The quark meson coupling model is used to investigate the correlation between thenuclear incompressibility K and the third order derivitive K′ of the nuclear matter saturationcurve,the temperature and entropy depende...The quark meson coupling model is used to investigate the correlation between thenuclear incompressibility K and the third order derivitive K′ of the nuclear matter saturationcurve,the temperature and entropy dependence of the nuclear展开更多
The isoscalar giant monopole resonances(ISGMRs)of hypernucleiAA42Ca,AA(122)Sn,andAA(210)Pb are investigated using a fully self-consistent Skyrme-Hartree-Fock plus random phase approximation method.The Skyrme-typ...The isoscalar giant monopole resonances(ISGMRs)of hypernucleiAA42Ca,AA(122)Sn,andAA(210)Pb are investigated using a fully self-consistent Skyrme-Hartree-Fock plus random phase approximation method.The Skyrme-type forces,SGII,No.5 and SAAl,are adopted to describe the nucleon-nucleon,A hyperon-nucleon and A hyperon-A hyperon(AA)interactions,respectively.For a given hyperon fraction,we find that effects of AA interaction on the properties of infinite symmetric nuclear matter and finite hypernuclei are very small.The ISGMR strengths are shifted to the high energy region when two A are added into normal nuclei.The changes are from two parts,one is due to the mean field calculations,and the other is from the residual interaction associated with A hyperons.The constrained energies are increased by about 0.5-0.7MeV,which consequently enhances the effective incompressibility modulus of hypernuclei.展开更多
It is shown that the criterion of incompressibility applicable to any medium, contradicts to the real meaning of this term. On the basis of expression of speed of sound in inhomogeneous medium and generalized equation...It is shown that the criterion of incompressibility applicable to any medium, contradicts to the real meaning of this term. On the basis of expression of speed of sound in inhomogeneous medium and generalized equation of continuity of mass obtained in papers [1,2] respectively, it is proved that so called internal gravitation waves do not exist in nature. This concept appeared as a result of incorrect interpretation of incompressibility of medium. Correct understanding of criteria of compressibility or incompressibility leads to qualitatively new understanding of homogeneity or heterogeneity of medium, in particular—only strongly inhomogeneous medium can be incompressible while weakly inhomogeneous medium is always compressible. Besides, it is shown that in inhomogeneous media additional terms are added to known hydrodynamic (gas dynamic) correlations applicable to any medium which disappear at transfer to homogeneous model of medium.展开更多
This paper mainly studies the well-posedness of steady incompressible impinging jet flow problem through a 3D axisymmetric finitely long nozzle.This problem originates from the physical phenomena encountered in practi...This paper mainly studies the well-posedness of steady incompressible impinging jet flow problem through a 3D axisymmetric finitely long nozzle.This problem originates from the physical phenomena encountered in practical engineering fields,such as in short take-off and vertical landing(STOVL)aircraft.Nowadays many intricate phenomena associated with impinging jet flows remain inadequately elucidated,which limits the ability to optimize aircraft design.Given a boundary condition in the inlet,the impinging jet problem is transformed into a Bernoulli-type free boundary problem according to the stream function.Then the variational method is used to study the corresponding variational problem with one parameter,thereby the wellposedness is established.The main conclusion is as follows.For a 3D axisymmetric finitely long nozzle and an infinitely long vertical wall,given an axial velocity in the inlet of nozzle,there exists a unique smooth incom‑pressible impinging jet flow such that the free boundary initiates smoothly at the endpoint of the nozzle and extends to infinity along the vertical wall at far fields.The key point is to investigate the regularity of the corner where the nozzle and the vertical axis intersect.展开更多
We deal with the properties of incompressible and pairwise incompressible surfaces in knot complements through the application of relevant properties of almost simple topological graphs.We analyze the topological grap...We deal with the properties of incompressible and pairwise incompressible surfaces in knot complements through the application of relevant properties of almost simple topological graphs.We analyze the topological graph invariants associated with surfaces embedded in the complements of alternating and almost alternating knots.Specifically,we prove that the characteristic numbers of these graphs remain invariant under two fundamental transformations(R-move and S^(2)-move).Leveraging the interplay between characteristic numbers and Euler characteristics,and further connecting Euler characteristics to surface genus,we derive novel results regarding the genus of incompressible pairwise incompressible surfaces.Additionally,we establish a discriminant criterion to determine when such surfaces in knot complements admit genus zero.展开更多
This paper explores Maxwell’s analogy idea between electromagnetic field lines and incompressible fluid, and explains Faraday’s law and Maxwell’s formula for displacement currents by means of fluid dynamics theory:...This paper explores Maxwell’s analogy idea between electromagnetic field lines and incompressible fluid, and explains Faraday’s law and Maxwell’s formula for displacement currents by means of fluid dynamics theory: They show the transport properties of electromagnetic field lines as incompressible fluids, not just effects. Combined of the steady electromagnetic fields, Maxwell’s idea of the analogy between the electromagnetic fields and the incompressible fluids has reached a perfect conclusion. Viewing the electromagnetic field as a vacuum state excited by charges, and extending Maxwell analogy, we consider the gravitowagnetic field as a vacuum state excited by mass. This led to the establishment of the generalized Maxwell equations and the application of this new theory to explain various natural phenomena.展开更多
The diffuse-interface immersed boundary method(IBM)possesses excellent capabilities for simulating flows around complex geometries and moving boundaries.In this method,the flow field is solved on a fixed Cartesian mes...The diffuse-interface immersed boundary method(IBM)possesses excellent capabilities for simulating flows around complex geometries and moving boundaries.In this method,the flow field is solved on a fixed Cartesian mesh,while the solid boundary is discretized into a series of Lagrangian points immersed in the flow field.The boundary condition is implemented by introducing a force term into the momentum equation,and the interaction between the immersed boundary and the fluid domain is achieved via an interpolation process.Over the past decades,the diffuse-interface IBM has gained popularity and spawned many variants,effectively handling a wide range of flow problems from isothermal to thermal flows,from laminar to turbulent flows,and from complex geometries to fluidstructure interaction scenarios.This paper first outlines the basic principles of the diffuse-interface IBM,then highlights recent advancements achieved by the authors’research group,and finally shows the method’s excellent numerical performance and wide applicability through several case studies involving complex moving boundary problems.展开更多
This paper studies the global existence and large-time behaviors of weak solutions to the kinetic particle model coupled with the incompressible Navier-Stokes equations in IR3.First,we obtain the global weak solution ...This paper studies the global existence and large-time behaviors of weak solutions to the kinetic particle model coupled with the incompressible Navier-Stokes equations in IR3.First,we obtain the global weak solution using the characteristic and energy methods.Then,under the small assumption of the mass of the particle,we show that the solutions decay at the algebraic time-decay rate.Finally,it is also proved that the above rate is optimal.It should be remarked that if the particle in the coupled system vanishes(i.e.f=O),our works coincide with the classical results by Schonbek[32](J Amer Math Soc,1991,4:423-449),which can be regarded as a generalization from a single fuid model to the two-phase fluid one.展开更多
In this paper,we consider an initial boundary value problem for the nonhomo-geneous heat-conducting magnetohydrodynamic fuids when the viscosityμ,magnetic dif-fusivity v and heat conductivity k depend on the temperat...In this paper,we consider an initial boundary value problem for the nonhomo-geneous heat-conducting magnetohydrodynamic fuids when the viscosityμ,magnetic dif-fusivity v and heat conductivity k depend on the temperature according to μ(0)=°,k(0)=08,v(0)=07,withα,>0,β≥0.We prove the global existence of a unique strong solution provided that ■ is suitably small.In addition,we also get some results of the large-time behavior and exponential decay estimates.展开更多
This study investigates the application of Gurney and flight of fragment equations,typically used to predict metal fragment velocities,in modeling the water jet behavior.Three shotgun cartridge sizes were used as the ...This study investigates the application of Gurney and flight of fragment equations,typically used to predict metal fragment velocities,in modeling the water jet behavior.Three shotgun cartridge sizes were used as the energy source:2.59 g,5.83 g,and 7.13 g.Two configurations were tested:standard(full-barrel water load)and"negative 8"(partial water load).High-speed footage captured water column velocities,and Gurney models,including infinitely tamped and open-faced configurations,combined with the flight of fragment model were used to assess prediction accuracy.Results showed charge strength significantly affects water column velocity,with higher strengths yielding greater stability and velocity retention over distance.The infinitely tamped Gurney model closely predicted experimental velocities,deviating by as little as 1.4%for standard charges and 2.8% for negative 8 charges.Additionally,interesting dynamics such as a 1-2°rise in jet height and the rear overtaking the front was observed.These findings have significant implications for optimizing PAN disruptors and enhancing performance in high-velocity fluid applications and explosive breaching systems.展开更多
This work addresses the question of the fluid dependence of the non-dimensional parameters of seismic anisotropy. It extends the classic theory of the fluid-dependence of elasticity, and applies the approximation of w...This work addresses the question of the fluid dependence of the non-dimensional parameters of seismic anisotropy. It extends the classic theory of the fluid-dependence of elasticity, and applies the approximation of weak seismic anisotropy. The analysis shows that reliance upon the classic theory leads to oversimplified conclusions. Extending the classic theory introduces new parameters(which must be experimentally determined) into the conclusions, making their application in the field context highly problematic.展开更多
A meshless approach, called the rigid-plastic reproducing kernel particle method (RKPM), is presented for three-dimensional (3D) bulk metal forming simulation. The approach is a combination of RKPM with the flow t...A meshless approach, called the rigid-plastic reproducing kernel particle method (RKPM), is presented for three-dimensional (3D) bulk metal forming simulation. The approach is a combination of RKPM with the flow theory of 3D rigid-plastic mechanics. For the treatments of essential boundary conditions and incompressibility constraint, the boundary singular kernel method and the modified penalty method are utilized, respectively. The arc-tangential friction model is employed to treat the contact conditions. The compression of rectangular blocks, a typical 3D upsetting operation, is analyzed for different friction conditions and the numerical results are compared with those obtained using commercial rigid-plastic FEM (finite element method) software Deform^3D. As results show, when handling 3D plastic deformations, the proposed approach eliminates the need of expensive meshing and remeshing procedures which are unavoidable in conventional FEM and can provide results that are in good agreement with finite element predictions.展开更多
This paper mainly discusses the constitutive laws of incompressible rubber-like materials and the associated finite element analysis method. By a multiplicative decomposition of the deformation gradient into distortio...This paper mainly discusses the constitutive laws of incompressible rubber-like materials and the associated finite element analysis method. By a multiplicative decomposition of the deformation gradient into distortional and dilatational parts, the YEOH mode type constitutive laws of rubber-like materials and their numerical implementation are presented. In order to deal with incompressible problems, a three-field variational principle is developed in which deformation, Jacobian and pressure field are treated independently. The connection between the three-field principle and the Hu-Wasizhu generalized variational principle is established. It is shown that the approach proposed can be degenerated to the B-bar method in the linear case. The derailed FE formulation is given in which deformation is ap proximated by isoparametric conforming element, and Jacobian and pressure by discontinuous approximation. Finally, two numerical examples are presented to show the effectiveness and reliability of the method proposed. The work in this paper provides a corner stone of FEA of this kind of problem. This paper features the combination of the multiplicative decomposition, the three-field principle and YEOH model of rubber-like materials, especially under Lagrangian description, giving an effective way for solving this kind of problems. The Lagrangian description is compatible with usually geometrically nonlinear FEM and the constitutive laws are expressed by the second Kirchhoff stress and the Green strain.展开更多
This paper investigates the structural and electronic properties of rhenium diboride by first-principles calculation based on density functional theory. The obtained results show that the calculated equilibrium struct...This paper investigates the structural and electronic properties of rhenium diboride by first-principles calculation based on density functional theory. The obtained results show that the calculated equilibrium structural parameters of ReB2 are in excellent agreement with experimental values. The calculated bulk modulus is 361 GPa in comparison with that of the experiment. The compressibility of ReB2 is lower than that of well-known OsB2. The anisotropy of the bulk modulus is confirmed by c/a ratio as a function of pressure curve and the bulk modulus along different axes along with the electron density distribution. The high bulk modulus is attributed to the strong covalent bond between Re-d and B-p orbitals and the wider pseudogap near the Fermi level, which could be deduced from both electron charge density distribution and density of states. The band structure and density of states of ReB2 exhibit that this material presents metallic behavior. The good metallicity and ultra-incompressibility of ReB2 might suggest its potential application as pressure-proof conductors.展开更多
We discuss the properties of incompressible pairwise incompressible surfaces in a knot complement by using twist crossing number. Let K be a pretzel knot or rational knot that its twistindex is less than 6, and l...We discuss the properties of incompressible pairwise incompressible surfaces in a knot complement by using twist crossing number. Let K be a pretzel knot or rational knot that its twistindex is less than 6, and let F be an incompressible pairwise incompressible surface in S 3-K. Then F is a punctured sphere.展开更多
The operator splitting method is used to deal with the Navier-Stokes equation, in which the physical process described by the equation is decomposed into two processes: a diffusion process and a convection process; a...The operator splitting method is used to deal with the Navier-Stokes equation, in which the physical process described by the equation is decomposed into two processes: a diffusion process and a convection process; and the finite element equation is established. The velocity field in the element is described by the shape function of the isoparametric element with nine nodes and the pressure field is described by the interpolation function of the four nodes at the vertex of the isoparametric element with nine nodes. The subroutine of the element and the integrated finite element code are generated by the Finite Element Program Generator (FEPG) successfully. The numerical simulation about the incompressible viscous liquid flowing over a cylinder is carded out. The solution agrees with the experimental results very well.展开更多
The multi-messenger observations of the merger event in GW170817 did not rule out the possibility that the remnant might be a dynamically stable neutron star with <img src="Edit_01b04c31-b94c-4b32-bd17-d6383ca...The multi-messenger observations of the merger event in GW170817 did not rule out the possibility that the remnant might be a dynamically stable neutron star with <img src="Edit_01b04c31-b94c-4b32-bd17-d6383ca16545.bmp" alt="" />. Based on this and other recent events, I argue that the universal maximum density hypothesis should be revived. Accordingly, the central densities in the cores of ultra-compact objects must be upper-limited by the critical density number <em>n</em><sub><em>cr</em></sub>, beyond which supranuclear dense matter becomes purely incompressible. Based on the spacetime-matter coupling in GR, it is shown that the topology of spacetime embedding incompressible quantum fluids with <em>n</em>=<em style="white-space:normal;">n</em><sub style="white-space:normal;"><em>cr </em></sub>must be Minkowski flat, which implies that spacetime at the background of ultra-compact objects should be bimetric.展开更多
A new algorithm based on the projection method with the implicit finite difference technique was established to calculate the velocity fields and pressure.The calculation region can be divided into different regions a...A new algorithm based on the projection method with the implicit finite difference technique was established to calculate the velocity fields and pressure.The calculation region can be divided into different regions according to Reynolds number.In the far-wall region,the thermal melt flow was calculated as Newtonian flow.In the near-wall region,the thermal melt flow was calculated as non-Newtonian flow.It was proved that the new algorithm based on the projection method with the implicit technique was correct through nonparametric statistics method and experiment.The simulation results show that the new algorithm based on the projection method with the implicit technique calculates more quickly than the solution algorithm-volume of fluid method using the explicit difference method.展开更多
An analysis on crack creep propagation problem of power-law nonlinear viscoelastic materials is presented. The Creep incompressilility assumption is used Tosimulate fracture behavior of craze region. it is assumed th...An analysis on crack creep propagation problem of power-law nonlinear viscoelastic materials is presented. The Creep incompressilility assumption is used Tosimulate fracture behavior of craze region. it is assumed that in the .fracture processzone near the crack tip, the cohesive stress fo acts upon the crack surfaces and resistscrack opening. Through a perturbation method i. e., by superposing the Mode-Iapplied force onto a referential uniform stress state, which has a trivial solution and gives no effect on the solution of the original problem, the nonlinear viscoelasticproblem is reduced to linear problem. For weak nonlinear materials, for which thepower-law index n=1, the expressions of stress and crack surface displacement arederived. Then, the fracture process zone local energy criterion is proposed and basedon which the formulas of crucking incubation time t. and crack slow propagationvelocity a are derired.展开更多
The large deformation of incompressible rubber cylinder under inner pressure is ana- lyzed by a kind of new rubber materials strain energy function.The theory formulation for the dis- placement and stress is presented...The large deformation of incompressible rubber cylinder under inner pressure is ana- lyzed by a kind of new rubber materials strain energy function.The theory formulation for the dis- placement and stress is presented.The penalty finite element formulation is established in order to ana- lyze nonlinear rubber materials,and the results of finite element method agree well with theoretical ones.A new method for controlling the calculating stability and convergence rates is put forward.The selection of the appropriate penalty factor and its influence on calculated results are discussed.展开更多
基金The project supported in part by the National Natural Science Foundation of China and by the Chinese Academy of Sciences under Contract No.LWTZ-1298
文摘The quark meson coupling model is used to investigate the correlation between thenuclear incompressibility K and the third order derivitive K′ of the nuclear matter saturationcurve,the temperature and entropy dependence of the nuclear
基金Supported by the National Natural Science Foundation of China under Grant Nos 11575060,11775014,11505058 and 11435014
文摘The isoscalar giant monopole resonances(ISGMRs)of hypernucleiAA42Ca,AA(122)Sn,andAA(210)Pb are investigated using a fully self-consistent Skyrme-Hartree-Fock plus random phase approximation method.The Skyrme-type forces,SGII,No.5 and SAAl,are adopted to describe the nucleon-nucleon,A hyperon-nucleon and A hyperon-A hyperon(AA)interactions,respectively.For a given hyperon fraction,we find that effects of AA interaction on the properties of infinite symmetric nuclear matter and finite hypernuclei are very small.The ISGMR strengths are shifted to the high energy region when two A are added into normal nuclei.The changes are from two parts,one is due to the mean field calculations,and the other is from the residual interaction associated with A hyperons.The constrained energies are increased by about 0.5-0.7MeV,which consequently enhances the effective incompressibility modulus of hypernuclei.
文摘It is shown that the criterion of incompressibility applicable to any medium, contradicts to the real meaning of this term. On the basis of expression of speed of sound in inhomogeneous medium and generalized equation of continuity of mass obtained in papers [1,2] respectively, it is proved that so called internal gravitation waves do not exist in nature. This concept appeared as a result of incorrect interpretation of incompressibility of medium. Correct understanding of criteria of compressibility or incompressibility leads to qualitatively new understanding of homogeneity or heterogeneity of medium, in particular—only strongly inhomogeneous medium can be incompressible while weakly inhomogeneous medium is always compressible. Besides, it is shown that in inhomogeneous media additional terms are added to known hydrodynamic (gas dynamic) correlations applicable to any medium which disappear at transfer to homogeneous model of medium.
文摘This paper mainly studies the well-posedness of steady incompressible impinging jet flow problem through a 3D axisymmetric finitely long nozzle.This problem originates from the physical phenomena encountered in practical engineering fields,such as in short take-off and vertical landing(STOVL)aircraft.Nowadays many intricate phenomena associated with impinging jet flows remain inadequately elucidated,which limits the ability to optimize aircraft design.Given a boundary condition in the inlet,the impinging jet problem is transformed into a Bernoulli-type free boundary problem according to the stream function.Then the variational method is used to study the corresponding variational problem with one parameter,thereby the wellposedness is established.The main conclusion is as follows.For a 3D axisymmetric finitely long nozzle and an infinitely long vertical wall,given an axial velocity in the inlet of nozzle,there exists a unique smooth incom‑pressible impinging jet flow such that the free boundary initiates smoothly at the endpoint of the nozzle and extends to infinity along the vertical wall at far fields.The key point is to investigate the regularity of the corner where the nozzle and the vertical axis intersect.
基金Supported by the National Natural Science Foundation of China(Grant No.12026411)。
文摘We deal with the properties of incompressible and pairwise incompressible surfaces in knot complements through the application of relevant properties of almost simple topological graphs.We analyze the topological graph invariants associated with surfaces embedded in the complements of alternating and almost alternating knots.Specifically,we prove that the characteristic numbers of these graphs remain invariant under two fundamental transformations(R-move and S^(2)-move).Leveraging the interplay between characteristic numbers and Euler characteristics,and further connecting Euler characteristics to surface genus,we derive novel results regarding the genus of incompressible pairwise incompressible surfaces.Additionally,we establish a discriminant criterion to determine when such surfaces in knot complements admit genus zero.
文摘This paper explores Maxwell’s analogy idea between electromagnetic field lines and incompressible fluid, and explains Faraday’s law and Maxwell’s formula for displacement currents by means of fluid dynamics theory: They show the transport properties of electromagnetic field lines as incompressible fluids, not just effects. Combined of the steady electromagnetic fields, Maxwell’s idea of the analogy between the electromagnetic fields and the incompressible fluids has reached a perfect conclusion. Viewing the electromagnetic field as a vacuum state excited by charges, and extending Maxwell analogy, we consider the gravitowagnetic field as a vacuum state excited by mass. This led to the establishment of the generalized Maxwell equations and the application of this new theory to explain various natural phenomena.
基金partially supported by the National Natural Science Foundation of China(Nos.92271103,12202191)。
文摘The diffuse-interface immersed boundary method(IBM)possesses excellent capabilities for simulating flows around complex geometries and moving boundaries.In this method,the flow field is solved on a fixed Cartesian mesh,while the solid boundary is discretized into a series of Lagrangian points immersed in the flow field.The boundary condition is implemented by introducing a force term into the momentum equation,and the interaction between the immersed boundary and the fluid domain is achieved via an interpolation process.Over the past decades,the diffuse-interface IBM has gained popularity and spawned many variants,effectively handling a wide range of flow problems from isothermal to thermal flows,from laminar to turbulent flows,and from complex geometries to fluidstructure interaction scenarios.This paper first outlines the basic principles of the diffuse-interface IBM,then highlights recent advancements achieved by the authors’research group,and finally shows the method’s excellent numerical performance and wide applicability through several case studies involving complex moving boundary problems.
基金supported by the Anhui Provincial Natural Science Foundation(2408085QA031)the third author's work was supported by the National Natural Science Foundation of China(12001033).
文摘This paper studies the global existence and large-time behaviors of weak solutions to the kinetic particle model coupled with the incompressible Navier-Stokes equations in IR3.First,we obtain the global weak solution using the characteristic and energy methods.Then,under the small assumption of the mass of the particle,we show that the solutions decay at the algebraic time-decay rate.Finally,it is also proved that the above rate is optimal.It should be remarked that if the particle in the coupled system vanishes(i.e.f=O),our works coincide with the classical results by Schonbek[32](J Amer Math Soc,1991,4:423-449),which can be regarded as a generalization from a single fuid model to the two-phase fluid one.
基金supported by the National Natural Science Foundation of China(No.11931013)the Natural Science Foundation of Guangxi Province(No.2022GXNSFDA035078)the Foundamental Research Funds for the Central Universities,CHD(No.300102122115).
文摘In this paper,we consider an initial boundary value problem for the nonhomo-geneous heat-conducting magnetohydrodynamic fuids when the viscosityμ,magnetic dif-fusivity v and heat conductivity k depend on the temperature according to μ(0)=°,k(0)=08,v(0)=07,withα,>0,β≥0.We prove the global existence of a unique strong solution provided that ■ is suitably small.In addition,we also get some results of the large-time behavior and exponential decay estimates.
基金supported and funded internally through Dr. Catherine Johnson's research funds at Missouri S&T
文摘This study investigates the application of Gurney and flight of fragment equations,typically used to predict metal fragment velocities,in modeling the water jet behavior.Three shotgun cartridge sizes were used as the energy source:2.59 g,5.83 g,and 7.13 g.Two configurations were tested:standard(full-barrel water load)and"negative 8"(partial water load).High-speed footage captured water column velocities,and Gurney models,including infinitely tamped and open-faced configurations,combined with the flight of fragment model were used to assess prediction accuracy.Results showed charge strength significantly affects water column velocity,with higher strengths yielding greater stability and velocity retention over distance.The infinitely tamped Gurney model closely predicted experimental velocities,deviating by as little as 1.4%for standard charges and 2.8% for negative 8 charges.Additionally,interesting dynamics such as a 1-2°rise in jet height and the rear overtaking the front was observed.These findings have significant implications for optimizing PAN disruptors and enhancing performance in high-velocity fluid applications and explosive breaching systems.
文摘This work addresses the question of the fluid dependence of the non-dimensional parameters of seismic anisotropy. It extends the classic theory of the fluid-dependence of elasticity, and applies the approximation of weak seismic anisotropy. The analysis shows that reliance upon the classic theory leads to oversimplified conclusions. Extending the classic theory introduces new parameters(which must be experimentally determined) into the conclusions, making their application in the field context highly problematic.
基金This work was supported by the National Natural Science Foundation of China (No. 50275094).
文摘A meshless approach, called the rigid-plastic reproducing kernel particle method (RKPM), is presented for three-dimensional (3D) bulk metal forming simulation. The approach is a combination of RKPM with the flow theory of 3D rigid-plastic mechanics. For the treatments of essential boundary conditions and incompressibility constraint, the boundary singular kernel method and the modified penalty method are utilized, respectively. The arc-tangential friction model is employed to treat the contact conditions. The compression of rectangular blocks, a typical 3D upsetting operation, is analyzed for different friction conditions and the numerical results are compared with those obtained using commercial rigid-plastic FEM (finite element method) software Deform^3D. As results show, when handling 3D plastic deformations, the proposed approach eliminates the need of expensive meshing and remeshing procedures which are unavoidable in conventional FEM and can provide results that are in good agreement with finite element predictions.
基金the National Natural Science Foundation of China(No.19632030)
文摘This paper mainly discusses the constitutive laws of incompressible rubber-like materials and the associated finite element analysis method. By a multiplicative decomposition of the deformation gradient into distortional and dilatational parts, the YEOH mode type constitutive laws of rubber-like materials and their numerical implementation are presented. In order to deal with incompressible problems, a three-field variational principle is developed in which deformation, Jacobian and pressure field are treated independently. The connection between the three-field principle and the Hu-Wasizhu generalized variational principle is established. It is shown that the approach proposed can be degenerated to the B-bar method in the linear case. The derailed FE formulation is given in which deformation is ap proximated by isoparametric conforming element, and Jacobian and pressure by discontinuous approximation. Finally, two numerical examples are presented to show the effectiveness and reliability of the method proposed. The work in this paper provides a corner stone of FEA of this kind of problem. This paper features the combination of the multiplicative decomposition, the three-field principle and YEOH model of rubber-like materials, especially under Lagrangian description, giving an effective way for solving this kind of problems. The Lagrangian description is compatible with usually geometrically nonlinear FEM and the constitutive laws are expressed by the second Kirchhoff stress and the Green strain.
基金Project supported by the Special Funds for Major State Basic Research Project of China (Grant No 2007CB925004)863 Project+1 种基金Knowledge Innovation Program of the Chinese Academy of SciencesDirector Grants of CASHIPS
文摘This paper investigates the structural and electronic properties of rhenium diboride by first-principles calculation based on density functional theory. The obtained results show that the calculated equilibrium structural parameters of ReB2 are in excellent agreement with experimental values. The calculated bulk modulus is 361 GPa in comparison with that of the experiment. The compressibility of ReB2 is lower than that of well-known OsB2. The anisotropy of the bulk modulus is confirmed by c/a ratio as a function of pressure curve and the bulk modulus along different axes along with the electron density distribution. The high bulk modulus is attributed to the strong covalent bond between Re-d and B-p orbitals and the wider pseudogap near the Fermi level, which could be deduced from both electron charge density distribution and density of states. The band structure and density of states of ReB2 exhibit that this material presents metallic behavior. The good metallicity and ultra-incompressibility of ReB2 might suggest its potential application as pressure-proof conductors.
文摘We discuss the properties of incompressible pairwise incompressible surfaces in a knot complement by using twist crossing number. Let K be a pretzel knot or rational knot that its twistindex is less than 6, and let F be an incompressible pairwise incompressible surface in S 3-K. Then F is a punctured sphere.
文摘The operator splitting method is used to deal with the Navier-Stokes equation, in which the physical process described by the equation is decomposed into two processes: a diffusion process and a convection process; and the finite element equation is established. The velocity field in the element is described by the shape function of the isoparametric element with nine nodes and the pressure field is described by the interpolation function of the four nodes at the vertex of the isoparametric element with nine nodes. The subroutine of the element and the integrated finite element code are generated by the Finite Element Program Generator (FEPG) successfully. The numerical simulation about the incompressible viscous liquid flowing over a cylinder is carded out. The solution agrees with the experimental results very well.
文摘The multi-messenger observations of the merger event in GW170817 did not rule out the possibility that the remnant might be a dynamically stable neutron star with <img src="Edit_01b04c31-b94c-4b32-bd17-d6383ca16545.bmp" alt="" />. Based on this and other recent events, I argue that the universal maximum density hypothesis should be revived. Accordingly, the central densities in the cores of ultra-compact objects must be upper-limited by the critical density number <em>n</em><sub><em>cr</em></sub>, beyond which supranuclear dense matter becomes purely incompressible. Based on the spacetime-matter coupling in GR, it is shown that the topology of spacetime embedding incompressible quantum fluids with <em>n</em>=<em style="white-space:normal;">n</em><sub style="white-space:normal;"><em>cr </em></sub>must be Minkowski flat, which implies that spacetime at the background of ultra-compact objects should be bimetric.
基金Project (50975263) supported by the National Natural Science Foundation of ChinaProject (2010081015) supported by International Cooperation Project of Shanxi Province, China+1 种基金 Project (2010-78) supported by the Scholarship Council in Shanxi province, ChinaProject (2010420120005) supported by Doctoral Fund of Ministry of Education of China
文摘A new algorithm based on the projection method with the implicit finite difference technique was established to calculate the velocity fields and pressure.The calculation region can be divided into different regions according to Reynolds number.In the far-wall region,the thermal melt flow was calculated as Newtonian flow.In the near-wall region,the thermal melt flow was calculated as non-Newtonian flow.It was proved that the new algorithm based on the projection method with the implicit technique was correct through nonparametric statistics method and experiment.The simulation results show that the new algorithm based on the projection method with the implicit technique calculates more quickly than the solution algorithm-volume of fluid method using the explicit difference method.
文摘An analysis on crack creep propagation problem of power-law nonlinear viscoelastic materials is presented. The Creep incompressilility assumption is used Tosimulate fracture behavior of craze region. it is assumed that in the .fracture processzone near the crack tip, the cohesive stress fo acts upon the crack surfaces and resistscrack opening. Through a perturbation method i. e., by superposing the Mode-Iapplied force onto a referential uniform stress state, which has a trivial solution and gives no effect on the solution of the original problem, the nonlinear viscoelasticproblem is reduced to linear problem. For weak nonlinear materials, for which thepower-law index n=1, the expressions of stress and crack surface displacement arederived. Then, the fracture process zone local energy criterion is proposed and basedon which the formulas of crucking incubation time t. and crack slow propagationvelocity a are derired.
文摘The large deformation of incompressible rubber cylinder under inner pressure is ana- lyzed by a kind of new rubber materials strain energy function.The theory formulation for the dis- placement and stress is presented.The penalty finite element formulation is established in order to ana- lyze nonlinear rubber materials,and the results of finite element method agree well with theoretical ones.A new method for controlling the calculating stability and convergence rates is put forward.The selection of the appropriate penalty factor and its influence on calculated results are discussed.