Background: Few studies have focused on the geographic and chronologic assessment of inclusivity and wellness in Obstetrics and Gynecology residency websites across the US. Objective: To identify variations in wellnes...Background: Few studies have focused on the geographic and chronologic assessment of inclusivity and wellness in Obstetrics and Gynecology residency websites across the US. Objective: To identify variations in wellness and inclusivity website depictions across CREOG districts over the past two years. Methods: This is a cross-sectional analysis of the websites of ACGME-accredited OB/GYN residency programs across the United States between April 2022 and April 2023. The assessment was based on a compilation of 22 attributes devised and piloted by 49 medical students. A racially, geographically, and gender-diverse cohort of 11 students performed data collection. Results: A total of 560 websites were analyzed over two years. Wellness efforts remained unchanged in both years (website content, dedicated support personnel, and group activities). In 2023, a reduction in referencing of wellness (22%) and inclusivity (30%) occurred in leadership messaging. However, a 7% increase in the use of inclusive pronouns was noted. A reduction in gender diversity was identified (9% in faculty, 5% in residents), with programs favoring female-only teams. Similarly, a 7% reduction in the number of underrepresented in medicine faculty and residents was noted. A 15% reduction was noted in curricula referencing inclusivity in their mission statement and inclusivity focused research. Conclusions: This study suggests the variations across websites relative to inclusivity and wellness over the past two years. Updated websites may provide an accurate reflection of the offerings of programs and their investment in wellness and inclusivity across the nation.展开更多
Any language must have the inclusivity of its own,otherwise it can hardly get developed. The English language has got the most powerful inclusivity, which makes itself the lingua franca of the world. However, as one o...Any language must have the inclusivity of its own,otherwise it can hardly get developed. The English language has got the most powerful inclusivity, which makes itself the lingua franca of the world. However, as one of language varieties, China English develops with a lot of translation errors and culture deviations, which makes itself doubtful. As a result, a view comes into being that none errors can be permitted in China English, otherwise China English couldn't exist. But finally, it turns out that translation errors and culture deviations in China English are acceptable due to the language inclusivity.展开更多
As social and economic tensions in China grow more strained, discussions about the inclusiveness of China's rapid growth become both more common and more important. In the face of these socio-economic realities, econ...As social and economic tensions in China grow more strained, discussions about the inclusiveness of China's rapid growth become both more common and more important. In the face of these socio-economic realities, economists are trying to determine exactly how inclusive China's growth has been and how to increase that inclusiveness going forward. This paper aims to examine and measure the rate of inclusiveness in China's growth from 1978 to 2009 using a membership-based fuzzy comprehensive evaluation method. Results indicate that the past 30 years in China have only achieved "basic inclusivity, " which indicates that there is much work to be done before China's economic growth can be considered to have equally benefited its entire population.展开更多
When the G20 was created in 1999 in the wake of the Asian financial crisis,few imagined it would one day become the nerve centre of global governance.Twenty-six years later,the G20 members,which represent 85 percent o...When the G20 was created in 1999 in the wake of the Asian financial crisis,few imagined it would one day become the nerve centre of global governance.Twenty-six years later,the G20 members,which represent 85 percent of the global GDP and two-thirds of the world population,are once again navigating a turbulent era marked by geopolitical rivalry,economic fragmentation and widening inequality.展开更多
Rare earth La was introduced into 40Cr steel in industrial experiments to achieve the purpose of modifying inclusions.The impact of La on the inclusion modification was studied,and its influence on the solidification ...Rare earth La was introduced into 40Cr steel in industrial experiments to achieve the purpose of modifying inclusions.The impact of La on the inclusion modification was studied,and its influence on the solidification structure was further investigated.With adding 0.0023%La,the Al_(2)O_(3)·CaO·CaS inclusions were modified to the LaAlO_(3)·CaO·CaS inclusions.Additionally,the morphology tended to be more spherical,and the proportion of small-sized inclusions increased significantly from 77.8%to 93.5%.The large-sized inclusions were almost completely eliminated.Based on experimental results,a dynamical model elucidating the process of inclusion modification by La was developed.Furthermore,the ratio of equiaxed zone of the solidification structure increased from 22.9%to 31.0%,and the average primary dendrite arm spacing decreased significantly from 288.4 to 226.2μm.Two-dimensional lattice mismatch analysis results determined that LaAlO_(3)can serve as an effective heterogeneous nucleation core,leading to solidification structure refinement.The beneficial transformation of inclusions and refinement of solidification structure are conducive to the cold heading process of 40Cr steel.展开更多
Microalloyed steels are extensively utilized in the automotive industry for their superior strength–toughness synergy.Structural components,such as cranks,wheels,and front axles,are subjected to fluctuating or repeti...Microalloyed steels are extensively utilized in the automotive industry for their superior strength–toughness synergy.Structural components,such as cranks,wheels,and front axles,are subjected to fluctuating or repetitive stresses during service,which cause fatigue damage or failure.Therefore,improving the fatigue properties of microalloyed steels is crucial to broaden their applications.An overview of the factors affecting the fatigue properties of microalloyed steels is provided,beginning with a concise description of microalloyed steels,followed by a discussion of key factors,such as microstructure,precipitation,and non-metallic inclusions,that influence fatigue performance.Strategies for enhancing fatigue properties are also explored,including non-metallic inclusion modification,surface treatment,and microstructure tailoring.Modification treatment of non-metallic inclusions can alter their morphology,size,quantity,distribution,etc.,thereby reducing the adverse effect on fatigue performance.The surface treatment enhances resistance to crack initiation by introducing compressive residual stress or refining the surface microstructure.Microstructure tailoring involves various heat treatment processes that can slow fatigue crack growth.Ultimately,the latest developments and future prospects of fatigue properties in microalloyed steels,based on academic research and industrial practices,are also summarized.展开更多
The dissolution behavior of complex inclusions in refining slag was studied using confocal laser scanning microscope.Based on the dissolution curve of complex inclusions,the main rate-limiting link of CaO-SiO_(2)-Al_(...The dissolution behavior of complex inclusions in refining slag was studied using confocal laser scanning microscope.Based on the dissolution curve of complex inclusions,the main rate-limiting link of CaO-SiO_(2)-Al_(2)O_(3)complex inclusions was the diffusion in the molten slag.The dissolution rate of CaO-SiO_(2)-Al_(2)O_(3)complex inclusions was affected by the composition and size of inclusion.The functional relationship between the dimensionless inclusion capacity(Zh)and the dimensionless dissolution rate(Ry)of CaO-SiO_(2)-Al_(2)O_(3)complex inclusions was calculated as Ry=2.10×10^(-6)Zh^(0.160),while it was Ry=2.10×10^(-6)Zh^(0.0087)for Al_(2)O_(3)-CaO complex inclusions.On this basis,the complete dissolution time and rate of the complex inclusions were calculated by using the function relation between the Zh and Ry numbers.展开更多
The characteristics of nonmetallic inclusions formed during steel production have a significant influence on steel performance.In this paper,studies on inclusions using confocal scanning laser microscopy(CSLM)are revi...The characteristics of nonmetallic inclusions formed during steel production have a significant influence on steel performance.In this paper,studies on inclusions using confocal scanning laser microscopy(CSLM)are reviewed and summarized,particularly the col-lision of various inclusions,dissolution of inclusions in liquid slag,and reactions between inclusions and steel.Solid inclusions exhibited a high collision tendency,whereas pure liquid inclusions exhibited minimal collisions because of the small attraction force induced by their<90°contact angle with molten steel.The collision of complex inclusions in molten steel was not included in the scope of this study and should be evaluated in future studies.Higher CaO/Al_(2)O_(3)and CaO/SiO_(2)ratios in liquid slag promoted the dissolution of Al_(2)O_(3)-based in-clusions.The formation of solid phases in the slag should be prevented to improve dissolution of inclusions.To accurately simulate the dissolution of inclusions in liquid slag,in-situ observation of the dissolution of inclusions at the steel-slag interface is necessary.Using a combination of CSLM and scanning electron microscopy-energy dispersive spectroscopy,the composition and morphological evolution of the inclusions during their modification by the dissolved elements in steel were observed and analyzed.Although the in-situ observa-tion of MnS and TiN precipitations has been widely studied,the in-situ observation of the evolution of oxide inclusions in steel during so-lidification and heating processes has rarely been reported.The effects of temperature,heating and cooling rates,and inclusion character-istics on the formation of acicular ferrites(AFs)have been widely studied.At a cooling rate of 3-5 K/s,the order of AF growth rate in-duced by different inclusions,as reported in literature,is Ti-O<Ti-Ca-Zr-Al-O<Mg-O<Ti-Zr-Al-O<Mn-Ti-Al-O<Ti-Al-O<Zr-Ti-Al-O.Further comprehensive experiments are required to investigate the quantitative relationship between the formation of AFs and inclusions.展开更多
The transformation mechanism of the inclusions and microstructure in 316L stainless steel after post-isothermal heat treatment(IHT)was revealed,along with the pitting behavior of the inclusions in a chloride environme...The transformation mechanism of the inclusions and microstructure in 316L stainless steel after post-isothermal heat treatment(IHT)was revealed,along with the pitting behavior of the inclusions in a chloride environment before and after the transformation.The effect of the inclusion transformation on the pitting corrosion behavior of 316L stainless steel and its intrinsic mechanism was also revealed.Results revealed a gradual transformation of MnO-SiO_(2)inclusions into MnO-Cr_(2)O_(3) within the temperature range of 1373 to 1573 K.MnO-Cr_(2)O_(3)inclusions exhibited minimal dissolution in chloride ion corrosion environments,while MnO-SiO_(2)oxides demonstrated higher electrochemical activity and were more prone to dissolve and form pits.Meanwhile,IHT significantly reduced the dislocation density of stainless steel,rendering it more stable in corrosive environments.X-ray photoelectron spectroscopy peak distributions of the passive films demonstrated that IHT increased the proportion of Cr and Fe oxides and hydroxides in the passive film which improved the stability and corrosion resistance of the steel.展开更多
The purpose of this article is to introduce a new method with a self-adaptive stepsize for approximating a common solution of monotone inclusion problems and variational inequality problems in reflexive Banach spaces....The purpose of this article is to introduce a new method with a self-adaptive stepsize for approximating a common solution of monotone inclusion problems and variational inequality problems in reflexive Banach spaces.The strong convergence result for our method is established under some standard assumptions without any requirement of the knowledge of the Lipschitz constant of the mapping.Several numerical experiments are provided to verify the advantages and efficiency of proposed algorithms.展开更多
Inclusive education is the transformation of the system,it highlights the difference and diversity,to strengthen the development of skills,under the premise of respect for difference and diversity(Barton,2013).Today,e...Inclusive education is the transformation of the system,it highlights the difference and diversity,to strengthen the development of skills,under the premise of respect for difference and diversity(Barton,2013).Today,educational inclusion is carried out and meets the educational needs of students individually,where the actors in the educational process contribute to learning while respecting the differences and diversity of each individual.By fulfilling the transformative and integrative role that improves skills and breaks down the barriers that arise in learning,Contemporary education has taken on the challenge of promoting various programs aimed at fostering inclusive teaching and learning processes that facilitate attention to diversity.It is evident that the integration of students with special needs into regular schools has led to significant changes in the curriculum,infrastructure,and teacher training.In the last ten years,inclusive education has made significant progress,but much remains to be done to expand inclusive spaces.展开更多
In order to mitigate the harm of alumina,calcium aluminate,and magnesium aluminum spinel inclusions on the fatigue performance of bearing steel,the effect of Ce-Mg composite treatment on the cleanliness of silicon-kil...In order to mitigate the harm of alumina,calcium aluminate,and magnesium aluminum spinel inclusions on the fatigue performance of bearing steel,the effect of Ce-Mg composite treatment on the cleanliness of silicon-killed GCr15 bearing steel and the evolution of Ce-Mg-Mn-O-S composite inclusions during heat treatment of the steels at 1523 K were investigated in this present work.The results indicate that the cleanliness of S2 with 0.0045 wt%Ce and 0.0016 wt%Mg is better than that in S1 with0.0020 wt%Ce and 0.0011 wt%Mg,which is attributed to the more effective removal of Ce-Mg-Mn-O-S composite inclusions,with help of good aggregation capacity of Ce-containing inclusions and small volume density of Mg-containing inclusions,due to the increase of rare earth and magnesium content.The aspect ratio and area fraction of the Ce-Mg-Mn-O-S composite inclusions in as-cast steel decrease significantly with isothermal treatment at 1523 K for 150 min,due to the effect of(ⅰ)Ostwald aging mechanism of inclusions and(ⅱ)sulfide solid solution during isothermal treatment.With the increase of isothermal treatment time from 150 to 550 min,the aspect ratio and area fraction of the inclusions in SO(untreated steel)and S1 decrease slightly,because spheroidization and solid solution of inclusions reach their basic equilibrium at 1523 K.However,the aspect ratio and area fraction of the Ce-Mg-Mn-O-S composite inclusions in S2 actually increase,and the inclusions evolve into three-phase(two-phase)inclusions,which is attributed to(ⅲ)transformation of phase compositions in inclusions and interfacial reaction between inclusions and steel matrix during isothermal heating.Therefore,the control of inclusions in silicon-killed bearing steel with Ce and Mg composite treatment should be combined with specific heat treatment processes and appropriate rare earth and magnesium contents,to minimize the damage of inclusions on the fatigue performance of bearing steel products.展开更多
This article has been compiled and edited by China Report ASEAN based on an interview with the FAO Office of Youth and Women.As the Food and Agriculture Organization of the United Nations(FAO)celebrates its 80th anniv...This article has been compiled and edited by China Report ASEAN based on an interview with the FAO Office of Youth and Women.As the Food and Agriculture Organization of the United Nations(FAO)celebrates its 80th anniversary,the spotlight is shifting from solely honouring its longstanding mission to also highlighting the dynamic participation of youth and women in driving positive changes in agrifood systems.展开更多
To mitigate the harmful effects of Al_(2)O_(3) inclusions in steel,it is necessary to conduct comprehensive research on the mechanisms and kinetic laws of Al_(2)O_(3) inclusion modification by Ce.Combined with laborat...To mitigate the harmful effects of Al_(2)O_(3) inclusions in steel,it is necessary to conduct comprehensive research on the mechanisms and kinetic laws of Al_(2)O_(3) inclusion modification by Ce.Combined with laboratory experiments,first-principles calculations,and molecular dynamics simulations,the kinetic model of Ce modification for Al_(2)O_(3) inclusions was established.Based on first-principles calculations,differential charge analysis,density of states analysis,and adsorption energy analysis were performed on the transformation process from Al_(2)O_(3) to CeAlO_(3) at the atomic scale,and the microscopic transformation mechanism of inclusions at the atomic scale was obtained.Molecular dynamics simulations and the solution of mean square displacement function show that the diffusion coefficient for Ce atoms was 2.169×10^(−4) cm^(2)/s,which agreed well with experimental results.In this model,the rate-determining step is the diffusion of Ce atoms across Ce–Al–O inclusions.The relationship between the conversion rate,refining time,and initial radius was discussed.A refining time of 60 s can completely transform Al_(2)O_(3) inclusions less than 2.56μm into CeAlO_(3) inclusions,while refining time of 1200 s is sufficient to modify inclusions size below 11.47μm.展开更多
Through thermodynamic calculations and microstructural characterization,the effect of niobium(Nb)content on the solidifica-tion characteristics of Alloy 625 Plus was systematically investigated.Subsequently,the effect...Through thermodynamic calculations and microstructural characterization,the effect of niobium(Nb)content on the solidifica-tion characteristics of Alloy 625 Plus was systematically investigated.Subsequently,the effect of Nb content on hot deformation behaviorwas examined through hot compression experiments.The results indicated that increasing the Nb content lowers the liquidus temperatureof the alloy by 51℃,producing a denser solidification microstructure.The secondary dendrite arm spacing(SDAS)of the alloy decreasesfrom 39.09 to 22.61μm.Increasing the Nb content alleviates element segregation but increases interdendritic precipitates,increasing theirarea fraction from 0.15% to 5.82%.These precipitates are primarily composed of large Laves,δ,η,and γ″phases,and trace amounts of Nb C.The shapes of these precipitates change from small chunks to large elongated forms.No significant change in the type or amount ofinclusions within the alloy is detected.The inclusions are predominantly individual Al_(2)O_(3) and TiN,as well as Al_(2)O_(3)/Ti N composite inclu-sions.Samples with varying Nb contents underwent hot compression deformation at a true strain of 0.69,a strain rate of 0.5 s^(-1),and a de-formation temperature of 1150℃.Increasing the Nb content also elevates the peak stress observed in the flow curves.However,alloyswith higher Nb content exhibit more pronounced recrystallization softening effects.The Laves phase precipitates do not completely redis-solve during hot deformation and are stretched to elongated shapes.The high-strain energy storage increases the recrystallization fractionfrom 32.4% to 95.5%,significantly enhancing the degree of recrystallization and producing a more uniform deformation microstructure.This effect is primarily attributed to the addition of Nb,which refines the initial grains of the alloy,enhances the solid solution strengthen-ing of the matrix,and improves the induction of particle-stimulated nucleation.展开更多
Trimethoprim(TMP),as a broad-spectrum bacteriostatic antibiotic,is widely used in clinical anti-infection therapy and livestock breeding.However,its low water solubility leads to insufficient bioavailability,which has...Trimethoprim(TMP),as a broad-spectrum bacteriostatic antibiotic,is widely used in clinical anti-infection therapy and livestock breeding.However,its low water solubility leads to insufficient bioavailability,which has become a key problem restricting its development.Cyclodextrins and their derivatives,with their unique cyclic structures,can form inclusion complexes with TMP to improve its properties.This article reviews the pharmacological characteristics of TMP,the types and properties of common cyclodextrins,focusing on introducing various preparation methods of trimethoprim cyclodextrin inclusion complexes and multiple characterization methods for identifying the inclusion complexes,aiming to provide a reference for further research and development of trimethoprim cyclodextrin inclusion complexes.展开更多
Slagging and calcium treatment are commonly used methods to control cleanliness and inclusions in steel.However,the inappropriate slagging and calcium treatment operations resulted in the generation of large-sized inc...Slagging and calcium treatment are commonly used methods to control cleanliness and inclusions in steel.However,the inappropriate slagging and calcium treatment operations resulted in the generation of large-sized inclusions and deterioration of steel cleanliness;meanwhile,changed inclusions from Al_(2)O_(3)–SiO_(2)–MnO type to Al_(2)O_(3)–SiO_(2)–CaO type after the calcium treatment during the production of an H-beam steel.Combining the thermodynamic analysis and industrial trials,measurements including reducing the basicity of refining slag to be less than 2.0 and the Al_(2)O_(3)content in slag to be less than 10 wt.%and the cancelation of calcium treatment under the total content less than 15×10^(−6)have been taken.After optimization,the content of total oxygen in tundish decreased by 24%;meanwhile,inclusions were changed from the Al_(2)O_(3)–SiO_(2)–CaO system to the Al_(2)O_(3)–SiO_(2)–MnO system with a low-melting point and a obvious decrease in the number density,area fraction,and maximum size of inclusions.It has achieved the improvement of steel cleanliness while reducing production costs.展开更多
To develop a wear-resistant steel with excellent mechanical properties and superior wear resistance,low alloy wear-resistant steels with different contents of rare earth were prepared through induction smelting,rollin...To develop a wear-resistant steel with excellent mechanical properties and superior wear resistance,low alloy wear-resistant steels with different contents of rare earth were prepared through induction smelting,rolling,quenching,and tempering.The effects of Ce on the inclusion characteristics,mechanical properties,and wear resistance of the test steels were investigated through scanning electron microscopy and energy dispersive X-ray spectroscopy,mechanical property testing,and impact abrasive wear testing.The results indicated that adding Ce to the low alloy wear-resistant steel significantly reduced the number and size of inclusions.When the Ce content reached 0.0037 wt.%,irregular Al_(2)O_(3) and MnS inclusions were significantly reduced and were replaced by nearly spherical Ce_(2)O_(2)S,CeS,and CeP inclusions.The comprehensive mechanical properties including the strength,post-fracture elongation,Brinell hardness,and impact toughness of the test steels were enhanced in various degrees.In particular,the low-temperature impact toughness of the test steels increased from 18 to 39 J as the Ce content rose from 0 to 0.0037 wt.%.The wear mass loss of the test steel gradually decreased with increasing the Ce content,indicating that the addition of Ce significantly enhances the wear resistance of low alloy wear-resistant steel.Under impact loading,a plastic deformation zone called sub-surface layer with a thickness of 10–30μm formed on the worn surface.Work hardening from the plastic deformation strengthened the microhardness of the sub-surface layer,thus improving the wear resistance of the test steel.With increasing the Ce content,the wear resistance of the test steel further improved due to thickening the sub-surface layer.展开更多
Formation and evolution of inclusions in low-aluminum Ti-containing 51CrV4 spring steel under BOF(basic oxygen furnace)–LF(ladle furnace)–CC(continuous casting)process were investigated by industrial trials and ther...Formation and evolution of inclusions in low-aluminum Ti-containing 51CrV4 spring steel under BOF(basic oxygen furnace)–LF(ladle furnace)–CC(continuous casting)process were investigated by industrial trials and thermodynamic calculations.During LF refining,deoxidation products including Al_(2)O_(3),Al_(2)O_(3)–Ti_(3)O_(5)–SiO_(2)–MnO and Al_(2)O_(3)–SiO_(2)–MnO are modified as MgO–Al_(2)O_(3),CaO–Al_(2)O_(3)–SiO_(2),CaO–Al_(2)O_(3)–MgO and CaO–Al_(2)O_(3)–SiO_(2)–MgO.When reoxidation during ladle casting is quite serious,inclusions such as Al_(2)O_(3),Al_(2)O_(3)–Ti_(3)O_(5)–SiO_(2)–MnO,and Al_(2)O_(3)–SiO_(2)–MnO may regenerate.A handful of Ti carried by alloy into liquid steel has less influence on inclusions during LF refining;Ti-containing inclusions mainly transiently exist as an intermediate product of deoxidation process and then are gradually modified by[Al],[Ca]or[Mg].Thermodynamic calculation and experimental results reveal that tundish flux is the main source of reoxidation in ladle casting process.Further calculations taking into account of the influence of inclusions before casting indicate that reoxidation within a certain of degree leads to the generation of a large amount of high melting point inclusions including CaO·2MgO·8Al_(2)O_(3),CaO·MgO·7Al_(2)O_(3),MgO·Al_(2)O_(3),CaO·6Al_(2)O_(3)and Al_(2)O_(3)in molten steel,which is basically consistent with experimental results,and more high melting point inclusions will generate as reoxidation becomes severer.On this basis,severer reoxidation will deplete[Si],[Mn],and[Ti]in steel melt,resulting in the formation of liquid inclusions composed of Al_(2)O_(3)–Ti_(3)O_(5)–SiO_(2)–MnO(–CaO).These results are of guiding significance for controlling inclusions in Al-killed Ti-containing spring steel.展开更多
文摘Background: Few studies have focused on the geographic and chronologic assessment of inclusivity and wellness in Obstetrics and Gynecology residency websites across the US. Objective: To identify variations in wellness and inclusivity website depictions across CREOG districts over the past two years. Methods: This is a cross-sectional analysis of the websites of ACGME-accredited OB/GYN residency programs across the United States between April 2022 and April 2023. The assessment was based on a compilation of 22 attributes devised and piloted by 49 medical students. A racially, geographically, and gender-diverse cohort of 11 students performed data collection. Results: A total of 560 websites were analyzed over two years. Wellness efforts remained unchanged in both years (website content, dedicated support personnel, and group activities). In 2023, a reduction in referencing of wellness (22%) and inclusivity (30%) occurred in leadership messaging. However, a 7% increase in the use of inclusive pronouns was noted. A reduction in gender diversity was identified (9% in faculty, 5% in residents), with programs favoring female-only teams. Similarly, a 7% reduction in the number of underrepresented in medicine faculty and residents was noted. A 15% reduction was noted in curricula referencing inclusivity in their mission statement and inclusivity focused research. Conclusions: This study suggests the variations across websites relative to inclusivity and wellness over the past two years. Updated websites may provide an accurate reflection of the offerings of programs and their investment in wellness and inclusivity across the nation.
文摘Any language must have the inclusivity of its own,otherwise it can hardly get developed. The English language has got the most powerful inclusivity, which makes itself the lingua franca of the world. However, as one of language varieties, China English develops with a lot of translation errors and culture deviations, which makes itself doubtful. As a result, a view comes into being that none errors can be permitted in China English, otherwise China English couldn't exist. But finally, it turns out that translation errors and culture deviations in China English are acceptable due to the language inclusivity.
文摘As social and economic tensions in China grow more strained, discussions about the inclusiveness of China's rapid growth become both more common and more important. In the face of these socio-economic realities, economists are trying to determine exactly how inclusive China's growth has been and how to increase that inclusiveness going forward. This paper aims to examine and measure the rate of inclusiveness in China's growth from 1978 to 2009 using a membership-based fuzzy comprehensive evaluation method. Results indicate that the past 30 years in China have only achieved "basic inclusivity, " which indicates that there is much work to be done before China's economic growth can be considered to have equally benefited its entire population.
文摘When the G20 was created in 1999 in the wake of the Asian financial crisis,few imagined it would one day become the nerve centre of global governance.Twenty-six years later,the G20 members,which represent 85 percent of the global GDP and two-thirds of the world population,are once again navigating a turbulent era marked by geopolitical rivalry,economic fragmentation and widening inequality.
基金the National Natural Science Foundation of China(52004180,52204350)the China Postdoctoral Science Foundation(2020M683706XB)the Research Project Supported by Shanxi Scholarship Council of China(2023-080).
文摘Rare earth La was introduced into 40Cr steel in industrial experiments to achieve the purpose of modifying inclusions.The impact of La on the inclusion modification was studied,and its influence on the solidification structure was further investigated.With adding 0.0023%La,the Al_(2)O_(3)·CaO·CaS inclusions were modified to the LaAlO_(3)·CaO·CaS inclusions.Additionally,the morphology tended to be more spherical,and the proportion of small-sized inclusions increased significantly from 77.8%to 93.5%.The large-sized inclusions were almost completely eliminated.Based on experimental results,a dynamical model elucidating the process of inclusion modification by La was developed.Furthermore,the ratio of equiaxed zone of the solidification structure increased from 22.9%to 31.0%,and the average primary dendrite arm spacing decreased significantly from 288.4 to 226.2μm.Two-dimensional lattice mismatch analysis results determined that LaAlO_(3)can serve as an effective heterogeneous nucleation core,leading to solidification structure refinement.The beneficial transformation of inclusions and refinement of solidification structure are conducive to the cold heading process of 40Cr steel.
基金financially supported by the National Key R&D Program of China(No.2021YFB3702403)financial support from the National Natural Science Foundation of China(Nos.52122408 and 52071023)。
文摘Microalloyed steels are extensively utilized in the automotive industry for their superior strength–toughness synergy.Structural components,such as cranks,wheels,and front axles,are subjected to fluctuating or repetitive stresses during service,which cause fatigue damage or failure.Therefore,improving the fatigue properties of microalloyed steels is crucial to broaden their applications.An overview of the factors affecting the fatigue properties of microalloyed steels is provided,beginning with a concise description of microalloyed steels,followed by a discussion of key factors,such as microstructure,precipitation,and non-metallic inclusions,that influence fatigue performance.Strategies for enhancing fatigue properties are also explored,including non-metallic inclusion modification,surface treatment,and microstructure tailoring.Modification treatment of non-metallic inclusions can alter their morphology,size,quantity,distribution,etc.,thereby reducing the adverse effect on fatigue performance.The surface treatment enhances resistance to crack initiation by introducing compressive residual stress or refining the surface microstructure.Microstructure tailoring involves various heat treatment processes that can slow fatigue crack growth.Ultimately,the latest developments and future prospects of fatigue properties in microalloyed steels,based on academic research and industrial practices,are also summarized.
基金support from the National Key R&D Program(No.2023YFB3709900)the National Natural Science Foundation of China(Grant No.U22A20171)+1 种基金the High Steel Center at the North China University of Technologythe University of Science and Technology Beijing,China.
文摘The dissolution behavior of complex inclusions in refining slag was studied using confocal laser scanning microscope.Based on the dissolution curve of complex inclusions,the main rate-limiting link of CaO-SiO_(2)-Al_(2)O_(3)complex inclusions was the diffusion in the molten slag.The dissolution rate of CaO-SiO_(2)-Al_(2)O_(3)complex inclusions was affected by the composition and size of inclusion.The functional relationship between the dimensionless inclusion capacity(Zh)and the dimensionless dissolution rate(Ry)of CaO-SiO_(2)-Al_(2)O_(3)complex inclusions was calculated as Ry=2.10×10^(-6)Zh^(0.160),while it was Ry=2.10×10^(-6)Zh^(0.0087)for Al_(2)O_(3)-CaO complex inclusions.On this basis,the complete dissolution time and rate of the complex inclusions were calculated by using the function relation between the Zh and Ry numbers.
基金supported by the National Key R&D Program(No.2023YFB3709900)the National Nature Science Foundation of China(No.U22A20171)+2 种基金China Baowu Low Carbon Metallurgy Innovation Foundation(No.BWLCF202315)the High Steel Center(HSC)at North China University of TechnologyUniversity of Science and Technology Beijing,China.
文摘The characteristics of nonmetallic inclusions formed during steel production have a significant influence on steel performance.In this paper,studies on inclusions using confocal scanning laser microscopy(CSLM)are reviewed and summarized,particularly the col-lision of various inclusions,dissolution of inclusions in liquid slag,and reactions between inclusions and steel.Solid inclusions exhibited a high collision tendency,whereas pure liquid inclusions exhibited minimal collisions because of the small attraction force induced by their<90°contact angle with molten steel.The collision of complex inclusions in molten steel was not included in the scope of this study and should be evaluated in future studies.Higher CaO/Al_(2)O_(3)and CaO/SiO_(2)ratios in liquid slag promoted the dissolution of Al_(2)O_(3)-based in-clusions.The formation of solid phases in the slag should be prevented to improve dissolution of inclusions.To accurately simulate the dissolution of inclusions in liquid slag,in-situ observation of the dissolution of inclusions at the steel-slag interface is necessary.Using a combination of CSLM and scanning electron microscopy-energy dispersive spectroscopy,the composition and morphological evolution of the inclusions during their modification by the dissolved elements in steel were observed and analyzed.Although the in-situ observa-tion of MnS and TiN precipitations has been widely studied,the in-situ observation of the evolution of oxide inclusions in steel during so-lidification and heating processes has rarely been reported.The effects of temperature,heating and cooling rates,and inclusion character-istics on the formation of acicular ferrites(AFs)have been widely studied.At a cooling rate of 3-5 K/s,the order of AF growth rate in-duced by different inclusions,as reported in literature,is Ti-O<Ti-Ca-Zr-Al-O<Mg-O<Ti-Zr-Al-O<Mn-Ti-Al-O<Ti-Al-O<Zr-Ti-Al-O.Further comprehensive experiments are required to investigate the quantitative relationship between the formation of AFs and inclusions.
基金the support from the National Natural Science Foundation of China(Grant Nos.52074198,52374342,and U21A20113)the Department of Science and Technology of Hubei Province(Grant Nos.2023AFB603 and 2023DJC140).
文摘The transformation mechanism of the inclusions and microstructure in 316L stainless steel after post-isothermal heat treatment(IHT)was revealed,along with the pitting behavior of the inclusions in a chloride environment before and after the transformation.The effect of the inclusion transformation on the pitting corrosion behavior of 316L stainless steel and its intrinsic mechanism was also revealed.Results revealed a gradual transformation of MnO-SiO_(2)inclusions into MnO-Cr_(2)O_(3) within the temperature range of 1373 to 1573 K.MnO-Cr_(2)O_(3)inclusions exhibited minimal dissolution in chloride ion corrosion environments,while MnO-SiO_(2)oxides demonstrated higher electrochemical activity and were more prone to dissolve and form pits.Meanwhile,IHT significantly reduced the dislocation density of stainless steel,rendering it more stable in corrosive environments.X-ray photoelectron spectroscopy peak distributions of the passive films demonstrated that IHT increased the proportion of Cr and Fe oxides and hydroxides in the passive film which improved the stability and corrosion resistance of the steel.
基金Supported by NSFC(No.12171062)the Natural Science Foundation of Chongqing(No.CSTB2022NSCQ-JQX0004)+1 种基金the Chongqing Talent Support Program(No.cstc2024ycjh-bgzxm0121)Science and Technology Project of Chongqing Education Committee(No.KJZD-M202300503)。
文摘The purpose of this article is to introduce a new method with a self-adaptive stepsize for approximating a common solution of monotone inclusion problems and variational inequality problems in reflexive Banach spaces.The strong convergence result for our method is established under some standard assumptions without any requirement of the knowledge of the Lipschitz constant of the mapping.Several numerical experiments are provided to verify the advantages and efficiency of proposed algorithms.
文摘Inclusive education is the transformation of the system,it highlights the difference and diversity,to strengthen the development of skills,under the premise of respect for difference and diversity(Barton,2013).Today,educational inclusion is carried out and meets the educational needs of students individually,where the actors in the educational process contribute to learning while respecting the differences and diversity of each individual.By fulfilling the transformative and integrative role that improves skills and breaks down the barriers that arise in learning,Contemporary education has taken on the challenge of promoting various programs aimed at fostering inclusive teaching and learning processes that facilitate attention to diversity.It is evident that the integration of students with special needs into regular schools has led to significant changes in the curriculum,infrastructure,and teacher training.In the last ten years,inclusive education has made significant progress,but much remains to be done to expand inclusive spaces.
基金Project supported by the National Natural Science Foundation of China(52174323,52231003)。
文摘In order to mitigate the harm of alumina,calcium aluminate,and magnesium aluminum spinel inclusions on the fatigue performance of bearing steel,the effect of Ce-Mg composite treatment on the cleanliness of silicon-killed GCr15 bearing steel and the evolution of Ce-Mg-Mn-O-S composite inclusions during heat treatment of the steels at 1523 K were investigated in this present work.The results indicate that the cleanliness of S2 with 0.0045 wt%Ce and 0.0016 wt%Mg is better than that in S1 with0.0020 wt%Ce and 0.0011 wt%Mg,which is attributed to the more effective removal of Ce-Mg-Mn-O-S composite inclusions,with help of good aggregation capacity of Ce-containing inclusions and small volume density of Mg-containing inclusions,due to the increase of rare earth and magnesium content.The aspect ratio and area fraction of the Ce-Mg-Mn-O-S composite inclusions in as-cast steel decrease significantly with isothermal treatment at 1523 K for 150 min,due to the effect of(ⅰ)Ostwald aging mechanism of inclusions and(ⅱ)sulfide solid solution during isothermal treatment.With the increase of isothermal treatment time from 150 to 550 min,the aspect ratio and area fraction of the inclusions in SO(untreated steel)and S1 decrease slightly,because spheroidization and solid solution of inclusions reach their basic equilibrium at 1523 K.However,the aspect ratio and area fraction of the Ce-Mg-Mn-O-S composite inclusions in S2 actually increase,and the inclusions evolve into three-phase(two-phase)inclusions,which is attributed to(ⅲ)transformation of phase compositions in inclusions and interfacial reaction between inclusions and steel matrix during isothermal heating.Therefore,the control of inclusions in silicon-killed bearing steel with Ce and Mg composite treatment should be combined with specific heat treatment processes and appropriate rare earth and magnesium contents,to minimize the damage of inclusions on the fatigue performance of bearing steel products.
文摘This article has been compiled and edited by China Report ASEAN based on an interview with the FAO Office of Youth and Women.As the Food and Agriculture Organization of the United Nations(FAO)celebrates its 80th anniversary,the spotlight is shifting from solely honouring its longstanding mission to also highlighting the dynamic participation of youth and women in driving positive changes in agrifood systems.
基金supported by the National Natural Science Foundation of China(Nos.52064011,52274331 and 52264041)Guizhou Provincial Basic Research Program(Natural Science)(Nos.ZK[2021]258 and ZK[2023]Zhongdian 020)+6 种基金Guizhou Provincial Key Technology R&D Program(No.[2021]342)Guizhou Provincial Program on Commercialization of Scientific and Technological Achievements(No.[2022]089)supported by Open Project of State Key Laboratory of Advanced Special Steel,Shanghai Key Laboratory of Advanced Ferrometallurgy,Shanghai University(No.SKLASS 2023-08)the Science and Technology Commission of Shanghai Municipality(No.19DZ2270200)supported by State Key Laboratory of Advanced Metallurgy(No.K23-04)China Postdoctoral Science Foundation(No.2023MD744232)Key Research Projects in Higher Education Institutions of Henan Province(No.24B450003).
文摘To mitigate the harmful effects of Al_(2)O_(3) inclusions in steel,it is necessary to conduct comprehensive research on the mechanisms and kinetic laws of Al_(2)O_(3) inclusion modification by Ce.Combined with laboratory experiments,first-principles calculations,and molecular dynamics simulations,the kinetic model of Ce modification for Al_(2)O_(3) inclusions was established.Based on first-principles calculations,differential charge analysis,density of states analysis,and adsorption energy analysis were performed on the transformation process from Al_(2)O_(3) to CeAlO_(3) at the atomic scale,and the microscopic transformation mechanism of inclusions at the atomic scale was obtained.Molecular dynamics simulations and the solution of mean square displacement function show that the diffusion coefficient for Ce atoms was 2.169×10^(−4) cm^(2)/s,which agreed well with experimental results.In this model,the rate-determining step is the diffusion of Ce atoms across Ce–Al–O inclusions.The relationship between the conversion rate,refining time,and initial radius was discussed.A refining time of 60 s can completely transform Al_(2)O_(3) inclusions less than 2.56μm into CeAlO_(3) inclusions,while refining time of 1200 s is sufficient to modify inclusions size below 11.47μm.
基金the financial support from the National Natural Science Foundation of China(No.52174303)the Program of Introducing Talents of Disciplineto Universities,China(No.B21001)the Joint Program of Science and Technology Plans in Liaoning Province,China(No.2023JH2/101700302t)。
文摘Through thermodynamic calculations and microstructural characterization,the effect of niobium(Nb)content on the solidifica-tion characteristics of Alloy 625 Plus was systematically investigated.Subsequently,the effect of Nb content on hot deformation behaviorwas examined through hot compression experiments.The results indicated that increasing the Nb content lowers the liquidus temperatureof the alloy by 51℃,producing a denser solidification microstructure.The secondary dendrite arm spacing(SDAS)of the alloy decreasesfrom 39.09 to 22.61μm.Increasing the Nb content alleviates element segregation but increases interdendritic precipitates,increasing theirarea fraction from 0.15% to 5.82%.These precipitates are primarily composed of large Laves,δ,η,and γ″phases,and trace amounts of Nb C.The shapes of these precipitates change from small chunks to large elongated forms.No significant change in the type or amount ofinclusions within the alloy is detected.The inclusions are predominantly individual Al_(2)O_(3) and TiN,as well as Al_(2)O_(3)/Ti N composite inclu-sions.Samples with varying Nb contents underwent hot compression deformation at a true strain of 0.69,a strain rate of 0.5 s^(-1),and a de-formation temperature of 1150℃.Increasing the Nb content also elevates the peak stress observed in the flow curves.However,alloyswith higher Nb content exhibit more pronounced recrystallization softening effects.The Laves phase precipitates do not completely redis-solve during hot deformation and are stretched to elongated shapes.The high-strain energy storage increases the recrystallization fractionfrom 32.4% to 95.5%,significantly enhancing the degree of recrystallization and producing a more uniform deformation microstructure.This effect is primarily attributed to the addition of Nb,which refines the initial grains of the alloy,enhances the solid solution strengthen-ing of the matrix,and improves the induction of particle-stimulated nucleation.
基金Academic Fund for Students of Foshan University in 2024(Project No.:xsjj202409zrb11)。
文摘Trimethoprim(TMP),as a broad-spectrum bacteriostatic antibiotic,is widely used in clinical anti-infection therapy and livestock breeding.However,its low water solubility leads to insufficient bioavailability,which has become a key problem restricting its development.Cyclodextrins and their derivatives,with their unique cyclic structures,can form inclusion complexes with TMP to improve its properties.This article reviews the pharmacological characteristics of TMP,the types and properties of common cyclodextrins,focusing on introducing various preparation methods of trimethoprim cyclodextrin inclusion complexes and multiple characterization methods for identifying the inclusion complexes,aiming to provide a reference for further research and development of trimethoprim cyclodextrin inclusion complexes.
基金support from the National Key R&D Program(Nos.2023YFB3506802 and 2023YFB3709900)the National Natural Science Foundation of China(Grant Nos.52174293 and U22A20171)+1 种基金the Fundamental Research Funds for the Central Universities(Grant No.FRF-BD-20-04A)the High Steel Center(HSC)at North China University of Technology.
文摘Slagging and calcium treatment are commonly used methods to control cleanliness and inclusions in steel.However,the inappropriate slagging and calcium treatment operations resulted in the generation of large-sized inclusions and deterioration of steel cleanliness;meanwhile,changed inclusions from Al_(2)O_(3)–SiO_(2)–MnO type to Al_(2)O_(3)–SiO_(2)–CaO type after the calcium treatment during the production of an H-beam steel.Combining the thermodynamic analysis and industrial trials,measurements including reducing the basicity of refining slag to be less than 2.0 and the Al_(2)O_(3)content in slag to be less than 10 wt.%and the cancelation of calcium treatment under the total content less than 15×10^(−6)have been taken.After optimization,the content of total oxygen in tundish decreased by 24%;meanwhile,inclusions were changed from the Al_(2)O_(3)–SiO_(2)–CaO system to the Al_(2)O_(3)–SiO_(2)–MnO system with a low-melting point and a obvious decrease in the number density,area fraction,and maximum size of inclusions.It has achieved the improvement of steel cleanliness while reducing production costs.
文摘To develop a wear-resistant steel with excellent mechanical properties and superior wear resistance,low alloy wear-resistant steels with different contents of rare earth were prepared through induction smelting,rolling,quenching,and tempering.The effects of Ce on the inclusion characteristics,mechanical properties,and wear resistance of the test steels were investigated through scanning electron microscopy and energy dispersive X-ray spectroscopy,mechanical property testing,and impact abrasive wear testing.The results indicated that adding Ce to the low alloy wear-resistant steel significantly reduced the number and size of inclusions.When the Ce content reached 0.0037 wt.%,irregular Al_(2)O_(3) and MnS inclusions were significantly reduced and were replaced by nearly spherical Ce_(2)O_(2)S,CeS,and CeP inclusions.The comprehensive mechanical properties including the strength,post-fracture elongation,Brinell hardness,and impact toughness of the test steels were enhanced in various degrees.In particular,the low-temperature impact toughness of the test steels increased from 18 to 39 J as the Ce content rose from 0 to 0.0037 wt.%.The wear mass loss of the test steel gradually decreased with increasing the Ce content,indicating that the addition of Ce significantly enhances the wear resistance of low alloy wear-resistant steel.Under impact loading,a plastic deformation zone called sub-surface layer with a thickness of 10–30μm formed on the worn surface.Work hardening from the plastic deformation strengthened the microhardness of the sub-surface layer,thus improving the wear resistance of the test steel.With increasing the Ce content,the wear resistance of the test steel further improved due to thickening the sub-surface layer.
基金support from the project of Xinjiang Bayi Iron and Steel Co.,Ltd.(No.2022-0460).
文摘Formation and evolution of inclusions in low-aluminum Ti-containing 51CrV4 spring steel under BOF(basic oxygen furnace)–LF(ladle furnace)–CC(continuous casting)process were investigated by industrial trials and thermodynamic calculations.During LF refining,deoxidation products including Al_(2)O_(3),Al_(2)O_(3)–Ti_(3)O_(5)–SiO_(2)–MnO and Al_(2)O_(3)–SiO_(2)–MnO are modified as MgO–Al_(2)O_(3),CaO–Al_(2)O_(3)–SiO_(2),CaO–Al_(2)O_(3)–MgO and CaO–Al_(2)O_(3)–SiO_(2)–MgO.When reoxidation during ladle casting is quite serious,inclusions such as Al_(2)O_(3),Al_(2)O_(3)–Ti_(3)O_(5)–SiO_(2)–MnO,and Al_(2)O_(3)–SiO_(2)–MnO may regenerate.A handful of Ti carried by alloy into liquid steel has less influence on inclusions during LF refining;Ti-containing inclusions mainly transiently exist as an intermediate product of deoxidation process and then are gradually modified by[Al],[Ca]or[Mg].Thermodynamic calculation and experimental results reveal that tundish flux is the main source of reoxidation in ladle casting process.Further calculations taking into account of the influence of inclusions before casting indicate that reoxidation within a certain of degree leads to the generation of a large amount of high melting point inclusions including CaO·2MgO·8Al_(2)O_(3),CaO·MgO·7Al_(2)O_(3),MgO·Al_(2)O_(3),CaO·6Al_(2)O_(3)and Al_(2)O_(3)in molten steel,which is basically consistent with experimental results,and more high melting point inclusions will generate as reoxidation becomes severer.On this basis,severer reoxidation will deplete[Si],[Mn],and[Ti]in steel melt,resulting in the formation of liquid inclusions composed of Al_(2)O_(3)–Ti_(3)O_(5)–SiO_(2)–MnO(–CaO).These results are of guiding significance for controlling inclusions in Al-killed Ti-containing spring steel.