Aimed at information overload and personalized characteristic of user information requirement, this letter presents a type of multilevel index structure and algorithm which is applied to large scale information filter...Aimed at information overload and personalized characteristic of user information requirement, this letter presents a type of multilevel index structure and algorithm which is applied to large scale information filtering system and has better performance and stronger scalability.展开更多
Data assimilation in agricultural remote sensing research is of great significance to integrate with remote sensing observations and model simulations for parameters estimation. The present investigation not only desi...Data assimilation in agricultural remote sensing research is of great significance to integrate with remote sensing observations and model simulations for parameters estimation. The present investigation not only designed and realized the Ensemble Kalman Filtering algorithm (EnKF) assimilation by combing the crop growth model (CERES-Wheat) with remote sensing data, but also optimized and updated the key parameters (LAI) of winter wheat by using remote sensing data. Results showed that the assimilation LAI and the observation ones agreed with each other, and the R2 reached 0.8315. So assimilation remote sensing and crop model could provide reference data for the agricultural production.展开更多
基金Supported by key project 972044 of China Academy of Engineering Physics
文摘Aimed at information overload and personalized characteristic of user information requirement, this letter presents a type of multilevel index structure and algorithm which is applied to large scale information filtering system and has better performance and stronger scalability.
基金supported by the National Natural Science Foundation of China (40701120)the Beijing Natural Science Foundation, China (4092016)the Beijing Nova, China (2008B33)
文摘Data assimilation in agricultural remote sensing research is of great significance to integrate with remote sensing observations and model simulations for parameters estimation. The present investigation not only designed and realized the Ensemble Kalman Filtering algorithm (EnKF) assimilation by combing the crop growth model (CERES-Wheat) with remote sensing data, but also optimized and updated the key parameters (LAI) of winter wheat by using remote sensing data. Results showed that the assimilation LAI and the observation ones agreed with each other, and the R2 reached 0.8315. So assimilation remote sensing and crop model could provide reference data for the agricultural production.