Understanding the diffusion mechanisms of indium(In)in ZnS minerals can clarify the kinetic processes governing its migration,enrichment,or depletion in these typical In-host minerals,thereby establishing a theoretica...Understanding the diffusion mechanisms of indium(In)in ZnS minerals can clarify the kinetic processes governing its migration,enrichment,or depletion in these typical In-host minerals,thereby establishing a theoretical foundation for the exploration of high-grade In deposits.This study investigates sphalerite and wurtzite to identify stable In incorporation sites and diffusion pathways,and systematically calculates In transport properties in two types of ZnS minerals using first-principles calculations combined with the climbing image-nudged elastic band(CI-NEB)method.The results demonstrate that structural anisotropy significantly governs In diffusion characteristics,with wurtzite exhibiting stronger directiondependent diffusion behavior and superior In retention capacity compared to sphalerite.Across the 0−10 GPa pressure range,In diffusion in wurtzite shows markedly higher anisotropy(2−3 orders of magnitude greater than in sphalerite)and consistently lower diffusion rates.Furthermore,closure temperature calculations reveal spatial heterogeneity,with the[111]direction in sphalerite(about 65 K higher than[110]direction)and the[001]direction in wurtzite(about 100 K higher than[100]direction)displaying elevated closure thresholds.Overall,wurtzite achieves higher closure temperatures than sphalerite.These computational findings indicate that wurtzite exhibits stronger In retention capabilities than sphalerite,suggesting its potential as a critical host mineral for In.These insights provide valuable implications for understanding In geochemical cycling and offer some guidance for mineral exploration and ore genesis studies.展开更多
High-purity indium finds extensive application in the aerospace,electronics,medical,energy,and national defense sectors.Its purity and impurity contents significantly influence its performance in these applications.Hi...High-purity indium finds extensive application in the aerospace,electronics,medical,energy,and national defense sectors.Its purity and impurity contents significantly influence its performance in these applications.High-purity indium was prepared by combining zone refining with vacuum distillation.Results show that the average removal efficiency of impurity Sb can approach 95%,while the removal efficiency of impurities Sn and Bi can reach over 95%,and the removal efficiency of Si,Fe,Ni,and Pb can reach over 85%.Ultimately,the amount of Sn and Sb impurities is reduced to 2.0 and 4.1μg/kg,respectively,and that of most impurities,including Fe,Ni,Pb,and Bi,is reduced to levels below the instrumental detection limit.The average impurity removal efficiency is 90.9%,and the indium purity reaches 7N9.展开更多
On the surfaces of celestial bodies with no or thin atmospheres,such as the Moon and Mars,the solar wind irradiation process leads to the formation of hydrogen and helium enriched regions in the extraterrestrial soil ...On the surfaces of celestial bodies with no or thin atmospheres,such as the Moon and Mars,the solar wind irradiation process leads to the formation of hydrogen and helium enriched regions in the extraterrestrial soil particles.However,soil particles on the Earth with the similar composition lack such structures and properties.This discrepancy raises a key question whether there is a direct relationship between solar wind irradiation and the alterations in the structure and chemical performance of extraterrestrial materials.To address this question,this work investigates the effects of proton irradiation,simulating solar wind radiation,on the structure and photothermal catalytic properties of the classic catalyst In_(2)O_(3).It reveals that proton irradiation induces structural features in In_(2)O_(3) analogous to those characteristics of solar wind weathering observed in extraterrestrial materials.Furthermore,after proton beam irradiation with an energy of 30 keV and a dose of 3×10^(17) protons·cm^(-2),the methanol production yield of the In_(2)O_(3) catalyst increased to 2.6 times of its preirradiation level,and the methanol selectivity improved to 2.1 times of the original value.This work provides both theoretical and experimental support for the development of high-efficiency,radiation-resistant photothermal catalysts.展开更多
Tandem solar cells(TSCs)represent an attractive technology that can overcome the single-junction Shockdey-Queisser limit.Recently,a tandem structure combining wide-bandgap metal halide perovskite with complementary ba...Tandem solar cells(TSCs)represent an attractive technology that can overcome the single-junction Shockdey-Queisser limit.Recently,a tandem structure combining wide-bandgap metal halide perovskite with complementary bandgap copper indium gallium selenide(CIGS)photovoltaic technology has demonstrated a realistic pathway to achieve the industrialization goal of pushing power conversion efficiency(PCE)approaching 30% at low-cost.In this review,we first pinpoint the unique advantage of perovskite/CIGS tandems with respect to the other mainstream photovoltaic technologies and retrospect the research progress of perovskite/CIGS TSCs from both PCE and stability perspective in the last years.Next,we comprehensively discuss the major advancements in absorbers,functional layers of the individual sub-cell,and the interconnection layer between them in the recent decade.Finally,we outline several essential scientific and engineering challenges that are to be solved toward the development of efficient,long-term stable,and large-area perovskite/CIGS TSCs in the future.展开更多
The discovery of quantum dots(QDs)stands as one of the paramount technological breakthroughs of the 20th century.Their versatility spans from everyday applications to cutting-edge scientific research,encompassing area...The discovery of quantum dots(QDs)stands as one of the paramount technological breakthroughs of the 20th century.Their versatility spans from everyday applications to cutting-edge scientific research,encompassing areas such as displays,lighting,photocatalysis,bio-imaging,and photonics devices and so on.Among the myriad QDs technologies,industrially relevant CuInS_(2)(CIS)QDs have emerged as promising alternatives to traditional Cd-and Pb-based QDs.Their tunable optoelectronic properties,high absorption coefficient,compositional flexibility,remarkable stability as well as Restriction of Hazardous Substances-compliance,with recent trends revealing a renewed interest in this material for various visible and near-infrared technological applications.This review focuses on recent advancements in CIS QDs as multidisciplinary field from its genesis in the mid-1990 to date with an emphasis on key breakthroughs in their synthesis,surface chemistry,post-synthesis modifications,and various applications.First,the comparation of properties of CIS QDs with relevant knowledge from other classes of QDs and from Ⅰ-Ⅱ-Ⅲ semiconductors as well is summarized.Second,recent advances in the synthesis methods,structure-optoelectronic properties,their defects,and passivation strategies as well as CIS-based heterostructures are discussed.Third,the state-of-the-art applications of CIS QDs ranging from solar cells,luminescence solar concentrations,photocatalysis,light emitting diodes,bioimaging and some emerging applications are summarized.Finally,we discuss open challenges and future perspectives for further advancement in this field.展开更多
Infrared-transparent conductors have attracted considerable attention due to their potential applications in electromagnetic shielding,infrared sensors,and photovoltaic devices.However,most known materials face the cr...Infrared-transparent conductors have attracted considerable attention due to their potential applications in electromagnetic shielding,infrared sensors,and photovoltaic devices.However,most known materials face the critical challenge of balancing high infrared transmittance with high electrical conductivity across the broad infrared spectral band(2.5-25μm).While ultra-thin indium tin oxide(ITO)films have been demonstrated to exhibit superior infrared transmittance,their inherent low electrical conductivity necessitates additional enhancement strategies.This study systematically investigates the effects of oxygen vacancy concentration regulation and ultra-thin copper capping layer integration on the infrared optoelectronic properties of 20 nm-thick ITO films.A fundamental trade-off is revealed in ITO films that increased oxygen vacancy content enhances the electrical conductivity while compromising the infrared transmittance.Meanwhile,following the introduction of a Cu capping layer,the Cu/ITO system exhibits opposing dependencies of infrared transmittance and electrical conductivity on the capping layer thickness,with an optimum thickness of~3 nm.Finally,by constructing a Cu(3 nm)/ITO(20 nm)heterostructure with varying oxygen vacancy content,we demonstrate the combined effect of the ultra-thin Cu capping layer and moderate oxygen vacancy content on optimizing the carrier transport network.This configuration simultaneously minimizes surface/interfacial reflection and absorption losses,achieving high infrared transmittance(0.861)and a low sheet resistance of 400 W/sq.Our findings highlight the critical role of the combined effect of metal/oxide heterostructure design and defect engineering in optimizing infrared-transparent conductive properties.展开更多
Electrocatalytic carbon dioxide reduction reaction(CO_(2)RR)to formic acid is considered an economically viable avenue toward carbon neutrality.Indium-based catalysts have garnered considerable attention in CO_(2)RR o...Electrocatalytic carbon dioxide reduction reaction(CO_(2)RR)to formic acid is considered an economically viable avenue toward carbon neutrality.Indium-based catalysts have garnered considerable attention in CO_(2)RR owing to their elevated hydrogen evolution reaction(HER)overpotential and eco-friendly characteristics.We have synthesized In2O_(3)nanofibers rich in oxygen vacancies using the electrospinning technique.The resultant 500-In_(2)O_(3)exhibited superior performance in converting CO_(2)RR to HCOOH,achieving an impressive formate Faradaic efficiency(FE)of 92.1% at a current density of-600 mA cm^(-2).Moreover,it demonstrated remarkable stability,maintaining its performance over 100 h at a current density of-300 mA cm^(-2)under a neutral electrolyte.Density functio nal theory(DFT)calculations,in conjunction with spectroscopic characterizations,have revealed that a Cl-modified In catalyst exhibits a lowered energy barrier for the formation of*HCOOH,while simultaneously inhibiting the generation of*H,in contrast to its pristine In counterpart.Ultimately,we successfully engineered a dual-electrode system capable of simultaneously producing formate at both the cathode and the anode.At a current density of-100 mA cm^(-2),our system achieves a reduction in energy consumption by 12.5% and a significant enhancement in electrical energy conversion efficiency by 39.9%.展开更多
Na metal batteries(SMBs)have emerged as a fascinating choice for large-scale energy storage.However,dendrite formation on Na metal anode has been acknowledged to cause inferior cycling stability and safety issues.Here...Na metal batteries(SMBs)have emerged as a fascinating choice for large-scale energy storage.However,dendrite formation on Na metal anode has been acknowledged to cause inferior cycling stability and safety issues.Herein,we report the design of atomic indium-decorated graphene(In/G)to inhibit the growth of Na dendrites and substantially improve the stability of high-energy-density SMBs.Benefiting from the high-valence In-O-C configuration and evenly distributed sodiophilic sites,the In/G promotes uniform nucleation and in-plane growth of Na on the electrode surface,resulting in the intrinsic suppression of Na dendrites.Remarkably,the In/G@Na||Na batteries exhibit excellent long-term cyclability with 160 h at 8 mA cm^(-2)and ultralow overpotential of 110 mV at 10 mA cm^(-2).The Na_(3)V_(2)(PO_(4))_(3)||In/G@Na full batteries show exceptionally high reversible discharge capacity of 61 mAh g^(-1)at an ultrahigh rate of 40 C and extremely low capacity decay rate of only 0.021%per cycle over 300 cycles at 1 C.Therefore,this strategy provides a new direction for the development of next-generation high-energydensity SMBs.展开更多
The effects of various contaminants in the electrolytic refinement of indium were investigated using a glow discharge mass spectrometer(GDMS).The effects of several factors such as the indium ion(In3+)concentration,th...The effects of various contaminants in the electrolytic refinement of indium were investigated using a glow discharge mass spectrometer(GDMS).The effects of several factors such as the indium ion(In3+)concentration,the sodium chloride(NaCl)concentration,the current density,the gelatin concentration,the pH,and the electrode distance,were examined.Significant variations in impurity levels concerning gelatin concentration were observed.Both the gelatin and In3+concentration were moderately positively correlated with the Pb content.The Sb concentration was associated positively with the NaCl concentration,while the Ti concentration had an adverse correlation with the NaCl concentration.The Bi element content was positively linked to the electrode distance.As the current density increased,Cu,Pb,and Bi impurities initially rose and then eventually declined.Notably,a critical current density of 45 A·m^(-2) was identified in this behavior.展开更多
The sluggish kinetics of complicated multiphase conversions and the severe shuttling effect of lithium polysulfides(LiPSs)significantly hinder the applications of Li-S battery,which is one of the most promising candid...The sluggish kinetics of complicated multiphase conversions and the severe shuttling effect of lithium polysulfides(LiPSs)significantly hinder the applications of Li-S battery,which is one of the most promising candidates for the next-generation energy storage system.Herein,a bifunctional electrocatalyst,indium phthalocyanine self-assembled with carbon nanotubes(InPc@CNT)composite material,is proposed to promote the conversion kinetics of both reduction and oxidation processes,demonstrating a bidirectional catalytic effect on both nucleation and dissolution of Li_(2)S species.The theoretical calculation shows that the unique electronic configuration of InPc@CNT is conducive to trapping soluble polysulfides in the reduction process,as well as the modulation of electron transfer dynamics also endows the dissolution of Li_(2)S in the oxidation reaction,which will accelerate the effectiveness of catalytic conversion and facilitate sulfur utilization.Moreover,the InPc@CNT modified separator displays lower overpotential for polysulfide transformation,alleviating polarization of electrode during cycling.The integrated spectroscopy analysis,HRTEM,and electrochemical study reveal that the InPc@CNT acts as an efficient multifunctional catalytic center to satisfy the requirements of accelerating charging and discharging processes.Therefore,the Li-S battery with InPc@CNT-modified separator obtains a discharge-specific capacity of 1415 mAh g^(-1)at a high rate of 0.5 C.Additionally,the 2 Ah Li-S pouch cells deliver 315 Wh kg^(-1)and achieved 80%capacity retention after 50 cycles at 0.1 C with a high sulfur loading of 10 mg cm^(-2).Our study provides a practical method to introduce bifunctional electrocatalysts for boosting the electrochemical properties of Li-S batteries.展开更多
Exploring stable and robust catalysts to replace the current toxic CuCr based catalysts for dehydrogenative coupling of ethanol to ethyl acetate is a challenging but promising task.Herein,novel NiIn based catalysts we...Exploring stable and robust catalysts to replace the current toxic CuCr based catalysts for dehydrogenative coupling of ethanol to ethyl acetate is a challenging but promising task.Herein,novel NiIn based catalysts were developed by tailoring Ni catalysts with Indium(In)for this reaction.Over the optimal Ni0.1Zn0.7Al0.3InOx catalyst,the ethyl acetate selectivity reached 90.1%at 46.2%ethanol conversion under the conditions of 548 K and a weight hourly space velocity of 1.9 h^(-1)in the 370 h time on stream.Moreover,the ethyl acetate productivity surpassed 1.1 g_(ethyl acetate)g_(catalyst)^(-1)h^(-1),,one of the best performance in current works.According to catalyst characterizations and conditional experiments,the active sites for dehydrogenative coupling of ethanol to ethyl acetate were proved to be Ni4In alloys.The presence of In tailored the chemical properties of Ni,and subsequently inhibited the C-C cracking and/or condensation reactions during ethanol conversions.Over Ni4In alloy sites,ethanol was dehydrogenated into acetaldehyde,and then transformed into acetyl species with the removal of H atoms.Finally,the coupling between acetyl species and surface-abundant ethoxyde species into ethyl acetate was achieved,affording a high ethyl acetate selectivity and catalyst stability.展开更多
The hydrothermal synthesis of In_(2)O_(3)and CeO_(2)–In_(2)O_(3)is investigated as well as the properties of sensor layers based on these compounds.During the synthesis of In_(2)O_(3),intermediate products In(OH)_(3)...The hydrothermal synthesis of In_(2)O_(3)and CeO_(2)–In_(2)O_(3)is investigated as well as the properties of sensor layers based on these compounds.During the synthesis of In_(2)O_(3),intermediate products In(OH)_(3)and InOOH are formed,which are the precursors of stable cubic(c-In_(2)O_(3))and metastable rhombohedral(rh-In_(2)O_(3))phases,respectively.A transition from c-In_(2)O_(3)to rh-In_(2)O_(3)is observed with the addition of CeO_(2).The introduction of cerium into rh-In_(2)O_(3)results in a decrease in the sensor response to hydrogen,while it increases in composites based on c-In_(2)O_(3).The data on the sensor activity of the composites correlate with XPS results in which CeO_(2)causes a decrease in the concentrations of chemisorbed oxygen and oxygen vacancies in rh-In_(2)O_(3).The reverse situation is observed in composites based on c-In_(2)O_(3).Compared to In_(2)O_(3)and CeO_(2)–In_(2)O_(3)obtained by other methods,the synthesized composites demonstrate maximum response to H_(2)at low temperatures by 70–100℃,and have short response time(0.2–0.5 s),short recovery time(6–7 s),and long-term stability.A model is proposed for the dependence of sensitivity on the direction of electron transfer between In_(2)O_(3)and CeO_(2).展开更多
The soil chemistry of gallium, indium, and thallium is not well defined, particularly with emerging evidence that these elements have toxic properties and may influence food safety. The purpose of this investigation w...The soil chemistry of gallium, indium, and thallium is not well defined, particularly with emerging evidence that these elements have toxic properties and may influence food safety. The purpose of this investigation was to estimate the soil concentrations of gallium, indium, and thallium and determine if these elements have a soil chemistry like aluminum and therefore demonstrate significant concentration correlations with aluminum. Twenty-seven soil series were selected, and the elemental concentrations were determined using aqua regia digestion with analytical determination performed using inductively coupled plasma emission-mass spectroscopy. The concentrations of gallium, indium, and thallium generally compared with the known literature. Aluminum-gallium and aluminum-thallium exhibited significant concentration correlations across the soil horizons of the sampled soils. Aluminum, gallium, and thallium did demonstrate concentration increases in soil horizons having illuviation of phyllosilicates, implying these phyllosilicates have adsorption and isomorphic substitution behaviors involving these elements.展开更多
Processing conditions of effectively separating indium from the leaching solution of a smelting antimony slag were studied. For the leaching solution containing indium and antimony and iron ions, indium was separated ...Processing conditions of effectively separating indium from the leaching solution of a smelting antimony slag were studied. For the leaching solution containing indium and antimony and iron ions, indium was separated by extracting with HDEHP kerosine solution, washing antimony and iron ions with oxalic acid solution and stripping indium with a dilute solution of hydrochloric acid. InCl 3 solution with purity above 90% is obtained. Indium can be enriched through a circulation of stripping with a dilute HCl solution. The concentration of InCl 3 solution is about 25~30 g/L.展开更多
Zinc ferrite is the principal constituent in zinc neutral-leach residue(NLR) which is commonly treated by hot-acid leaching in electrolytic zinc plants. Reductive leaching of zinc ferrite with sphalerite concentrate...Zinc ferrite is the principal constituent in zinc neutral-leach residue(NLR) which is commonly treated by hot-acid leaching in electrolytic zinc plants. Reductive leaching of zinc ferrite with sphalerite concentrate as a reducing agent was performed. It was found that leaching of zinc ferrite in the presence of sphalerit concentrate was a viable process that effectively extracted zinc and indium and converted Fe^3+ into Fe^2+ at the same time. Reflux leaching tests by two stages were performed to achieve extractions of 98.1% for zinc and 97.5% for indium, and a Fe^2+/Fe^3+ molar ratio of 9.6 in leach solution was also obtained. The leaching behaviors of other elements, such as iron, copper and tin were also studied. The results showed that iron and copper were completely leached, whereas tin presented lower extraction values.展开更多
The optimized leaching techniques were studied by technical experiment and neural network optimization for improving indium leaching rate. Firstly, effect of single technical parameter on leaching rate was investigate...The optimized leaching techniques were studied by technical experiment and neural network optimization for improving indium leaching rate. Firstly, effect of single technical parameter on leaching rate was investigated experimentally with other parameters fixed as constants. The results show that increasing residual acidity can improve leaching rate of indium. Increasing the oxidant content can obviously increase leaching rate but the further addition of oxidant could not improve the leaching rate. The enhancement of temperature can improve the leaching rate while the further enhancement of temperature decreases it. Extension leaching time can improve the leaching rate. On this basis, a BPNN model was established to study the effects of multi-parameters on leaching rate. The results show that the relative error is extremely small, thus the BPNN model has a high prediction precision. At last, optimized technical parameters which can yield high leaching rate of 99.5%were obtained by experimental and BPNN studies:residual acidity 50-60 g/L, oxidant addition content 10%, leaching temperature 70 ℃ and leaching time 2 h.展开更多
A wet etching process for backside via holes suitable for use on InP MMICs technologies is developed for indium phosphide substrate.PMMA is used to mount InP wafer onto glass carrier.Spattered Ta film is utilized as e...A wet etching process for backside via holes suitable for use on InP MMICs technologies is developed for indium phosphide substrate.PMMA is used to mount InP wafer onto glass carrier.Spattered Ta film is utilized as etch mask.HCl+H 3PO 4 solution realised a etch until a depth of 100μm.It is demonstrated that the wet etching backside process is controllable with large latitudes.展开更多
A method of recovering indium from complex smelting residue containing indium was investiga ted. Indium was extracted by technique of low acid leaching and solvent extraction. The conditions of separating iron and ind...A method of recovering indium from complex smelting residue containing indium was investiga ted. Indium was extracted by technique of low acid leaching and solvent extraction. The conditions of separating iron and indium were studied and the optimal conditions were determined. When the residue is two class countercurrent leached with 2 mol/L H 2SO 4 and 30 40 g/L NaCl at 100 ℃, the leaching rate of indium is 80%. The extraction rate of indium is over 98% and that of iron is less than 5% after it is third class countercurrent extracted by P204, and when sulfonated kerosene is used as solvent, acidity in aqueous phase remains the same as that of leaching liquid, and phase is for 1∶3. Using 2 mol/L HCl as back extraction agent, with phase ratio being 5∶1, by third class countercurrent back extraction, the back extraction rate of indium is over 99%, but that of iron is very low, which can meet the need of separating indium and iron.展开更多
Raw scrap powders containing 10 wt.% In were recovered by sand-blasting chamber shields of sputter coaters and used as a sole source of indium components for both sieving and air-classification. Sieving was performed ...Raw scrap powders containing 10 wt.% In were recovered by sand-blasting chamber shields of sputter coaters and used as a sole source of indium components for both sieving and air-classification. Sieving was performed first as a feasibility test, and enrichment of indium component was possible up to 19 wt.% with a mesh size of 635. With this experimental basis, the raw scrap powders were air-classified into 12 lots according to the revolution per minute (r/min) of a single horizontally arranged classifying wheel: 4000, 6000, 8000, 10000, 12000, and 14000 r/rain. The particle cut size varied from 56 to 5 μm with turbo wheel speeds corresponding to 4000 to 14000 r/min, respectively, and enrichment of indium component was possible in fine overflow fractions at all turbo wheel speeds while the indium components were not concentrated in all of the coarse underflow fractions. The grade of the indium components became higher with decreasing particle size of the air-classified scrap powders, with the highest grade obtained in the fine overflow fraction with a turbo wheel speed of 14000 r/min. The amount of indium in the fine overflow fractions varied between 15.9 wt.% and 31.5 wt.%. All in all, the grade or purity of the indium component improved rather significantly from 15.9 wt.% to 31.5 wt.% by air-classification, but this also resulted in overall decrease in recovery rate from 99.33% to 49.64%. Therefore, enrichment and separation of indium should be optimized for maximum recovery and grade of the indium components, which can be used as raw materials in the subsequent electro-refining processes.展开更多
A new process for extracting indium from indium-zinc concentrates was proposed.The process can directly extract indium from removed copper solution by D2EHPA,and cancel the stage of removing iron in the traditional pr...A new process for extracting indium from indium-zinc concentrates was proposed.The process can directly extract indium from removed copper solution by D2EHPA,and cancel the stage of removing iron in the traditional process because of using iron and part of zinc in the In-Zn concentrates for direct preparing high quality Mn-Zn soft magnetic ferrites.The technologies in the processes,such as leaching the neutral leached residues with high concentrated acid at high temperature,reduction ferric and removing copper,and extracting indium,were investigated.The results show that total recovery ratio of indium is increased from less than 70% in the traditional process to more than 95%.This process has the advantages of largely simplifying the procedure of indium extraction,zero draining off of iron residue and zero emitting of SO2.So this is a clean production process.展开更多
基金National Natural Science Foundation of China(41573121,42174115,42394114)Open Fundation of the United Laboratory of High-Pressure Physics and Earthquake Science(2019HPPES06)。
文摘Understanding the diffusion mechanisms of indium(In)in ZnS minerals can clarify the kinetic processes governing its migration,enrichment,or depletion in these typical In-host minerals,thereby establishing a theoretical foundation for the exploration of high-grade In deposits.This study investigates sphalerite and wurtzite to identify stable In incorporation sites and diffusion pathways,and systematically calculates In transport properties in two types of ZnS minerals using first-principles calculations combined with the climbing image-nudged elastic band(CI-NEB)method.The results demonstrate that structural anisotropy significantly governs In diffusion characteristics,with wurtzite exhibiting stronger directiondependent diffusion behavior and superior In retention capacity compared to sphalerite.Across the 0−10 GPa pressure range,In diffusion in wurtzite shows markedly higher anisotropy(2−3 orders of magnitude greater than in sphalerite)and consistently lower diffusion rates.Furthermore,closure temperature calculations reveal spatial heterogeneity,with the[111]direction in sphalerite(about 65 K higher than[110]direction)and the[001]direction in wurtzite(about 100 K higher than[100]direction)displaying elevated closure thresholds.Overall,wurtzite achieves higher closure temperatures than sphalerite.These computational findings indicate that wurtzite exhibits stronger In retention capabilities than sphalerite,suggesting its potential as a critical host mineral for In.These insights provide valuable implications for understanding In geochemical cycling and offer some guidance for mineral exploration and ore genesis studies.
基金National Key Research and Development Program of China(2023YFC2907904)National Natural Science Foundation of China(52374364)。
文摘High-purity indium finds extensive application in the aerospace,electronics,medical,energy,and national defense sectors.Its purity and impurity contents significantly influence its performance in these applications.High-purity indium was prepared by combining zone refining with vacuum distillation.Results show that the average removal efficiency of impurity Sb can approach 95%,while the removal efficiency of impurities Sn and Bi can reach over 95%,and the removal efficiency of Si,Fe,Ni,and Pb can reach over 85%.Ultimately,the amount of Sn and Sb impurities is reduced to 2.0 and 4.1μg/kg,respectively,and that of most impurities,including Fe,Ni,Pb,and Bi,is reduced to levels below the instrumental detection limit.The average impurity removal efficiency is 90.9%,and the indium purity reaches 7N9.
基金National Key Research and Development Program of China(2020YFA0710302)The Major Research Plan of the National Natural Science Foundation of China(91963206)+2 种基金The National Natural Science Foundation of China(52072169,51972164,51972167,22279053)The Fundamental Research Funds for the Central Universities(14380193)The Program for Guangdong Introducing Innovative and Entrepreneurial Teams(2019ZT08L101).
文摘On the surfaces of celestial bodies with no or thin atmospheres,such as the Moon and Mars,the solar wind irradiation process leads to the formation of hydrogen and helium enriched regions in the extraterrestrial soil particles.However,soil particles on the Earth with the similar composition lack such structures and properties.This discrepancy raises a key question whether there is a direct relationship between solar wind irradiation and the alterations in the structure and chemical performance of extraterrestrial materials.To address this question,this work investigates the effects of proton irradiation,simulating solar wind radiation,on the structure and photothermal catalytic properties of the classic catalyst In_(2)O_(3).It reveals that proton irradiation induces structural features in In_(2)O_(3) analogous to those characteristics of solar wind weathering observed in extraterrestrial materials.Furthermore,after proton beam irradiation with an energy of 30 keV and a dose of 3×10^(17) protons·cm^(-2),the methanol production yield of the In_(2)O_(3) catalyst increased to 2.6 times of its preirradiation level,and the methanol selectivity improved to 2.1 times of the original value.This work provides both theoretical and experimental support for the development of high-efficiency,radiation-resistant photothermal catalysts.
基金funding support from the National Key Research and Development Program of China(Grant No.2020YFB0408002)the Beijing Natural Science Foundation(Z240024)+2 种基金the National Natural Science Foundation of China(Grant Nos.22279083,22461160281,W2412076)the Guangdong Basic and Applied Basic Research Foundation(Grant No.2022B1515120006)the Central Guiding Local Science and Technology Development Special Fund Project(Grant No.ZYYD2024JD24)。
文摘Tandem solar cells(TSCs)represent an attractive technology that can overcome the single-junction Shockdey-Queisser limit.Recently,a tandem structure combining wide-bandgap metal halide perovskite with complementary bandgap copper indium gallium selenide(CIGS)photovoltaic technology has demonstrated a realistic pathway to achieve the industrialization goal of pushing power conversion efficiency(PCE)approaching 30% at low-cost.In this review,we first pinpoint the unique advantage of perovskite/CIGS tandems with respect to the other mainstream photovoltaic technologies and retrospect the research progress of perovskite/CIGS TSCs from both PCE and stability perspective in the last years.Next,we comprehensively discuss the major advancements in absorbers,functional layers of the individual sub-cell,and the interconnection layer between them in the recent decade.Finally,we outline several essential scientific and engineering challenges that are to be solved toward the development of efficient,long-term stable,and large-area perovskite/CIGS TSCs in the future.
基金X.H.acknowledges the financial support by Australian Research Council(ARC)Future Fellowship(FT190100756)M.P.S.gratefully acknowledges the support by the ARC under Discovery Early Career Researcher Award(DECRA)(DE210101565)and Discovery Project(DP230101676).
文摘The discovery of quantum dots(QDs)stands as one of the paramount technological breakthroughs of the 20th century.Their versatility spans from everyday applications to cutting-edge scientific research,encompassing areas such as displays,lighting,photocatalysis,bio-imaging,and photonics devices and so on.Among the myriad QDs technologies,industrially relevant CuInS_(2)(CIS)QDs have emerged as promising alternatives to traditional Cd-and Pb-based QDs.Their tunable optoelectronic properties,high absorption coefficient,compositional flexibility,remarkable stability as well as Restriction of Hazardous Substances-compliance,with recent trends revealing a renewed interest in this material for various visible and near-infrared technological applications.This review focuses on recent advancements in CIS QDs as multidisciplinary field from its genesis in the mid-1990 to date with an emphasis on key breakthroughs in their synthesis,surface chemistry,post-synthesis modifications,and various applications.First,the comparation of properties of CIS QDs with relevant knowledge from other classes of QDs and from Ⅰ-Ⅱ-Ⅲ semiconductors as well is summarized.Second,recent advances in the synthesis methods,structure-optoelectronic properties,their defects,and passivation strategies as well as CIS-based heterostructures are discussed.Third,the state-of-the-art applications of CIS QDs ranging from solar cells,luminescence solar concentrations,photocatalysis,light emitting diodes,bioimaging and some emerging applications are summarized.Finally,we discuss open challenges and future perspectives for further advancement in this field.
基金supported by the National Key R&D Program of China(Grant No.2022YFB3806300).
文摘Infrared-transparent conductors have attracted considerable attention due to their potential applications in electromagnetic shielding,infrared sensors,and photovoltaic devices.However,most known materials face the critical challenge of balancing high infrared transmittance with high electrical conductivity across the broad infrared spectral band(2.5-25μm).While ultra-thin indium tin oxide(ITO)films have been demonstrated to exhibit superior infrared transmittance,their inherent low electrical conductivity necessitates additional enhancement strategies.This study systematically investigates the effects of oxygen vacancy concentration regulation and ultra-thin copper capping layer integration on the infrared optoelectronic properties of 20 nm-thick ITO films.A fundamental trade-off is revealed in ITO films that increased oxygen vacancy content enhances the electrical conductivity while compromising the infrared transmittance.Meanwhile,following the introduction of a Cu capping layer,the Cu/ITO system exhibits opposing dependencies of infrared transmittance and electrical conductivity on the capping layer thickness,with an optimum thickness of~3 nm.Finally,by constructing a Cu(3 nm)/ITO(20 nm)heterostructure with varying oxygen vacancy content,we demonstrate the combined effect of the ultra-thin Cu capping layer and moderate oxygen vacancy content on optimizing the carrier transport network.This configuration simultaneously minimizes surface/interfacial reflection and absorption losses,achieving high infrared transmittance(0.861)and a low sheet resistance of 400 W/sq.Our findings highlight the critical role of the combined effect of metal/oxide heterostructure design and defect engineering in optimizing infrared-transparent conductive properties.
基金supported by the National Key R&D Program of China(2023YFA1508002)the National Natural Science Foundation of China(22472139,U23A2087,U22A20392,22227802,22372137,22172126 and 22102136)+3 种基金the Joint Fund of the Yulin University and the Dalian National Laboratory for Clean Energy(YLU-DNL Fund 2022008)the Natural Science Foundation of Fujian Province of China(2022J01044)the XMU Training Program of Innovation and Entrepreneurship for Undergraduates(202410384030,S_(2)02310384242)Supporting Project Number(RSP2025R304),King Saud University,Riyadh,Saudi Arabia。
文摘Electrocatalytic carbon dioxide reduction reaction(CO_(2)RR)to formic acid is considered an economically viable avenue toward carbon neutrality.Indium-based catalysts have garnered considerable attention in CO_(2)RR owing to their elevated hydrogen evolution reaction(HER)overpotential and eco-friendly characteristics.We have synthesized In2O_(3)nanofibers rich in oxygen vacancies using the electrospinning technique.The resultant 500-In_(2)O_(3)exhibited superior performance in converting CO_(2)RR to HCOOH,achieving an impressive formate Faradaic efficiency(FE)of 92.1% at a current density of-600 mA cm^(-2).Moreover,it demonstrated remarkable stability,maintaining its performance over 100 h at a current density of-300 mA cm^(-2)under a neutral electrolyte.Density functio nal theory(DFT)calculations,in conjunction with spectroscopic characterizations,have revealed that a Cl-modified In catalyst exhibits a lowered energy barrier for the formation of*HCOOH,while simultaneously inhibiting the generation of*H,in contrast to its pristine In counterpart.Ultimately,we successfully engineered a dual-electrode system capable of simultaneously producing formate at both the cathode and the anode.At a current density of-100 mA cm^(-2),our system achieves a reduction in energy consumption by 12.5% and a significant enhancement in electrical energy conversion efficiency by 39.9%.
基金financially supported by the National Natural Science Foundation of China(Grants 22125903,51925207,22439003)the National Key R&D Program of China(Grant 2022YFA1504100,2023YFB4005204)+2 种基金the State Key Laboratory of Catalysis(No:2024SKL-A-001,2024SKL-B-003)the Energy Revolution S&T Program of Yulin Innovation Institute of Clean Energy(Grant E412010508,E411070316,E411100705)DICP(DICP I202324,DICP I202471)。
文摘Na metal batteries(SMBs)have emerged as a fascinating choice for large-scale energy storage.However,dendrite formation on Na metal anode has been acknowledged to cause inferior cycling stability and safety issues.Herein,we report the design of atomic indium-decorated graphene(In/G)to inhibit the growth of Na dendrites and substantially improve the stability of high-energy-density SMBs.Benefiting from the high-valence In-O-C configuration and evenly distributed sodiophilic sites,the In/G promotes uniform nucleation and in-plane growth of Na on the electrode surface,resulting in the intrinsic suppression of Na dendrites.Remarkably,the In/G@Na||Na batteries exhibit excellent long-term cyclability with 160 h at 8 mA cm^(-2)and ultralow overpotential of 110 mV at 10 mA cm^(-2).The Na_(3)V_(2)(PO_(4))_(3)||In/G@Na full batteries show exceptionally high reversible discharge capacity of 61 mAh g^(-1)at an ultrahigh rate of 40 C and extremely low capacity decay rate of only 0.021%per cycle over 300 cycles at 1 C.Therefore,this strategy provides a new direction for the development of next-generation high-energydensity SMBs.
基金supported by the National Natural Science Foundation of China(52074180)the Science and Technology Major Project of Yunnan Province(202302AB080020)+2 种基金the Independent Research Project of State Key Laboratory of Advanced Special Steel,Shanghai Key Laboratory of Advanced Ferrometallurgy,Shanghai University(SKLASS 2023-Z07)the Science and Technology Commission of Shanghai Municipality(19DZ2270200)the Program for Professor of Special Appointment(Eastern Scholar)at SIHL,Shanghai Sailing Program(19YF1416500).
文摘The effects of various contaminants in the electrolytic refinement of indium were investigated using a glow discharge mass spectrometer(GDMS).The effects of several factors such as the indium ion(In3+)concentration,the sodium chloride(NaCl)concentration,the current density,the gelatin concentration,the pH,and the electrode distance,were examined.Significant variations in impurity levels concerning gelatin concentration were observed.Both the gelatin and In3+concentration were moderately positively correlated with the Pb content.The Sb concentration was associated positively with the NaCl concentration,while the Ti concentration had an adverse correlation with the NaCl concentration.The Bi element content was positively linked to the electrode distance.As the current density increased,Cu,Pb,and Bi impurities initially rose and then eventually declined.Notably,a critical current density of 45 A·m^(-2) was identified in this behavior.
基金financially supported by the Key Program of the National Natural Science Foundation of China(Nos.21935006).
文摘The sluggish kinetics of complicated multiphase conversions and the severe shuttling effect of lithium polysulfides(LiPSs)significantly hinder the applications of Li-S battery,which is one of the most promising candidates for the next-generation energy storage system.Herein,a bifunctional electrocatalyst,indium phthalocyanine self-assembled with carbon nanotubes(InPc@CNT)composite material,is proposed to promote the conversion kinetics of both reduction and oxidation processes,demonstrating a bidirectional catalytic effect on both nucleation and dissolution of Li_(2)S species.The theoretical calculation shows that the unique electronic configuration of InPc@CNT is conducive to trapping soluble polysulfides in the reduction process,as well as the modulation of electron transfer dynamics also endows the dissolution of Li_(2)S in the oxidation reaction,which will accelerate the effectiveness of catalytic conversion and facilitate sulfur utilization.Moreover,the InPc@CNT modified separator displays lower overpotential for polysulfide transformation,alleviating polarization of electrode during cycling.The integrated spectroscopy analysis,HRTEM,and electrochemical study reveal that the InPc@CNT acts as an efficient multifunctional catalytic center to satisfy the requirements of accelerating charging and discharging processes.Therefore,the Li-S battery with InPc@CNT-modified separator obtains a discharge-specific capacity of 1415 mAh g^(-1)at a high rate of 0.5 C.Additionally,the 2 Ah Li-S pouch cells deliver 315 Wh kg^(-1)and achieved 80%capacity retention after 50 cycles at 0.1 C with a high sulfur loading of 10 mg cm^(-2).Our study provides a practical method to introduce bifunctional electrocatalysts for boosting the electrochemical properties of Li-S batteries.
基金supported by the National Science Foundation of China(21776268,21721004,22108274 and 22378383)“Transformational Technologies for Clean Energy and Demonstration”,Strategic Priority Research Program of the Chinese Academy of Sciences,(XDA 21060200)support provided by Shanxi Yanchang Petroleum(Group)Co.,Ltd.(yc-hw-2022ky-02).
文摘Exploring stable and robust catalysts to replace the current toxic CuCr based catalysts for dehydrogenative coupling of ethanol to ethyl acetate is a challenging but promising task.Herein,novel NiIn based catalysts were developed by tailoring Ni catalysts with Indium(In)for this reaction.Over the optimal Ni0.1Zn0.7Al0.3InOx catalyst,the ethyl acetate selectivity reached 90.1%at 46.2%ethanol conversion under the conditions of 548 K and a weight hourly space velocity of 1.9 h^(-1)in the 370 h time on stream.Moreover,the ethyl acetate productivity surpassed 1.1 g_(ethyl acetate)g_(catalyst)^(-1)h^(-1),,one of the best performance in current works.According to catalyst characterizations and conditional experiments,the active sites for dehydrogenative coupling of ethanol to ethyl acetate were proved to be Ni4In alloys.The presence of In tailored the chemical properties of Ni,and subsequently inhibited the C-C cracking and/or condensation reactions during ethanol conversions.Over Ni4In alloy sites,ethanol was dehydrogenated into acetaldehyde,and then transformed into acetyl species with the removal of H atoms.Finally,the coupling between acetyl species and surface-abundant ethoxyde species into ethyl acetate was achieved,affording a high ethyl acetate selectivity and catalyst stability.
基金supported by the Russian Science Foundation(grant No.22-19-00037),https://rscf.ru/project/22-19-00037/.
文摘The hydrothermal synthesis of In_(2)O_(3)and CeO_(2)–In_(2)O_(3)is investigated as well as the properties of sensor layers based on these compounds.During the synthesis of In_(2)O_(3),intermediate products In(OH)_(3)and InOOH are formed,which are the precursors of stable cubic(c-In_(2)O_(3))and metastable rhombohedral(rh-In_(2)O_(3))phases,respectively.A transition from c-In_(2)O_(3)to rh-In_(2)O_(3)is observed with the addition of CeO_(2).The introduction of cerium into rh-In_(2)O_(3)results in a decrease in the sensor response to hydrogen,while it increases in composites based on c-In_(2)O_(3).The data on the sensor activity of the composites correlate with XPS results in which CeO_(2)causes a decrease in the concentrations of chemisorbed oxygen and oxygen vacancies in rh-In_(2)O_(3).The reverse situation is observed in composites based on c-In_(2)O_(3).Compared to In_(2)O_(3)and CeO_(2)–In_(2)O_(3)obtained by other methods,the synthesized composites demonstrate maximum response to H_(2)at low temperatures by 70–100℃,and have short response time(0.2–0.5 s),short recovery time(6–7 s),and long-term stability.A model is proposed for the dependence of sensitivity on the direction of electron transfer between In_(2)O_(3)and CeO_(2).
文摘The soil chemistry of gallium, indium, and thallium is not well defined, particularly with emerging evidence that these elements have toxic properties and may influence food safety. The purpose of this investigation was to estimate the soil concentrations of gallium, indium, and thallium and determine if these elements have a soil chemistry like aluminum and therefore demonstrate significant concentration correlations with aluminum. Twenty-seven soil series were selected, and the elemental concentrations were determined using aqua regia digestion with analytical determination performed using inductively coupled plasma emission-mass spectroscopy. The concentrations of gallium, indium, and thallium generally compared with the known literature. Aluminum-gallium and aluminum-thallium exhibited significant concentration correlations across the soil horizons of the sampled soils. Aluminum, gallium, and thallium did demonstrate concentration increases in soil horizons having illuviation of phyllosilicates, implying these phyllosilicates have adsorption and isomorphic substitution behaviors involving these elements.
文摘Processing conditions of effectively separating indium from the leaching solution of a smelting antimony slag were studied. For the leaching solution containing indium and antimony and iron ions, indium was separated by extracting with HDEHP kerosine solution, washing antimony and iron ions with oxalic acid solution and stripping indium with a dilute solution of hydrochloric acid. InCl 3 solution with purity above 90% is obtained. Indium can be enriched through a circulation of stripping with a dilute HCl solution. The concentration of InCl 3 solution is about 25~30 g/L.
基金Project(2014CB643404)supported by the National Basic Research Program of ChinaProjects(51564030,51474117,51304093,51364022)supported by the National Natural Science Foundation of China+1 种基金Project(0120150070)supported by Yunnan Applied Basic Reach Project,ChinaProject(ZD2014003)supported by the Education Department of Yunnan Province,China
文摘Zinc ferrite is the principal constituent in zinc neutral-leach residue(NLR) which is commonly treated by hot-acid leaching in electrolytic zinc plants. Reductive leaching of zinc ferrite with sphalerite concentrate as a reducing agent was performed. It was found that leaching of zinc ferrite in the presence of sphalerit concentrate was a viable process that effectively extracted zinc and indium and converted Fe^3+ into Fe^2+ at the same time. Reflux leaching tests by two stages were performed to achieve extractions of 98.1% for zinc and 97.5% for indium, and a Fe^2+/Fe^3+ molar ratio of 9.6 in leach solution was also obtained. The leaching behaviors of other elements, such as iron, copper and tin were also studied. The results showed that iron and copper were completely leached, whereas tin presented lower extraction values.
基金Project(2012BAE06B01)supported by the National Key Technologies R&D Program of China
文摘The optimized leaching techniques were studied by technical experiment and neural network optimization for improving indium leaching rate. Firstly, effect of single technical parameter on leaching rate was investigated experimentally with other parameters fixed as constants. The results show that increasing residual acidity can improve leaching rate of indium. Increasing the oxidant content can obviously increase leaching rate but the further addition of oxidant could not improve the leaching rate. The enhancement of temperature can improve the leaching rate while the further enhancement of temperature decreases it. Extension leaching time can improve the leaching rate. On this basis, a BPNN model was established to study the effects of multi-parameters on leaching rate. The results show that the relative error is extremely small, thus the BPNN model has a high prediction precision. At last, optimized technical parameters which can yield high leaching rate of 99.5%were obtained by experimental and BPNN studies:residual acidity 50-60 g/L, oxidant addition content 10%, leaching temperature 70 ℃ and leaching time 2 h.
文摘A wet etching process for backside via holes suitable for use on InP MMICs technologies is developed for indium phosphide substrate.PMMA is used to mount InP wafer onto glass carrier.Spattered Ta film is utilized as etch mask.HCl+H 3PO 4 solution realised a etch until a depth of 100μm.It is demonstrated that the wet etching backside process is controllable with large latitudes.
文摘A method of recovering indium from complex smelting residue containing indium was investiga ted. Indium was extracted by technique of low acid leaching and solvent extraction. The conditions of separating iron and indium were studied and the optimal conditions were determined. When the residue is two class countercurrent leached with 2 mol/L H 2SO 4 and 30 40 g/L NaCl at 100 ℃, the leaching rate of indium is 80%. The extraction rate of indium is over 98% and that of iron is less than 5% after it is third class countercurrent extracted by P204, and when sulfonated kerosene is used as solvent, acidity in aqueous phase remains the same as that of leaching liquid, and phase is for 1∶3. Using 2 mol/L HCl as back extraction agent, with phase ratio being 5∶1, by third class countercurrent back extraction, the back extraction rate of indium is over 99%, but that of iron is very low, which can meet the need of separating indium and iron.
文摘Raw scrap powders containing 10 wt.% In were recovered by sand-blasting chamber shields of sputter coaters and used as a sole source of indium components for both sieving and air-classification. Sieving was performed first as a feasibility test, and enrichment of indium component was possible up to 19 wt.% with a mesh size of 635. With this experimental basis, the raw scrap powders were air-classified into 12 lots according to the revolution per minute (r/min) of a single horizontally arranged classifying wheel: 4000, 6000, 8000, 10000, 12000, and 14000 r/rain. The particle cut size varied from 56 to 5 μm with turbo wheel speeds corresponding to 4000 to 14000 r/min, respectively, and enrichment of indium component was possible in fine overflow fractions at all turbo wheel speeds while the indium components were not concentrated in all of the coarse underflow fractions. The grade of the indium components became higher with decreasing particle size of the air-classified scrap powders, with the highest grade obtained in the fine overflow fraction with a turbo wheel speed of 14000 r/min. The amount of indium in the fine overflow fractions varied between 15.9 wt.% and 31.5 wt.%. All in all, the grade or purity of the indium component improved rather significantly from 15.9 wt.% to 31.5 wt.% by air-classification, but this also resulted in overall decrease in recovery rate from 99.33% to 49.64%. Therefore, enrichment and separation of indium should be optimized for maximum recovery and grade of the indium components, which can be used as raw materials in the subsequent electro-refining processes.
基金Project(2004AA649080) supported by the National Basic Research and Development Program of ChinaProjects(50234010,50444020) supported by the National Natural Science Foundation of China
文摘A new process for extracting indium from indium-zinc concentrates was proposed.The process can directly extract indium from removed copper solution by D2EHPA,and cancel the stage of removing iron in the traditional process because of using iron and part of zinc in the In-Zn concentrates for direct preparing high quality Mn-Zn soft magnetic ferrites.The technologies in the processes,such as leaching the neutral leached residues with high concentrated acid at high temperature,reduction ferric and removing copper,and extracting indium,were investigated.The results show that total recovery ratio of indium is increased from less than 70% in the traditional process to more than 95%.This process has the advantages of largely simplifying the procedure of indium extraction,zero draining off of iron residue and zero emitting of SO2.So this is a clean production process.