期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Research on Vehicle Control Technology Using Four-Wheel Independent Steering System 被引量:5
1
作者 陈思忠 舒进 杨林 《Journal of Beijing Institute of Technology》 EI CAS 2006年第1期22-26,共5页
The enhancement of vehicle handling stability and maneuverability through active and independent rear wheels control is presented. Firstly, the configuration of four-wheel independent steering prototype vehide is intr... The enhancement of vehicle handling stability and maneuverability through active and independent rear wheels control is presented. Firstly, the configuration of four-wheel independent steering prototype vehide is introduced briefly. Then the concrete overall design of the electronic controllers of four wheel independent steering system (4WIS) is formulated in details. Under the control strategy of zero sideslip angle at mass center, the mathematical model of 4WIS is established to deduce the equations of separated rear wheel steering angles. According to these equations, simulation analysis for 4WIS vehicle performances is finished to show that 4WIS vehicle can improve the maneuverability greatly at low speed and increase the handling stability at high speed. Finally, the road test of 4WIS vehide has performed to verify the correctness of simulation and show that compared with the conventional four wheel steering (4WS) vehicle, the 4WIS vehicle not only improves the kinematical harmony but also decreases steering resistance and lighten abrasion of tires. 展开更多
关键词 four-wheel independent steering system (4WIS) control strategy four-wheel steering system (4WS)
在线阅读 下载PDF
Autonomous Tracking Control for Four-Wheel Independent Steering Robot Based on Improved Pure Pursuit 被引量:2
2
作者 Jing Li Qingbin Wu +2 位作者 Junzheng Wang Hui Qin Jiehao Li 《Journal of Beijing Institute of Technology》 EI CAS 2020年第4期466-473,共8页
Autonomous tracking control is one of the fundamental challenges in the field of robotic autonomous navigation,especially for future intelligent robots.In this paper,an improved pure pursuit control method is proposed... Autonomous tracking control is one of the fundamental challenges in the field of robotic autonomous navigation,especially for future intelligent robots.In this paper,an improved pure pursuit control method is proposed for the path tracking control problem of a four-wheel independent steering robot.Based on the analysis of the four-wheel independent steering model,the kinematic model and the steering geometry model of the robot are established.Then the path tracking control is realized by considering the correlation between the look-ahead distance and the velocity,as well as the lateral error between the robot and the reference path.The experimental results demonstrate that the improved pure pursuit control method has the advantages of small steady-state error,fast response and strong robustness,which can effectively improve the accuracy of path tracking. 展开更多
关键词 autonomous tracking control four-wheel independent steering robot pure pursuit lateral error
在线阅读 下载PDF
Improving Path Tracking Performance of 4WIS Vehicles via Constraint-Oriented Consistent Coordinated Steering
3
作者 Zeyu Yang Yusheng Dai +3 位作者 Manjiang Hu Yougang Bian Qingjia Cui Yang Li 《Chinese Journal of Mechanical Engineering》 2025年第5期176-190,共15页
Research has shown that when vehicles follow the Ackerman steering principle(ASP),the tire wear can be reduced and the path tracking performance can be improved.However,in the case of four-wheel independent steering(4... Research has shown that when vehicles follow the Ackerman steering principle(ASP),the tire wear can be reduced and the path tracking performance can be improved.However,in the case of four-wheel independent steering(4WIS)vehicles,the steering systems of the four wheels are relatively independent,and there are differences and uncertainties in individual steering dynamics,which lead to challenges for all four wheels in simultaneously satisfying the ASP and may deteriorate the vehicle path tracking performance.In response to this problem,this paper introduces a four-wheel consistent coordinated steering control for 4WIS vehicles.The algorithm innovatively reconfigures the Ackerman steering relationships as coupling constraints among the wheels,and utilizes the constraint-following method to design controller.The controller achieves uniform boundedness(UB)and uniform ultimate boundedness(UUB)of ASP constraint error.The Carsim/Simulink joint simulation results demonstrate that the algorithm guarantees the approximate satisfaction of ASP in both the transient and steady-state of the vehicle path tracking.Also,it significantly improves the path tracking performance. 展开更多
关键词 Four-wheel independent steering Path tracking Constraint-following control Consistent coordinated control Ackerman steering principle UNCERTAINTIES
在线阅读 下载PDF
Development of a tomato harvesting robot used in greenhouse 被引量:10
4
作者 Wang Lili Zhao Bo +5 位作者 Fan Jinwei Hu Xiaoan Wei Shu Li Yashuo Zhou Qiangbing Wei Chongfeng 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2017年第4期140-149,共10页
A tomato harvesting robot was developed in this study,which consisted of a four-wheel independent steering system,a 5-DOF harvesting system,a navigation system,and a binocular stereo vision system.The four-wheel indep... A tomato harvesting robot was developed in this study,which consisted of a four-wheel independent steering system,a 5-DOF harvesting system,a navigation system,and a binocular stereo vision system.The four-wheel independent steering system was capable of providing a low-speed steering control of the robot based on Ackerman steering geometry.The proportional-integral-derivative(PID)algorithm was used in the laser navigation control system.The Otsu algorithm and the elliptic template method were used for the automatic recognition of ripe tomatoes,and obstacle avoidance strategies were proposed based on the C-space method.The maximum average absolute error between the set angle and the actual angle was about 0.14°,and the maximum standard deviation was about 0.04°.The laser navigation system was able to rapidly and accurately track the path,with the deviation being less than 8 cm.The load bearing capacity of the mechanical arm was about 1.5 kg.The success rate of the binocular vision system in the recognition of ripe tomatoes was 99.3%.When the distance was less than 600 mm,the positioning error was less than 10 mm.The time needed for recognition of ripe tomatoes and pitching was about 15 s per tomato,with a success rate of about 86%.This study provides some insights into the development and application of tomato harvesting robot used in the greenhouse. 展开更多
关键词 tomato harvesting robot four-wheel independent steering automatic navigation binocular stereo vision system obstacle avoidance GREENHOUSE
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部