The increasing penetration of renewable energy on the transmission and distribution power network is driving the adoption of two-way power flow control, data and communications needed to meet the dependency of balanci...The increasing penetration of renewable energy on the transmission and distribution power network is driving the adoption of two-way power flow control, data and communications needed to meet the dependency of balancing generation and load. Thus, creating an environment where power and information flow seamlessly in real time to enable reliable and economically viable energy delivery, the advent of Internet of Energy(IoE) as well as the rising of Internet of Things(IoT) based smart systems.The evolution of IT to Io T has shown that an information network can be connected in an autonomous way via routers from operating system(OS) based computers and devices to build a highly intelligent eco-system. Conceptually, we are applying the same methodology to the Io E concept so that Energy Operating System(EOS) based assets and devices can be developed into a distributed energy network via energy gateway and self-organized into a smart energy eco-system.This paper introduces a laboratory based IIo T driven software and controls platform developed on the NICE Nano-grid as part of a NICE smart system Initiative for Shenhua group. The goal of this effort is to develop an open architecture based Industrial Smart Energy Consortium(ISEC) to attract industrial partners, academic universities, module supplies, equipment vendors and related stakeholder to explore and contribute into a test-bed centric open laboratory template and platform for next generation energy-oriented smart industry applications.In the meanwhile, ISEC will play an important role to drive interoperability standards for the mining industry so that the era of un-manned underground mining operation can become the reality as well as increasing safety regulation enforcement.展开更多
Pig farming is becoming a key industry of China’s rural economy in recent years. The current pig farming is still relatively manual, lack of latest Information and Communication Technology (ICT) and scientific manage...Pig farming is becoming a key industry of China’s rural economy in recent years. The current pig farming is still relatively manual, lack of latest Information and Communication Technology (ICT) and scientific management methods. This paper proposes an industrial internet platform for massive pig farming, namely, IIP4MPF, which aims to leverage intelligent pig breeding, production rate and labor productivity with the use of artificial intelligence, the Internet of Things, and big data intelligence. We conducted requirement analysis for IIP4MPF using software engineering methods, designed the IIP4MPF system for an integrated solution to digital, interconnected, intelligent pig farming. The practice demonstrates that the IIP4MPF platform significantly improves pig farming industry in pig breeding and productivity.展开更多
With the rapid development of the industrial Internet,the network security environment has become increasingly complex and variable.Intrusion detection,a core technology for ensuring the security of industrial control...With the rapid development of the industrial Internet,the network security environment has become increasingly complex and variable.Intrusion detection,a core technology for ensuring the security of industrial control systems,faces the challenge of unbalanced data samples,particularly the low detection rates for minority class attack samples.Therefore,this paper proposes a data enhancement method for intrusion detection in the industrial Internet based on a Self-Attention Wasserstein Generative Adversarial Network(SA-WGAN)to address the low detection rates of minority class attack samples in unbalanced intrusion detection scenarios.The proposed method integrates a selfattention mechanism with a Wasserstein Generative Adversarial Network(WGAN).The self-attention mechanism automatically learns important features from the input data and assigns different weights to emphasize the key features related to intrusion behaviors,providing strong guidance for subsequent data generation.The WGAN generates new data samples through adversarial training to expand the original dataset.In the SA-WGAN framework,the WGAN directs the data generation process based on the key features extracted by the self-attention mechanism,ensuring that the generated samples exhibit both diversity and similarity to real data.Experimental results demonstrate that the SA-WGAN-based data enhancement method significantly improves detection performance for attack samples from minority classes,addresses issues of insufficient data and category imbalance,and enhances the generalization ability and overall performance of the intrusion detection model.展开更多
Under the current background of an information society,the digital transformation of enterprises has become a necessary means to enhance the competitiveness of enterprises.This article is based on the industrial Inter...Under the current background of an information society,the digital transformation of enterprises has become a necessary means to enhance the competitiveness of enterprises.This article is based on the industrial Internet platform,the digital planning and architecture of enterprises research.First,we analyze the current challenges of digital transformation and the development opportunities brought by the industrial Internet.Then,we propose a digital planning method based on the industrial Internet platform,which takes the full connectivity of people,machine and things and intelligent decision making as the core,takes data collection,processing,analysis and application as the main line,and finally forms the top-level design of the digital transformation of enterprises.At the same time,we also built an industrial Internet platform architecture model,including the previous end perception layer,network transmission layer,platform service layer,and application innovation layer for four levels,to support enterprises in innovative applications and decision support under the industrial Internet environment.Research shows that this kind of enterprise digital planning and architecture based on an industrial Internet platform can effectively promote enterprises to achieve business model innovation,system innovation,and strengthen the flexibility and agility of enterprises to respond to market changes.The results of this research not only have important theoretical and practical significance for guiding enterprises to carry out digital planning and build an industrial Internet platform,but also provide useful reference for relevant policy formulation.展开更多
With the introduction of 5G,users and devices can access the industrial network from anywhere in the world.Therefore,traditional perimeter-based security technologies for industrial networks can no longer work well.To...With the introduction of 5G,users and devices can access the industrial network from anywhere in the world.Therefore,traditional perimeter-based security technologies for industrial networks can no longer work well.To solve this problem,a new security model called Zero Trust(ZT)is desired,which believes in“never trust and always verify”.Every time the asset in the industrial network is accessed,the subject is authenticated and its trustworthiness is assessed.In this way,the asset in industrial network can be well protected,whether the subject is in the internal network or the external network.However,in order to construct the zero trust model in the 5G Industrial Internet collaboration system,there are still many problems to be solved.In this paper,we first introduce the security issues in the 5G Industrial Internet collaboration system,and illustrate the zero trust architecture.Then,we analyze the gap between existing security techniques and the zero trust architecture.Finally,we discuss several potential security techniques that can be used to implement the zero trust model.The purpose of this paper is to point out the further direction for the realization of the Zero Trust Architecture(ZTA)in the 5G Industrial Internet collaboration system.展开更多
In many IIoT architectures,various devices connect to the edge cloud via gateway systems.For data processing,numerous data are delivered to the edge cloud.Delivering data to an appropriate edge cloud is critical to im...In many IIoT architectures,various devices connect to the edge cloud via gateway systems.For data processing,numerous data are delivered to the edge cloud.Delivering data to an appropriate edge cloud is critical to improve IIoT service efficiency.There are two types of costs for this kind of IoT network:a communication cost and a computing cost.For service efficiency,the communication cost of data transmission should be minimized,and the computing cost in the edge cloud should be also minimized.Therefore,in this paper,the communication cost for data transmission is defined as the delay factor,and the computing cost in the edge cloud is defined as the waiting time of the computing intensity.The proposed method selects an edge cloud that minimizes the total cost of the communication and computing costs.That is,a device chooses a routing path to the selected edge cloud based on the costs.The proposed method controls the data flows in a mesh-structured network and appropriately distributes the data processing load.The performance of the proposed method is validated through extensive computer simulation.When the transition probability from good to bad is 0.3 and the transition probability from bad to good is 0.7 in wireless and edge cloud states,the proposed method reduced both the average delay and the service pause counts to about 25%of the existing method.展开更多
The industrial Internet of Things(IoT)is a trend of factory development and a basic condition of intelligent factory.It is very important to ensure the security of data transmission in industrial IoT.Applying a new ch...The industrial Internet of Things(IoT)is a trend of factory development and a basic condition of intelligent factory.It is very important to ensure the security of data transmission in industrial IoT.Applying a new chaotic secure communication scheme to address the security problem of data transmission is the main contribution of this paper.The scheme is proposed and studied based on the synchronization of different-structure fractional-order chaotic systems with different order.The Lyapunov stability theory is used to prove the synchronization between the fractional-order drive system and the response system.The encryption and decryption process of the main data signals is implemented by using the n-shift encryption principle.We calculate and analyze the key space of the scheme.Numerical simulations are introduced to show the effectiveness of theoretical approach we proposed.展开更多
The Industrial Internet is a promising technology combining industrial systems with Internet connectivity to significantly improve the product efficiency and reduce production cost by cooperating with intelligent devi...The Industrial Internet is a promising technology combining industrial systems with Internet connectivity to significantly improve the product efficiency and reduce production cost by cooperating with intelligent devices,in which the advanced computing,big data analysis and intelligent perception techniques have been involved.This paper comprehensively surveys the recent advances of the Industrial Internet,including reference architectures,key technologies,relative applications and future challenges.Reference architectures which have been proposed for different application scenarios and their corresponding characteristics are summarized.Key technologies,such as cloud computing,mobile edge computing,fog computing,which are classified according to different layers in the architecture,are presented to support a variety of applications in the Industrial Internet.Meanwhile,future challenges and research trends are discussed as well to promote further research of the Industrial Internet.展开更多
COVID-19 pandemic has accelerated the re-shaping of globalized manufacturing industry.Achieving a high level of resilience is thereby a recognized,essential ability of future manufacturing systems with the advances in...COVID-19 pandemic has accelerated the re-shaping of globalized manufacturing industry.Achieving a high level of resilience is thereby a recognized,essential ability of future manufacturing systems with the advances in smart manufacturing and Industry 4.0.In this work,a conceptual framework for resilient manufacturing strategy enabled by Industrial Internet is proposed.It is elaborated as a four-phase,closed-loop process that centered on proactive industry assessment.Key enabling technologies for the proposed framework are outlined in data acquisition and management,big data analysis,intelligent services,and others.Industrial Internet-enabled implementations in China in response to COVID-19 have then been reviewed and discussed from 3Rs’perspective,i.e.manufacturer capacity Recovery,supply chain Resilience and emergency Response.It is suggested that an industry-specific and comprehensive selection coordinated with the guiding policy and supporting regulations should be performed at the national,at least regional level.展开更多
The emergence of industry 4.0 stems from research that has received a great deal of attention in the last few decades.Consequently,there has been a huge paradigm shift in the manufacturing and production sectors.Howev...The emergence of industry 4.0 stems from research that has received a great deal of attention in the last few decades.Consequently,there has been a huge paradigm shift in the manufacturing and production sectors.However,this poses a challenge for cybersecurity and highlights the need to address the possible threats targeting(various pillars of)industry 4.0.However,before providing a concrete solution certain aspect need to be researched,for instance,cybersecurity threats and privacy issues in the industry.To fill this gap,this paper discusses potential solutions to cybersecurity targeting this industry and highlights the consequences of possible attacks and countermeasures(in detail).In particular,the focus of the paper is on investigating the possible cyber-attacks targeting 4 layers of IIoT that is one of the key pillars of Industry 4.0.Based on a detailed review of existing literature,in this study,we have identified possible cyber threats,their consequences,and countermeasures.Further,we have provided a comprehensive framework based on an analysis of cybersecurity and privacy challenges.The suggested framework provides for a deeper understanding of the current state of cybersecurity and sets out directions for future research and applications.展开更多
In order to solve the problems of poor informationflow,low energy utilization rate and energy consumption data reuse in the heavy equipment industrial park,the Internet of Things(IoT)technology is applied to construct...In order to solve the problems of poor informationflow,low energy utilization rate and energy consumption data reuse in the heavy equipment industrial park,the Internet of Things(IoT)technology is applied to construct the intelligent energy management and control system(IEMCS).The application architecture and function module planning are analyzed and designed.Furthermore,the IEMCS scheme is not unique due to the fuzziness of customer demand and the understanding deviation of designer to customer demand in the design stage.Scheme assessment is of great significance for the normal subsequent implementation of the system.A fuzzy assessment method for IEMCS scheme alternatives is proposed to achieve scheme selection.Fuzzy group decision using triangular fuzzy number to express the vague assessment of experts is adopted to determine the index value.TOPSIS is modified by replacing Euclidean distance with contact vector distance in IEMCS scheme alternative assessment.An experiment with eight IEMCS scheme alternatives in a heavy equipment industrial park is given for the validation.The experiment result shows that eight IEMCS scheme alternatives can be assessed.Through the comparisons with other methods,the reliability of the results obtained by the proposed method is discussed.展开更多
The industrial Internet of Things (IIoT) is an important engine for manufacturingenterprises to provide intelligent products and services. With the development of IIoT, moreand more attention has been paid to the appl...The industrial Internet of Things (IIoT) is an important engine for manufacturingenterprises to provide intelligent products and services. With the development of IIoT, moreand more attention has been paid to the application of ultra-reliable and low latency communications(URLLC) in the 5G system. The data analysis model represented by digital twins isthe core of IIoT development in the manufacturing industry. In this paper, the efforts of3GPP are introduced for the development of URLLC in reducing delay and enhancing reliability,as well as the research on little jitter and high transmission efficiency. The enhancedkey technologies required in the IIoT are also analyzed. Finally, digital twins are analyzedaccording to the actual IIoT situation.展开更多
The concept of Internet of Everything is like a revolutionary storm,bringing the whole society closer together.Internet of Things(IoT)has played a vital role in the process.With the rise of the concept of Industry 4.0...The concept of Internet of Everything is like a revolutionary storm,bringing the whole society closer together.Internet of Things(IoT)has played a vital role in the process.With the rise of the concept of Industry 4.0,intelligent transformation is taking place in the industrial field.As a new concept,an industrial IoT system has also attracted the attention of industry and academia.In an actual industrial scenario,a large number of devices will generate numerous industrial datasets.The computing efficiency of an industrial IoT system is greatly improved with the help of using either cloud computing or edge computing.However,privacy issues may seriously harmed interests of users.In this article,we summarize privacy issues in a cloud-or an edge-based industrial IoT system.The privacy analysis includes data privacy,location privacy,query and identity privacy.In addition,we also review privacy solutions when applying software defined network and blockchain under the above two systems.Next,we analyze the computational complexity and privacy protection performance of these solutions.Finally,we discuss open issues to facilitate further studies.展开更多
The evolution of the Internet of Things(IoT)has empowered modern industries with the capability to implement large-scale IoT ecosystems,such as the Industrial Internet of Things(IIoT).The IIoT is vulnerable to a diver...The evolution of the Internet of Things(IoT)has empowered modern industries with the capability to implement large-scale IoT ecosystems,such as the Industrial Internet of Things(IIoT).The IIoT is vulnerable to a diverse range of cyberattacks that can be exploited by intruders and cause substantial reputational andfinancial harm to organizations.To preserve the confidentiality,integrity,and availability of IIoT networks,an anomaly-based intrusion detection system(IDS)can be used to provide secure,reliable,and efficient IIoT ecosystems.In this paper,we propose an anomaly-based IDS for IIoT networks as an effective security solution to efficiently and effectively overcome several IIoT cyberattacks.The proposed anomaly-based IDS is divided into three phases:pre-processing,feature selection,and classification.In the pre-processing phase,data cleaning and nor-malization are performed.In the feature selection phase,the candidates’feature vectors are computed using two feature reduction techniques,minimum redun-dancy maximum relevance and neighborhood components analysis.For thefinal step,the modeling phase,the following classifiers are used to perform the classi-fication:support vector machine,decision tree,k-nearest neighbors,and linear discriminant analysis.The proposed work uses a new data-driven IIoT data set called X-IIoTID.The experimental evaluation demonstrates our proposed model achieved a high accuracy rate of 99.58%,a sensitivity rate of 99.59%,a specificity rate of 99.58%,and a low false positive rate of 0.4%.展开更多
By identifying and responding to any malicious behavior that could endanger the system,the Intrusion Detection System(IDS)is crucial for preserving the security of the Industrial Internet of Things(IIoT)network.The be...By identifying and responding to any malicious behavior that could endanger the system,the Intrusion Detection System(IDS)is crucial for preserving the security of the Industrial Internet of Things(IIoT)network.The benefit of anomaly-based IDS is that they are able to recognize zeroday attacks due to the fact that they do not rely on a signature database to identify abnormal activity.In order to improve control over datasets and the process,this study proposes using an automated machine learning(AutoML)technique to automate the machine learning processes for IDS.Our groundbreaking architecture,known as AID4I,makes use of automatic machine learning methods for intrusion detection.Through automation of preprocessing,feature selection,model selection,and hyperparameter tuning,the objective is to identify an appropriate machine learning model for intrusion detection.Experimental studies demonstrate that the AID4I framework successfully proposes a suitablemodel.The integrity,security,and confidentiality of data transmitted across the IIoT network can be ensured by automating machine learning processes in the IDS to enhance its capacity to identify and stop threatening activities.With a comprehensive solution that takes advantage of the latest advances in automated machine learning methods to improve network security,AID4I is a powerful and effective instrument for intrusion detection.In preprocessing module,three distinct imputation methods are utilized to handle missing data,ensuring the robustness of the intrusion detection system in the presence of incomplete information.Feature selection module adopts a hybrid approach that combines Shapley values and genetic algorithm.The Parameter Optimization module encompasses a diverse set of 14 classification methods,allowing for thorough exploration and optimization of the parameters associated with each algorithm.By carefully tuning these parameters,the framework enhances its adaptability and accuracy in identifying potential intrusions.Experimental results demonstrate that the AID4I framework can achieve high levels of accuracy in detecting network intrusions up to 14.39%on public datasets,outperforming traditional intrusion detection methods while concurrently reducing the elapsed time for training and testing.展开更多
The Industrial Internet of Things(IIoT)has been growing for presentations in industry in recent years.Security for the IIoT has unavoidably become a problem in terms of creating safe applications.Due to continual need...The Industrial Internet of Things(IIoT)has been growing for presentations in industry in recent years.Security for the IIoT has unavoidably become a problem in terms of creating safe applications.Due to continual needs for new functionality,such as foresight,the number of linked devices in the industrial environment increases.Certification of fewer signatories gives strong authentication solutions and prevents trustworthy third parties from being publicly certified among available encryption instruments.Hence this blockchain-based endpoint protection platform(BCEPP)has been proposed to validate the network policies and reduce overall latency in isolation or hold endpoints.A resolver supports the encoded model as an input;network functions can be optimized as an output in an infrastructure network.The configuration of the virtual network functions(VNFs)involved fulfills network characteristics.The output ensures that the final service is supplied at the least cost,including processing time and network latency.According to the findings of this comparison,our design is better suited to simplified trust management in IIoT devices.Thus,the experimental results show the adaptability and resilience of our suggested confidence model against behavioral changes in hostile settings in IIoT networks.The experimental results show that our proposed method,BCEPP,has the following,when compared to other methods:high computational cost of 95.3%,low latency ratio of 28.5%,increased data transmitting rate up to 94.1%,enhanced security rate of 98.6%,packet reception ratio of 96.1%,user satisfaction index of 94.5%,and probability ratio of 33.8%.展开更多
With the continuous expansion of the Industrial Internet of Things(IIoT),more andmore organisations are placing large amounts of data in the cloud to reduce overheads.However,the channel between cloud servers and smar...With the continuous expansion of the Industrial Internet of Things(IIoT),more andmore organisations are placing large amounts of data in the cloud to reduce overheads.However,the channel between cloud servers and smart equipment is not trustworthy,so the issue of data authenticity needs to be addressed.The SM2 digital signature algorithm can provide an authentication mechanism for data to solve such problems.Unfortunately,it still suffers from the problem of key exposure.In order to address this concern,this study first introduces a key-insulated scheme,SM2-KI-SIGN,based on the SM2 algorithm.This scheme boasts strong key insulation and secure keyupdates.Our scheme uses the elliptic curve algorithm,which is not only more efficient but also more suitable for IIoT-cloud environments.Finally,the security proof of SM2-KI-SIGN is given under the Elliptic Curve Discrete Logarithm(ECDL)assumption in the random oracle.展开更多
Several excellent works have been done on the industrial Internet;however,some problems are still ahead,such as reliable security,heterogeneous compatibility,and system efficiency.Information-Centric Networking(ICN),a...Several excellent works have been done on the industrial Internet;however,some problems are still ahead,such as reliable security,heterogeneous compatibility,and system efficiency.Information-Centric Networking(ICN),an emerging paradigm for the future Internet,is expected to address the challenges of the industrial Internet to some extent.An integrated architecture for industrial network and identity resolution in the industrial Internet is proposed in this paper.A framework is also designed for the ICN-based industrial Network And Named Data Networking(NDN)based factory extranet with Software-Defined Networking(SDN).Moreover,an identity resolution architecture in the industrial Internet is proposed based on ICN paradigms with separate resolution nodes or with merging resolution and routing.展开更多
Rapid increase in the large quantity of industrial data,Industry 4.0/5.0 poses several challenging issues such as heterogeneous data generation,data sensing and collection,real-time data processing,and high request ar...Rapid increase in the large quantity of industrial data,Industry 4.0/5.0 poses several challenging issues such as heterogeneous data generation,data sensing and collection,real-time data processing,and high request arrival rates.The classical intrusion detection system(IDS)is not a practical solution to the Industry 4.0 environment owing to the resource limitations and complexity.To resolve these issues,this paper designs a new Chaotic Cuckoo Search Optimiza-tion Algorithm(CCSOA)with optimal wavelet kernel extreme learning machine(OWKELM)named CCSOA-OWKELM technique for IDS on the Industry 4.0 platform.The CCSOA-OWKELM technique focuses on the design of feature selection with classification approach to achieve minimum computation complex-ity and maximum detection accuracy.The CCSOA-OWKELM technique involves the design of CCSOA based feature selection technique,which incorpo-rates the concepts of chaotic maps with CSOA.Besides,the OWKELM technique is applied for the intrusion detection and classification process.In addition,the OWKELM technique is derived by the hyperparameter tuning of the WKELM technique by the use of sunflower optimization(SFO)algorithm.The utilization of CCSOA for feature subset selection and SFO algorithm based hyperparameter tuning leads to better performance.In order to guarantee the supreme performance of the CCSOA-OWKELM technique,a wide range of experiments take place on two benchmark datasets and the experimental outcomes demonstrate the promis-ing performance of the CCSOA-OWKELM technique over the recent state of art techniques.展开更多
Localisation of machines in harsh Industrial Internet of Things(IIoT)environment is necessary for various applications.Therefore,a novel localisation algorithm is proposed for noisy range measurements in IIoT networks...Localisation of machines in harsh Industrial Internet of Things(IIoT)environment is necessary for various applications.Therefore,a novel localisation algorithm is proposed for noisy range measurements in IIoT networks.The position of an unknown machine device in the network is estimated using the relative distances between blind machines(BMs)and anchor machines(AMs).Moreover,a more practical and challenging scenario with the erroneous position of AM is considered,which brings additional uncertainty to the final position estimation.Therefore,the AMs selection algorithm for the localisation of BMs in the IIoT network is introduced.Only those AMs will participate in the localisation process,which increases the accuracy of the final location estimate.Then,the closed‐form expression of the proposed greedy successive anchorization process is derived,which prevents possible local convergence,reduces computation,and achieves Cramér‐Rao lower bound accuracy for white Gaussian measurement noise.The results are compared with the state‐of‐the‐art and verified through numerous simulations.展开更多
基金supported by National Key Research and Development Program(2016YFE0102600)National Natural Science Foundation of China(51577096,51477082)
文摘The increasing penetration of renewable energy on the transmission and distribution power network is driving the adoption of two-way power flow control, data and communications needed to meet the dependency of balancing generation and load. Thus, creating an environment where power and information flow seamlessly in real time to enable reliable and economically viable energy delivery, the advent of Internet of Energy(IoE) as well as the rising of Internet of Things(IoT) based smart systems.The evolution of IT to Io T has shown that an information network can be connected in an autonomous way via routers from operating system(OS) based computers and devices to build a highly intelligent eco-system. Conceptually, we are applying the same methodology to the Io E concept so that Energy Operating System(EOS) based assets and devices can be developed into a distributed energy network via energy gateway and self-organized into a smart energy eco-system.This paper introduces a laboratory based IIo T driven software and controls platform developed on the NICE Nano-grid as part of a NICE smart system Initiative for Shenhua group. The goal of this effort is to develop an open architecture based Industrial Smart Energy Consortium(ISEC) to attract industrial partners, academic universities, module supplies, equipment vendors and related stakeholder to explore and contribute into a test-bed centric open laboratory template and platform for next generation energy-oriented smart industry applications.In the meanwhile, ISEC will play an important role to drive interoperability standards for the mining industry so that the era of un-manned underground mining operation can become the reality as well as increasing safety regulation enforcement.
文摘Pig farming is becoming a key industry of China’s rural economy in recent years. The current pig farming is still relatively manual, lack of latest Information and Communication Technology (ICT) and scientific management methods. This paper proposes an industrial internet platform for massive pig farming, namely, IIP4MPF, which aims to leverage intelligent pig breeding, production rate and labor productivity with the use of artificial intelligence, the Internet of Things, and big data intelligence. We conducted requirement analysis for IIP4MPF using software engineering methods, designed the IIP4MPF system for an integrated solution to digital, interconnected, intelligent pig farming. The practice demonstrates that the IIP4MPF platform significantly improves pig farming industry in pig breeding and productivity.
基金supported by the National Natural Science Foundation of China(62473341)Key Technologies R&D Program of Henan Province(242102211071,252102211086,252102210166).
文摘With the rapid development of the industrial Internet,the network security environment has become increasingly complex and variable.Intrusion detection,a core technology for ensuring the security of industrial control systems,faces the challenge of unbalanced data samples,particularly the low detection rates for minority class attack samples.Therefore,this paper proposes a data enhancement method for intrusion detection in the industrial Internet based on a Self-Attention Wasserstein Generative Adversarial Network(SA-WGAN)to address the low detection rates of minority class attack samples in unbalanced intrusion detection scenarios.The proposed method integrates a selfattention mechanism with a Wasserstein Generative Adversarial Network(WGAN).The self-attention mechanism automatically learns important features from the input data and assigns different weights to emphasize the key features related to intrusion behaviors,providing strong guidance for subsequent data generation.The WGAN generates new data samples through adversarial training to expand the original dataset.In the SA-WGAN framework,the WGAN directs the data generation process based on the key features extracted by the self-attention mechanism,ensuring that the generated samples exhibit both diversity and similarity to real data.Experimental results demonstrate that the SA-WGAN-based data enhancement method significantly improves detection performance for attack samples from minority classes,addresses issues of insufficient data and category imbalance,and enhances the generalization ability and overall performance of the intrusion detection model.
文摘Under the current background of an information society,the digital transformation of enterprises has become a necessary means to enhance the competitiveness of enterprises.This article is based on the industrial Internet platform,the digital planning and architecture of enterprises research.First,we analyze the current challenges of digital transformation and the development opportunities brought by the industrial Internet.Then,we propose a digital planning method based on the industrial Internet platform,which takes the full connectivity of people,machine and things and intelligent decision making as the core,takes data collection,processing,analysis and application as the main line,and finally forms the top-level design of the digital transformation of enterprises.At the same time,we also built an industrial Internet platform architecture model,including the previous end perception layer,network transmission layer,platform service layer,and application innovation layer for four levels,to support enterprises in innovative applications and decision support under the industrial Internet environment.Research shows that this kind of enterprise digital planning and architecture based on an industrial Internet platform can effectively promote enterprises to achieve business model innovation,system innovation,and strengthen the flexibility and agility of enterprises to respond to market changes.The results of this research not only have important theoretical and practical significance for guiding enterprises to carry out digital planning and build an industrial Internet platform,but also provide useful reference for relevant policy formulation.
基金supported by the National Natural Science Foundation of China(U22B2026)the ZTE Industry-Academia-Research Project(HC-CN-20221029003,IA20230628015)。
文摘With the introduction of 5G,users and devices can access the industrial network from anywhere in the world.Therefore,traditional perimeter-based security technologies for industrial networks can no longer work well.To solve this problem,a new security model called Zero Trust(ZT)is desired,which believes in“never trust and always verify”.Every time the asset in the industrial network is accessed,the subject is authenticated and its trustworthiness is assessed.In this way,the asset in industrial network can be well protected,whether the subject is in the internal network or the external network.However,in order to construct the zero trust model in the 5G Industrial Internet collaboration system,there are still many problems to be solved.In this paper,we first introduce the security issues in the 5G Industrial Internet collaboration system,and illustrate the zero trust architecture.Then,we analyze the gap between existing security techniques and the zero trust architecture.Finally,we discuss several potential security techniques that can be used to implement the zero trust model.The purpose of this paper is to point out the further direction for the realization of the Zero Trust Architecture(ZTA)in the 5G Industrial Internet collaboration system.
基金supported by the National Research Foundation of Korea (NRF) grant funded by the Korea Government (MSIT) (No.2021R1C1C1013133)supported by the Institute of Information and Communications Technology Planning and Evaluation (IITP)grant funded by the Korea Government (MSIT) (RS-2022-00167197,Development of Intelligent 5G/6G Infrastructure Technology for The Smart City)supported by the Soonchunhyang University Research Fund.
文摘In many IIoT architectures,various devices connect to the edge cloud via gateway systems.For data processing,numerous data are delivered to the edge cloud.Delivering data to an appropriate edge cloud is critical to improve IIoT service efficiency.There are two types of costs for this kind of IoT network:a communication cost and a computing cost.For service efficiency,the communication cost of data transmission should be minimized,and the computing cost in the edge cloud should be also minimized.Therefore,in this paper,the communication cost for data transmission is defined as the delay factor,and the computing cost in the edge cloud is defined as the waiting time of the computing intensity.The proposed method selects an edge cloud that minimizes the total cost of the communication and computing costs.That is,a device chooses a routing path to the selected edge cloud based on the costs.The proposed method controls the data flows in a mesh-structured network and appropriately distributes the data processing load.The performance of the proposed method is validated through extensive computer simulation.When the transition probability from good to bad is 0.3 and the transition probability from bad to good is 0.7 in wireless and edge cloud states,the proposed method reduced both the average delay and the service pause counts to about 25%of the existing method.
基金supported in part by the National Science Foundation Project of China (61931001, 61873026)the National Key R&D Program of China (2017YFC0820700)
文摘The industrial Internet of Things(IoT)is a trend of factory development and a basic condition of intelligent factory.It is very important to ensure the security of data transmission in industrial IoT.Applying a new chaotic secure communication scheme to address the security problem of data transmission is the main contribution of this paper.The scheme is proposed and studied based on the synchronization of different-structure fractional-order chaotic systems with different order.The Lyapunov stability theory is used to prove the synchronization between the fractional-order drive system and the response system.The encryption and decryption process of the main data signals is implemented by using the n-shift encryption principle.We calculate and analyze the key space of the scheme.Numerical simulations are introduced to show the effectiveness of theoretical approach we proposed.
基金the State Major Science and Technology Special Projects(Grant 2018ZX03001023-005)the National Natural Science Foundation of China under Grant No.61831002,61728101,and 61671074the Beijing Natural Science Foundation under Grant No.JQ18016.
文摘The Industrial Internet is a promising technology combining industrial systems with Internet connectivity to significantly improve the product efficiency and reduce production cost by cooperating with intelligent devices,in which the advanced computing,big data analysis and intelligent perception techniques have been involved.This paper comprehensively surveys the recent advances of the Industrial Internet,including reference architectures,key technologies,relative applications and future challenges.Reference architectures which have been proposed for different application scenarios and their corresponding characteristics are summarized.Key technologies,such as cloud computing,mobile edge computing,fog computing,which are classified according to different layers in the architecture,are presented to support a variety of applications in the Industrial Internet.Meanwhile,future challenges and research trends are discussed as well to promote further research of the Industrial Internet.
基金Supported by Natural Science Foundation of Zhejiang Province(Grant No.LY19E050019).
文摘COVID-19 pandemic has accelerated the re-shaping of globalized manufacturing industry.Achieving a high level of resilience is thereby a recognized,essential ability of future manufacturing systems with the advances in smart manufacturing and Industry 4.0.In this work,a conceptual framework for resilient manufacturing strategy enabled by Industrial Internet is proposed.It is elaborated as a four-phase,closed-loop process that centered on proactive industry assessment.Key enabling technologies for the proposed framework are outlined in data acquisition and management,big data analysis,intelligent services,and others.Industrial Internet-enabled implementations in China in response to COVID-19 have then been reviewed and discussed from 3Rs’perspective,i.e.manufacturer capacity Recovery,supply chain Resilience and emergency Response.It is suggested that an industry-specific and comprehensive selection coordinated with the guiding policy and supporting regulations should be performed at the national,at least regional level.
基金The author(s)acknowledge Jouf University,Saudi Arabia for his funding support.
文摘The emergence of industry 4.0 stems from research that has received a great deal of attention in the last few decades.Consequently,there has been a huge paradigm shift in the manufacturing and production sectors.However,this poses a challenge for cybersecurity and highlights the need to address the possible threats targeting(various pillars of)industry 4.0.However,before providing a concrete solution certain aspect need to be researched,for instance,cybersecurity threats and privacy issues in the industry.To fill this gap,this paper discusses potential solutions to cybersecurity targeting this industry and highlights the consequences of possible attacks and countermeasures(in detail).In particular,the focus of the paper is on investigating the possible cyber-attacks targeting 4 layers of IIoT that is one of the key pillars of Industry 4.0.Based on a detailed review of existing literature,in this study,we have identified possible cyber threats,their consequences,and countermeasures.Further,we have provided a comprehensive framework based on an analysis of cybersecurity and privacy challenges.The suggested framework provides for a deeper understanding of the current state of cybersecurity and sets out directions for future research and applications.
文摘In order to solve the problems of poor informationflow,low energy utilization rate and energy consumption data reuse in the heavy equipment industrial park,the Internet of Things(IoT)technology is applied to construct the intelligent energy management and control system(IEMCS).The application architecture and function module planning are analyzed and designed.Furthermore,the IEMCS scheme is not unique due to the fuzziness of customer demand and the understanding deviation of designer to customer demand in the design stage.Scheme assessment is of great significance for the normal subsequent implementation of the system.A fuzzy assessment method for IEMCS scheme alternatives is proposed to achieve scheme selection.Fuzzy group decision using triangular fuzzy number to express the vague assessment of experts is adopted to determine the index value.TOPSIS is modified by replacing Euclidean distance with contact vector distance in IEMCS scheme alternative assessment.An experiment with eight IEMCS scheme alternatives in a heavy equipment industrial park is given for the validation.The experiment result shows that eight IEMCS scheme alternatives can be assessed.Through the comparisons with other methods,the reliability of the results obtained by the proposed method is discussed.
文摘The industrial Internet of Things (IIoT) is an important engine for manufacturingenterprises to provide intelligent products and services. With the development of IIoT, moreand more attention has been paid to the application of ultra-reliable and low latency communications(URLLC) in the 5G system. The data analysis model represented by digital twins isthe core of IIoT development in the manufacturing industry. In this paper, the efforts of3GPP are introduced for the development of URLLC in reducing delay and enhancing reliability,as well as the research on little jitter and high transmission efficiency. The enhancedkey technologies required in the IIoT are also analyzed. Finally, digital twins are analyzedaccording to the actual IIoT situation.
基金the National Natural Science Foundation of China(Grant No.61871023 and 61931001)Beijing Natural Science Foundation(Grant No.4202054).
文摘The concept of Internet of Everything is like a revolutionary storm,bringing the whole society closer together.Internet of Things(IoT)has played a vital role in the process.With the rise of the concept of Industry 4.0,intelligent transformation is taking place in the industrial field.As a new concept,an industrial IoT system has also attracted the attention of industry and academia.In an actual industrial scenario,a large number of devices will generate numerous industrial datasets.The computing efficiency of an industrial IoT system is greatly improved with the help of using either cloud computing or edge computing.However,privacy issues may seriously harmed interests of users.In this article,we summarize privacy issues in a cloud-or an edge-based industrial IoT system.The privacy analysis includes data privacy,location privacy,query and identity privacy.In addition,we also review privacy solutions when applying software defined network and blockchain under the above two systems.Next,we analyze the computational complexity and privacy protection performance of these solutions.Finally,we discuss open issues to facilitate further studies.
文摘The evolution of the Internet of Things(IoT)has empowered modern industries with the capability to implement large-scale IoT ecosystems,such as the Industrial Internet of Things(IIoT).The IIoT is vulnerable to a diverse range of cyberattacks that can be exploited by intruders and cause substantial reputational andfinancial harm to organizations.To preserve the confidentiality,integrity,and availability of IIoT networks,an anomaly-based intrusion detection system(IDS)can be used to provide secure,reliable,and efficient IIoT ecosystems.In this paper,we propose an anomaly-based IDS for IIoT networks as an effective security solution to efficiently and effectively overcome several IIoT cyberattacks.The proposed anomaly-based IDS is divided into three phases:pre-processing,feature selection,and classification.In the pre-processing phase,data cleaning and nor-malization are performed.In the feature selection phase,the candidates’feature vectors are computed using two feature reduction techniques,minimum redun-dancy maximum relevance and neighborhood components analysis.For thefinal step,the modeling phase,the following classifiers are used to perform the classi-fication:support vector machine,decision tree,k-nearest neighbors,and linear discriminant analysis.The proposed work uses a new data-driven IIoT data set called X-IIoTID.The experimental evaluation demonstrates our proposed model achieved a high accuracy rate of 99.58%,a sensitivity rate of 99.59%,a specificity rate of 99.58%,and a low false positive rate of 0.4%.
文摘By identifying and responding to any malicious behavior that could endanger the system,the Intrusion Detection System(IDS)is crucial for preserving the security of the Industrial Internet of Things(IIoT)network.The benefit of anomaly-based IDS is that they are able to recognize zeroday attacks due to the fact that they do not rely on a signature database to identify abnormal activity.In order to improve control over datasets and the process,this study proposes using an automated machine learning(AutoML)technique to automate the machine learning processes for IDS.Our groundbreaking architecture,known as AID4I,makes use of automatic machine learning methods for intrusion detection.Through automation of preprocessing,feature selection,model selection,and hyperparameter tuning,the objective is to identify an appropriate machine learning model for intrusion detection.Experimental studies demonstrate that the AID4I framework successfully proposes a suitablemodel.The integrity,security,and confidentiality of data transmitted across the IIoT network can be ensured by automating machine learning processes in the IDS to enhance its capacity to identify and stop threatening activities.With a comprehensive solution that takes advantage of the latest advances in automated machine learning methods to improve network security,AID4I is a powerful and effective instrument for intrusion detection.In preprocessing module,three distinct imputation methods are utilized to handle missing data,ensuring the robustness of the intrusion detection system in the presence of incomplete information.Feature selection module adopts a hybrid approach that combines Shapley values and genetic algorithm.The Parameter Optimization module encompasses a diverse set of 14 classification methods,allowing for thorough exploration and optimization of the parameters associated with each algorithm.By carefully tuning these parameters,the framework enhances its adaptability and accuracy in identifying potential intrusions.Experimental results demonstrate that the AID4I framework can achieve high levels of accuracy in detecting network intrusions up to 14.39%on public datasets,outperforming traditional intrusion detection methods while concurrently reducing the elapsed time for training and testing.
基金The authors extend their appreciation to the Deputyship for Research&Innovation,Ministry of Education in Saudi Arabia for funding this research work through the Project Number IFPHI-218-611-2020.”。
文摘The Industrial Internet of Things(IIoT)has been growing for presentations in industry in recent years.Security for the IIoT has unavoidably become a problem in terms of creating safe applications.Due to continual needs for new functionality,such as foresight,the number of linked devices in the industrial environment increases.Certification of fewer signatories gives strong authentication solutions and prevents trustworthy third parties from being publicly certified among available encryption instruments.Hence this blockchain-based endpoint protection platform(BCEPP)has been proposed to validate the network policies and reduce overall latency in isolation or hold endpoints.A resolver supports the encoded model as an input;network functions can be optimized as an output in an infrastructure network.The configuration of the virtual network functions(VNFs)involved fulfills network characteristics.The output ensures that the final service is supplied at the least cost,including processing time and network latency.According to the findings of this comparison,our design is better suited to simplified trust management in IIoT devices.Thus,the experimental results show the adaptability and resilience of our suggested confidence model against behavioral changes in hostile settings in IIoT networks.The experimental results show that our proposed method,BCEPP,has the following,when compared to other methods:high computational cost of 95.3%,low latency ratio of 28.5%,increased data transmitting rate up to 94.1%,enhanced security rate of 98.6%,packet reception ratio of 96.1%,user satisfaction index of 94.5%,and probability ratio of 33.8%.
基金This work was supported in part by the National Natural Science Foundation of China(Nos.62072074,62076054,62027827,62002047)the Sichuan Science and Technology Innovation Platform and Talent Plan(Nos.2020JDJQ0020,2022JDJQ0039)+2 种基金the Sichuan Science and Technology Support Plan(Nos.2020YFSY0010,2022YFQ0045,2022YFS0220,2023YFG0148,2021YFG0131)the YIBIN Science and Technology Support Plan(No.2021CG003)the Medico-Engineering Cooperation Funds from University of Electronic Science and Technology of China(Nos.ZYGX2021YGLH212,ZYGX2022YGRH012).
文摘With the continuous expansion of the Industrial Internet of Things(IIoT),more andmore organisations are placing large amounts of data in the cloud to reduce overheads.However,the channel between cloud servers and smart equipment is not trustworthy,so the issue of data authenticity needs to be addressed.The SM2 digital signature algorithm can provide an authentication mechanism for data to solve such problems.Unfortunately,it still suffers from the problem of key exposure.In order to address this concern,this study first introduces a key-insulated scheme,SM2-KI-SIGN,based on the SM2 algorithm.This scheme boasts strong key insulation and secure keyupdates.Our scheme uses the elliptic curve algorithm,which is not only more efficient but also more suitable for IIoT-cloud environments.Finally,the security proof of SM2-KI-SIGN is given under the Elliptic Curve Discrete Logarithm(ECDL)assumption in the random oracle.
基金supported in part by National Key Research&Development Project(Grant No.2019YFB1804400)the MIIT of China 2019(Innovative Identification and Resolution System for Industrial Internet of Things).
文摘Several excellent works have been done on the industrial Internet;however,some problems are still ahead,such as reliable security,heterogeneous compatibility,and system efficiency.Information-Centric Networking(ICN),an emerging paradigm for the future Internet,is expected to address the challenges of the industrial Internet to some extent.An integrated architecture for industrial network and identity resolution in the industrial Internet is proposed in this paper.A framework is also designed for the ICN-based industrial Network And Named Data Networking(NDN)based factory extranet with Software-Defined Networking(SDN).Moreover,an identity resolution architecture in the industrial Internet is proposed based on ICN paradigms with separate resolution nodes or with merging resolution and routing.
基金The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work under grant number(RGP1/338/40)Princess Nourah bint Abdulrahman University Researchers Supporting Project number(PNURSP2022R237)Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.
文摘Rapid increase in the large quantity of industrial data,Industry 4.0/5.0 poses several challenging issues such as heterogeneous data generation,data sensing and collection,real-time data processing,and high request arrival rates.The classical intrusion detection system(IDS)is not a practical solution to the Industry 4.0 environment owing to the resource limitations and complexity.To resolve these issues,this paper designs a new Chaotic Cuckoo Search Optimiza-tion Algorithm(CCSOA)with optimal wavelet kernel extreme learning machine(OWKELM)named CCSOA-OWKELM technique for IDS on the Industry 4.0 platform.The CCSOA-OWKELM technique focuses on the design of feature selection with classification approach to achieve minimum computation complex-ity and maximum detection accuracy.The CCSOA-OWKELM technique involves the design of CCSOA based feature selection technique,which incorpo-rates the concepts of chaotic maps with CSOA.Besides,the OWKELM technique is applied for the intrusion detection and classification process.In addition,the OWKELM technique is derived by the hyperparameter tuning of the WKELM technique by the use of sunflower optimization(SFO)algorithm.The utilization of CCSOA for feature subset selection and SFO algorithm based hyperparameter tuning leads to better performance.In order to guarantee the supreme performance of the CCSOA-OWKELM technique,a wide range of experiments take place on two benchmark datasets and the experimental outcomes demonstrate the promis-ing performance of the CCSOA-OWKELM technique over the recent state of art techniques.
文摘Localisation of machines in harsh Industrial Internet of Things(IIoT)environment is necessary for various applications.Therefore,a novel localisation algorithm is proposed for noisy range measurements in IIoT networks.The position of an unknown machine device in the network is estimated using the relative distances between blind machines(BMs)and anchor machines(AMs).Moreover,a more practical and challenging scenario with the erroneous position of AM is considered,which brings additional uncertainty to the final position estimation.Therefore,the AMs selection algorithm for the localisation of BMs in the IIoT network is introduced.Only those AMs will participate in the localisation process,which increases the accuracy of the final location estimate.Then,the closed‐form expression of the proposed greedy successive anchorization process is derived,which prevents possible local convergence,reduces computation,and achieves Cramér‐Rao lower bound accuracy for white Gaussian measurement noise.The results are compared with the state‐of‐the‐art and verified through numerous simulations.