Terrestrial laser scanning(TLS)accurately captures tree structural information and provides prerequisites for treescale estimations of forest biophysical attributes.Quantifying tree-scale attributes from TLS point clo...Terrestrial laser scanning(TLS)accurately captures tree structural information and provides prerequisites for treescale estimations of forest biophysical attributes.Quantifying tree-scale attributes from TLS point clouds requires segmentation,yet the occlusion effects severely affect the accuracy of automated individual tree segmentation.In this study,we proposed a novel method using ellipsoid directional searching and point compensation algorithms to alleviate occlusion effects.Firstly,region growing and point compensation algorithms are used to determine the location of tree roots.Secondly,the neighbor points are extracted within an ellipsoid neighborhood to mitigate occlusion effects compared with k-nearest neighbor(KNN).Thirdly,neighbor points are uniformly subsampled by the directional searching algorithm based on the Fibonacci principle in multiple spatial directions to reduce memory consumption.Finally,a graph describing connectivity between a point and its neighbors is constructed,and it is utilized to complete individual tree segmentation based on the shortest path algorithm.The proposed method was evaluated on a public TLS dataset comprising six forest plots with three complexity categories in Evo,Finland,and it reached the highest mean accuracy of 77.5%,higher than previous studies on tree detection.We also extracted and validated the tree structure attributes using manual segmentation reference values.The RMSE,RMSE%,bias,and bias%of tree height,crown base height,crown projection area,crown surface area,and crown volume were used to evaluate the segmentation accuracy,respectively.Overall,the proposed method avoids many inherent limitations of current methods and can accurately map canopy structures in occluded complex forest stands.展开更多
Digital aerial photograph(DAP)data is processed based on Structure from Motion(Sf M)algorithm and regional net adjustment method to generate digital surface discrete point clouds similar to Light Detection and Ranging...Digital aerial photograph(DAP)data is processed based on Structure from Motion(Sf M)algorithm and regional net adjustment method to generate digital surface discrete point clouds similar to Light Detection and Ranging(LiDAR)and digital orthophoto mosaic(DOM)similar to optical remote sensing image.In this study,we obtained highresolution images of mature forests of Chinese fir by unmanned aerial vehicle(UAV)flying through crossroute flight,and then reconstructed the threedimensional point clouds in the UAV aerial area by SfM technique.The point cloud segmentation(PCS)algorithm was used for the individual tree segmentation,and the F-score of the three sample plots were 0.91,0.94,and 0.94,respectively.Individual tree biomass modeling was conducted using 155 mature Chinese fir forests which were correctly segmented.The relative root mean squared error(rRMSE)values of random forest(RF),bagged tree(BT)and support vector regression(SVR)were 34.48%,35.74%and 40.93%,respectively.Our study demonstrated that DAP point clouds had great potential to extract forest vertical parameters and could be applied successfully in individual tree segmentation and individual tree biomass modeling.展开更多
基金supported by the National Natural Science Foundation of China(Nos.32171789,32211530031,12411530088)the National Key Research and Development Program of China(No.2023YFF1303901)+2 种基金the Joint Open Funded Project of State Key Laboratory of Geo-Information Engineering and Key Laboratory of the Ministry of Natural Resources for Surveying and Mapping Science and Geo-spatial Information Technology(2022-02-02)Background Resources Survey in Shennongjia National Park(SNJNP2022001)the Open Project Fund of Hubei Provincial Key Laboratory for Conservation Biology of Shennongjia Snub-nosed Monkeys(SNJGKL2022001).
文摘Terrestrial laser scanning(TLS)accurately captures tree structural information and provides prerequisites for treescale estimations of forest biophysical attributes.Quantifying tree-scale attributes from TLS point clouds requires segmentation,yet the occlusion effects severely affect the accuracy of automated individual tree segmentation.In this study,we proposed a novel method using ellipsoid directional searching and point compensation algorithms to alleviate occlusion effects.Firstly,region growing and point compensation algorithms are used to determine the location of tree roots.Secondly,the neighbor points are extracted within an ellipsoid neighborhood to mitigate occlusion effects compared with k-nearest neighbor(KNN).Thirdly,neighbor points are uniformly subsampled by the directional searching algorithm based on the Fibonacci principle in multiple spatial directions to reduce memory consumption.Finally,a graph describing connectivity between a point and its neighbors is constructed,and it is utilized to complete individual tree segmentation based on the shortest path algorithm.The proposed method was evaluated on a public TLS dataset comprising six forest plots with three complexity categories in Evo,Finland,and it reached the highest mean accuracy of 77.5%,higher than previous studies on tree detection.We also extracted and validated the tree structure attributes using manual segmentation reference values.The RMSE,RMSE%,bias,and bias%of tree height,crown base height,crown projection area,crown surface area,and crown volume were used to evaluate the segmentation accuracy,respectively.Overall,the proposed method avoids many inherent limitations of current methods and can accurately map canopy structures in occluded complex forest stands.
基金grants from the National Natural Science Foundation of China(No.31870620)the Fundamental Research Funds for the Central Universities(No.PTYX202107)the National Technology Extension Fund of Forestry([2019]06)。
文摘Digital aerial photograph(DAP)data is processed based on Structure from Motion(Sf M)algorithm and regional net adjustment method to generate digital surface discrete point clouds similar to Light Detection and Ranging(LiDAR)and digital orthophoto mosaic(DOM)similar to optical remote sensing image.In this study,we obtained highresolution images of mature forests of Chinese fir by unmanned aerial vehicle(UAV)flying through crossroute flight,and then reconstructed the threedimensional point clouds in the UAV aerial area by SfM technique.The point cloud segmentation(PCS)algorithm was used for the individual tree segmentation,and the F-score of the three sample plots were 0.91,0.94,and 0.94,respectively.Individual tree biomass modeling was conducted using 155 mature Chinese fir forests which were correctly segmented.The relative root mean squared error(rRMSE)values of random forest(RF),bagged tree(BT)and support vector regression(SVR)were 34.48%,35.74%and 40.93%,respectively.Our study demonstrated that DAP point clouds had great potential to extract forest vertical parameters and could be applied successfully in individual tree segmentation and individual tree biomass modeling.