To assess the groundwater vulnerability due to leaching of chemicals, the groundwater system in the unsaturated zone is characterized by conceptual models that are further extended and refined with more detailed mathe...To assess the groundwater vulnerability due to leaching of chemicals, the groundwater system in the unsaturated zone is characterized by conceptual models that are further extended and refined with more detailed mathematical models to understand the governing physical processes in detail. However, due to lack of data and uncertainty level, an intermediate transition through index based models is researched. The attenuation factor (AF) approach, which works under the assumption that the chemicals degrade following a first-order kinetics and determines the fraction of the chemicals that goes to groundwater table, is one of the index based models that has been widely used due to its simplicity. Therefore, the objective of this paper is to review the research works done using the AF approach, to outline the future research needs. Furthermore, the mathematical implementation of the AF approach and the associated uncertainty levels is explained through an example and MATLAB source code.展开更多
文摘To assess the groundwater vulnerability due to leaching of chemicals, the groundwater system in the unsaturated zone is characterized by conceptual models that are further extended and refined with more detailed mathematical models to understand the governing physical processes in detail. However, due to lack of data and uncertainty level, an intermediate transition through index based models is researched. The attenuation factor (AF) approach, which works under the assumption that the chemicals degrade following a first-order kinetics and determines the fraction of the chemicals that goes to groundwater table, is one of the index based models that has been widely used due to its simplicity. Therefore, the objective of this paper is to review the research works done using the AF approach, to outline the future research needs. Furthermore, the mathematical implementation of the AF approach and the associated uncertainty levels is explained through an example and MATLAB source code.