2006,16(4):1110-1136).The main iteration consists of a feasibility step and several centrality steps.The authors introduce a specific kernel function instead of the classic logarithmical barrier function to induce the feasibility step,so the analysis of the feasibility step is different from that of Roos' s.This kernel function has a finite value on the boundary.The result of iteration complexity coincides with the currently known best one for infeasible interior-point methods for P_*(κ) LCP.Some numerical results are reported as well.
文摘We present a modified and simplified version of an infeasible interior-point method for second-order cone optimization published in 2013(Zangiabadi et al.in J Optim Theory Appl,2013).In the earlier version,each iteration consisted of one socalled feasibility step and a few centering steps.Here,each iteration consists of only a feasibility step.Thus,the new algorithm improves the number of iterations and the improvement is due to a lemma which gives an upper bound for the proximity after the feasibility step.The complexity result coincides with the best-known iteration bound for infeasible interior-point methods.
文摘In this paper,we present a path-following infeasible interior-point method for P∗(κ)horizontal linear complementarity problems(P∗(κ)-HLCPs).The algorithm is based on a simple kernel function for finding the search directions and defining the neighborhood of the central path.The algorithm follows the central path related to some perturbations of the original problem,using the so-called feasibility and centering steps,along with only full such steps.Therefore,it has the advantage that the calculation of the step sizes at each iteration is avoided.The complexity result shows that the full-Newton step infeasible interior-point algorithm based on the simple kernel function enjoys the best-known iteration complexity for P∗(κ)-HLCPs.
文摘The quadratic penalty function is considered for finding the weighted analytic center ofa polytope.By an-alyzing the properties of the penalty function,an exterior central path is introduced.It is shown that the exterior cen-tral path has some similar properties as the interior one in a line ar programming case,If the starting point is close to the path,by following the path with an appropriate step,a polynomia1 algorithm is derived.Usually,the starting point is not in the polytope,the method can be seen as an infeasible interior point one.It is also discussed how to get an appropriate starting point.
基金Supported by The National Natural Science Foundation of China ( No.794 3 0 0 2 2 )
文摘In this paper, the structure of infeasible solutions to Job Shop Scheduling Problem (JSSP) is quantitatively analyzed, and a necessary and sufficient condition of the deadlock for JSSP is also given. For a simple JSSP with 2 machines and N jobs, a formula for calculating the infeasible solutions is proposed, which shows that the infeasible solution possesses the majority of search space and only those heuristic algorithms which do not produce infeasible solutions are valid.
基金supported by National Natural Science Foundation of China(Grant Nos.12125108,11971466,11991021,11991020,12021001 and 12288201)Key Research Program of Frontier Sciences,Chinese Academy of Sciences(Grant No.ZDBS-LY-7022)CAS(the Chinese Academy of Sciences)AMSS(Academy of Mathematics and Systems Science)-PolyU(The Hong Kong Polytechnic University)Joint Laboratory of Applied Mathematics.
文摘The proximal alternating linearized minimization(PALM)method suits well for solving blockstructured optimization problems,which are ubiquitous in real applications.In the cases where subproblems do not have closed-form solutions,e.g.,due to complex constraints,infeasible subsolvers are indispensable,giving rise to an infeasible inexact PALM(PALM-I).Numerous efforts have been devoted to analyzing the feasible PALM,while little attention has been paid to the PALM-I.The usage of the PALM-I thus lacks a theoretical guarantee.The essential difficulty of analysis consists in the objective value nonmonotonicity induced by the infeasibility.We study in the present work the convergence properties of the PALM-I.In particular,we construct a surrogate sequence to surmount the nonmonotonicity issue and devise an implementable inexact criterion.Based upon these,we manage to establish the stationarity of any accumulation point,and moreover,show the iterate convergence and the asymptotic convergence rates under the assumption of the Lojasiewicz property.The prominent advantages of the PALM-I on CPU time are illustrated via numerical experiments on problems arising from quantum physics and 3-dimensional anisotropic frictional contact.
基金Project(60874070) supported by the National Natural Science Foundation of ChinaProject(20070533131) supported by the National Research Foundation for the Doctoral Program of Higher Education of ChinaProject supported by the Scientific Research Foundation for the Returned Overseas Chinese Scholars,Ministry of Education of China
文摘An approach for parameter estimation of proportional-integral-derivative(PID) control system using a new nonlinear programming(NLP) algorithm was proposed.SQP/IIPM algorithm is a sequential quadratic programming(SQP) based algorithm that derives its search directions by solving quadratic programming(QP) subproblems via an infeasible interior point method(IIPM) and evaluates step length adaptively via a simple line search and/or a quadratic search algorithm depending on the termination of the IIPM solver.The task of tuning PI/PID parameters for the first-and second-order systems was modeled as constrained NLP problem. SQP/IIPM algorithm was applied to determining the optimum parameters for the PI/PID control systems.To assess the performance of the proposed method,a Matlab simulation of PID controller tuning was conducted to compare the proposed SQP/IIPM algorithm with the gain and phase margin(GPM) method and Ziegler-Nichols(ZN) method.The results reveal that,for both step and impulse response tests,the PI/PID controller using SQP/IIPM optimization algorithm consistently reduce rise time,settling-time and remarkably lower overshoot compared to GPM and ZN methods,and the proposed method improves the robustness and effectiveness of numerical optimization of PID control systems.
基金The US National Science Foundation (No. CMMI-0408390, CMMI-0644552)the Research Fellowship for International Young Scientists (No. 51050110143)+2 种基金the Fok Ying-Tong Education Foundation(No. 114024)the Natural Science Foundation of Jiangsu Province (No.BK2009015)the Postdoctoral Science Foundation of Jiangsu Province (No.0901005C)
文摘To diagnose the feasibility of the solution of a job-shop scheduling problem(JSSP),a test algorithm based on diagraph and heuristic search is developed and verified through a case study.Meanwhile,a new repair algorithm for modifying an infeasible solution of the JSSP to become a feasible solution is proposed for the general JSSP.The computational complexity of the test algorithm and the repair algorithm is both O(n) under the worst-case scenario,and O(2J+M) for the repair algorithm under the best-case scenario.The repair algorithm is not limited to specific optimization methods,such as local tabu search,genetic algorithms and shifting bottleneck procedures for job shop scheduling,but applicable to generic infeasible solutions for the JSSP to achieve feasibility.
基金supported by the National Natural Science Foundation of China (Nos. 71061002 and 11071158)the Natural Science Foundation of Guangxi Province of China (Nos. 0832052 and 2010GXNSFB013047)
文摘Based on the ideas of infeasible interior-point methods and predictor-corrector algorithms, two interior-point predictor-corrector algorithms for the second-order cone programming (SOCP) are presented. The two algorithms use the Newton direction and the Euler direction as the predictor directions, respectively. The corrector directions belong to the category of the Alizadeh-Haeberly-Overton (AHO) directions. These algorithms are suitable to the cases of feasible and infeasible interior iterative points. A simpler neighborhood of the central path for the SOCP is proposed, which is the pivotal difference from other interior-point predictor-corrector algorithms. Under some assumptions, the algorithms possess the global, linear, and quadratic convergence. The complexity bound O(rln(εo/ε)) is obtained, where r denotes the number of the second-order cones in the SOCP problem. The numerical results show that the proposed algorithms are effective.
文摘In order to effectively diagnose the infeasible linear programming (LP) model of production planning in refinery, the article proposed three stages strategy based on constraints’ classification and infeasibility analysis. Generally, infeasibility sources involve structural inconsistencies and data errors, and the data errors are further classified intoⅠ, Ⅱ and Ⅲ. The three stages strategy are: (1) Check data when they are inputted to detect data error Ⅰ and repair them; (2) Inspect data whether they are accorded with material balance before solving the LP model to identify data error Ⅱ and repair them; (3) Find irreducible inconsistent system of infeasible LP model and give diagnosis information priority-ranked to recognize data error Ⅲ and structural inconsistencies. These stages could be automatically executed by computer, and the approach has been applied to diagnose the infeasible model well in our graphic I/O petro-chemical industry modeling system.
文摘In this paper we discuss about infeasibility diagnosis and infeasibility resolution, when the constraint method is used for solving multi objective linear programming problems. We propose an algorithm for resolution of infeasibility, which is a combination of interactive, weighting and constraint methods.Numerical examples are provided to illustrate the techniques developed.