期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Effect of induction unloading on weakening of rock mechanics properties 被引量:9
1
作者 高峰 周科平 +1 位作者 罗先伟 翟建波 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第2期419-424,共6页
The effects of induction unloading such as drilling, blasting, lancing and water-infusion softening on weakening of rock mechanics properties were investigated. Three stress paths were chosen as test schemes correspon... The effects of induction unloading such as drilling, blasting, lancing and water-infusion softening on weakening of rock mechanics properties were investigated. Three stress paths were chosen as test schemes corresponding to the triaxial compressive test, pre-peak and post-peak unloading the confining pressure tests. The results show that compression deformation is the main cause of rock failure under loading condition. However, the strong dilatation leads to the rock failure along unloading direction. Rock failure happens even under little axial stress with confining pressure unloading. Poisson ratio increases with the decrease of confining pressure during the process of unloading. Elastic modulus increases slowly along with the decline of confining pressure, but decreases rapidly when unloaded to yielding strength. It shows that the weakening rate of rock intensity tends to be faster with easily failure under the unloading condition. 展开更多
关键词 induction caving UNLOADING deformation feature fracture mechanism
在线阅读 下载PDF
Mechanism on simulation and experiment of pre-crack seam formation in stope roof 被引量:1
2
作者 胡建华 雷涛 +2 位作者 周科平 刘浪 劳德正 《Journal of Central South University》 SCIE EI CAS 2014年第4期1526-1533,共8页
The pre-crack blast technology has been used to control the induction caving area in the roof. The key is to form the pre-crack seam and predict the effect of the seam. The H-J-C blast model was built in the roof. Bas... The pre-crack blast technology has been used to control the induction caving area in the roof. The key is to form the pre-crack seam and predict the effect of the seam. The H-J-C blast model was built in the roof. Based on the theories of dynamic strength and failure criterion of dynamic rock, the rock dynamic damage and the evolution of pre-crack seam were simulated by the tensile damage and shear failure of the model. According to the actual situation of No. 92 ore body test stope at Tongkeng Mine, the formation process of the pre-crack blast seam was simulated by Ansys/Ls-dyna software, the pre-crack seam was inspected by a system of digital panoramic borehole camera. The pre-crack seam was inspected by the system of digital panoramic borehole in the roof. The results of the numerical simulation and inspection show that in the line of centers of pre-hole, the minimum of the tensile stress reaches 20 MPa, which is much larger than 13.7 MPa of the dynamic tensile strength of rock. The minimum particle vibration velocity reaches 50 cm/s, which is greater than 30-40 cm/s of the allowable vibration velocity. It is demonstrated that the rock is destroyed near the center line and the pre-crack is successfully formed by the large diameters and large distances pre-crack holes in the roof. 展开更多
关键词 induction caving dynamic damage model pre-crack seam numerical simulation digital borehole camera
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部