In this paper, an innovative Genetic Algorithms (GA)-based inexact non-linear programming (GAINLP) problem solving approach has been proposed for solving non-linear programming optimization problems with inexact infor...In this paper, an innovative Genetic Algorithms (GA)-based inexact non-linear programming (GAINLP) problem solving approach has been proposed for solving non-linear programming optimization problems with inexact information (inexact non-linear operation programming). GAINLP was developed based on a GA-based inexact quadratic solving method. The Genetic Algorithm Solver of the Global Optimization Toolbox (GASGOT) developed by MATLABTM was adopted as the implementation environment of this study. GAINLP was applied to a municipality solid waste management case. The results from different scenarios indicated that the proposed GA-based heuristic optimization approach was able to generate a solution for a complicated nonlinear problem, which also involved uncertainty.展开更多
This paper proposes two kinds of approximate proximal point algorithms (APPA) for monotone variational inequalities, both of which can be viewed as two extended versions of Solodov and Svaiter's APPA in the paper ...This paper proposes two kinds of approximate proximal point algorithms (APPA) for monotone variational inequalities, both of which can be viewed as two extended versions of Solodov and Svaiter's APPA in the paper "Error bounds for proximal point subproblems and associated inexact proximal point algorithms" published in 2000. They are both prediction- correction methods which use the same inexactness restriction; the only difference is that they use different search directions in the correction steps. This paper also chooses an optimal step size in the two versions of the APPA to improve the profit at each iteration. Analysis also shows that the two APPAs are globally convergent under appropriate assumptions, and we can expect algorithm 2 to get more progress in every iteration than algorithm 1. Numerical experiments indicate that algorithm 2 is more efficient than algorithm 1 with the same correction step size,展开更多
Bilevel programming problems are a class of optimization problems with hierarchical structure where one of the con-straints is also an optimization problem. Inexact restoration methods were introduced for solving nonl...Bilevel programming problems are a class of optimization problems with hierarchical structure where one of the con-straints is also an optimization problem. Inexact restoration methods were introduced for solving nonlinear programming problems a few years ago. They generate a sequence of, generally, infeasible iterates with intermediate iterations that consist of inexactly restored points. In this paper we present a software environment for solving bilevel program-ming problems using an inexact restoration technique without replacing the lower level problem by its KKT optimality conditions. With this strategy we maintain the minimization structure of the lower level problem and avoid spurious solutions. The environment is a user-friendly set of Fortran 90 modules which is easily and highly configurable. It is prepared to use two well-tested minimization solvers and different formulations in one of the minimization subproblems. We validate our implementation using a set of test problems from the literature, comparing different formulations and the use of the minimization solvers.展开更多
为求解黎曼流形上的大规模可分离问题,Kasai等人在(Advances of the neural information processing systems, 31, 2018)中提出了使用非精确梯度和非精确Hessian的黎曼信赖域算法,并给出了该算法的迭代复杂度(只有证明思路,没有具体证明...为求解黎曼流形上的大规模可分离问题,Kasai等人在(Advances of the neural information processing systems, 31, 2018)中提出了使用非精确梯度和非精确Hessian的黎曼信赖域算法,并给出了该算法的迭代复杂度(只有证明思路,没有具体证明)。我们指出在该文献的假设条件下,按照其思路不能证明出相应的结果。本文提出了不同的参数假设,并证明了算法具有类似的迭代复杂度。展开更多
Optimization problem of cardinality constrained mean-variance(CCMV)model for sparse portfolio selection is considered.To overcome the difficulties caused by cardinality constraint,an exact penalty approach is employed...Optimization problem of cardinality constrained mean-variance(CCMV)model for sparse portfolio selection is considered.To overcome the difficulties caused by cardinality constraint,an exact penalty approach is employed,then CCMV problem is transferred into a difference-of-convex-functions(DC)problem.By exploiting the DC structure of the gained problem and the superlinear convergence of semismooth Newton(ssN)method,an inexact proximal DC algorithm with sieving strategy based on a majorized ssN method(siPDCA-mssN)is proposed.For solving the inner problems of siPDCA-mssN from dual,the second-order information is wisely incorporated and an efficient mssN method is employed.The global convergence of the sequence generated by siPDCA-mssN is proved.To solve large-scale CCMV problem,a decomposed siPDCA-mssN(DsiPDCA-mssN)is introduced.To demonstrate the efficiency of proposed algorithms,siPDCA-mssN and DsiPDCA-mssN are compared with the penalty proximal alternating linearized minimization method and the CPLEX(12.9)solver by performing numerical experiments on realword market data and large-scale simulated data.The numerical results demonstrate that siPDCA-mssN and DsiPDCA-mssN outperform the other methods from computation time and optimal value.The out-of-sample experiments results display that the solutions of CCMV model are better than those of other portfolio selection models in terms of Sharp ratio and sparsity.展开更多
文摘In this paper, an innovative Genetic Algorithms (GA)-based inexact non-linear programming (GAINLP) problem solving approach has been proposed for solving non-linear programming optimization problems with inexact information (inexact non-linear operation programming). GAINLP was developed based on a GA-based inexact quadratic solving method. The Genetic Algorithm Solver of the Global Optimization Toolbox (GASGOT) developed by MATLABTM was adopted as the implementation environment of this study. GAINLP was applied to a municipality solid waste management case. The results from different scenarios indicated that the proposed GA-based heuristic optimization approach was able to generate a solution for a complicated nonlinear problem, which also involved uncertainty.
文摘This paper proposes two kinds of approximate proximal point algorithms (APPA) for monotone variational inequalities, both of which can be viewed as two extended versions of Solodov and Svaiter's APPA in the paper "Error bounds for proximal point subproblems and associated inexact proximal point algorithms" published in 2000. They are both prediction- correction methods which use the same inexactness restriction; the only difference is that they use different search directions in the correction steps. This paper also chooses an optimal step size in the two versions of the APPA to improve the profit at each iteration. Analysis also shows that the two APPAs are globally convergent under appropriate assumptions, and we can expect algorithm 2 to get more progress in every iteration than algorithm 1. Numerical experiments indicate that algorithm 2 is more efficient than algorithm 1 with the same correction step size,
文摘Bilevel programming problems are a class of optimization problems with hierarchical structure where one of the con-straints is also an optimization problem. Inexact restoration methods were introduced for solving nonlinear programming problems a few years ago. They generate a sequence of, generally, infeasible iterates with intermediate iterations that consist of inexactly restored points. In this paper we present a software environment for solving bilevel program-ming problems using an inexact restoration technique without replacing the lower level problem by its KKT optimality conditions. With this strategy we maintain the minimization structure of the lower level problem and avoid spurious solutions. The environment is a user-friendly set of Fortran 90 modules which is easily and highly configurable. It is prepared to use two well-tested minimization solvers and different formulations in one of the minimization subproblems. We validate our implementation using a set of test problems from the literature, comparing different formulations and the use of the minimization solvers.
文摘为求解黎曼流形上的大规模可分离问题,Kasai等人在(Advances of the neural information processing systems, 31, 2018)中提出了使用非精确梯度和非精确Hessian的黎曼信赖域算法,并给出了该算法的迭代复杂度(只有证明思路,没有具体证明)。我们指出在该文献的假设条件下,按照其思路不能证明出相应的结果。本文提出了不同的参数假设,并证明了算法具有类似的迭代复杂度。
基金supported by the National Natural Science Foundation of China(Grant No.11971092)supported by the Fundamental Research Funds for the Central Universities(Grant No.DUT20RC(3)079)。
文摘Optimization problem of cardinality constrained mean-variance(CCMV)model for sparse portfolio selection is considered.To overcome the difficulties caused by cardinality constraint,an exact penalty approach is employed,then CCMV problem is transferred into a difference-of-convex-functions(DC)problem.By exploiting the DC structure of the gained problem and the superlinear convergence of semismooth Newton(ssN)method,an inexact proximal DC algorithm with sieving strategy based on a majorized ssN method(siPDCA-mssN)is proposed.For solving the inner problems of siPDCA-mssN from dual,the second-order information is wisely incorporated and an efficient mssN method is employed.The global convergence of the sequence generated by siPDCA-mssN is proved.To solve large-scale CCMV problem,a decomposed siPDCA-mssN(DsiPDCA-mssN)is introduced.To demonstrate the efficiency of proposed algorithms,siPDCA-mssN and DsiPDCA-mssN are compared with the penalty proximal alternating linearized minimization method and the CPLEX(12.9)solver by performing numerical experiments on realword market data and large-scale simulated data.The numerical results demonstrate that siPDCA-mssN and DsiPDCA-mssN outperform the other methods from computation time and optimal value.The out-of-sample experiments results display that the solutions of CCMV model are better than those of other portfolio selection models in terms of Sharp ratio and sparsity.