Based on the theoretical expression of the three-dimension rheologic inclusion model, we analyze in detail the spatio-temporal changes on the ground of the bulk-strain produced by a spherical rheologic inclusion in a ...Based on the theoretical expression of the three-dimension rheologic inclusion model, we analyze in detail the spatio-temporal changes on the ground of the bulk-strain produced by a spherical rheologic inclusion in a semi-infinite rheologic medium. The results show that the spatio-temporal change of bulk-strain produced by the hard inclusion has three stages of different characteristics, which are similar to most of those geodetic deformation curves, but those by a soft inclusion do not. The α-stage is a long stage in which the precursors in both the near source region and the far field develop from the focal region to the periphery. The β-stage indicates a very rapid propagation of the precursors, so that they almost appear everywhere. During the γ-stage, the precursors in the far-field converge from the periphery, and the precursors in the near source region develop outwards. The theoretical results have been used to explain tentatively the stage characteristics of the spatio-temporal change of earthquake precursors.展开更多
The influence of concrete components on projectile penetration is significant.To study the relationship between the equivalent mechanical properties and components of concrete under a penetration load,concrete is simp...The influence of concrete components on projectile penetration is significant.To study the relationship between the equivalent mechanical properties and components of concrete under a penetration load,concrete is simplified as a two-phase composite of coarse aggregate and mortar,and a meso-mechanical model is established,including the equivalent equation of state model,the equivalent confining pressure strength model and the equivalent dynamic tensile strength model,considering shear stress,large deformation and pore compression.Tests of the mechanical properties of mortar,concrete and limestone were conducted;the results show that the equivalent mechanical properties of concrete calculated by the meso-mechanical model are consistent with the test results,and the equivalent mechanical properties of concrete with different volume fractions of coarse aggregate are obtained.Meso-scale and macro-scale numerical simulations of a projectile penetrating into concrete are carried out,the penetration depths obtained by meso-scale and macro-scale numerical simulations are consistent for different volume fractions of coarse aggregate and different velocities of the projectile,which verifies the rationality of the meso-mechanical model.展开更多
An explicit model management framework is introduced for predictive Groundwater Levels(GWL),particularly suitable to Observation Wells(OWs)with sparse and possibly heterogeneous data.The framework implements Multiple ...An explicit model management framework is introduced for predictive Groundwater Levels(GWL),particularly suitable to Observation Wells(OWs)with sparse and possibly heterogeneous data.The framework implements Multiple Models(MM)under the architecture of organising them at levels,as follows:(i)Level 0:treat heterogeneity in the data,e.g.Self-Organised Mapping(SOM)to classify the OWs;and decide on model structure,e.g.formulate a grey box model to predict GWLs.(ii)Level 1:construct MMs,e.g.two Fuzzy Logic(FL)and one Neurofuzzy(NF)models.(iii)Level 2:formulate strategies to combine the MM at Level 1,for which the paper uses Artificial Neural Networks(Strategy 1)and simple averaging(Strategy 2).Whilst the above model management strategy is novel,a critical view is presented,according to which modelling practices are:Inclusive Multiple Modelling(IMM)practices contrasted with existing practices,branded by the paper as Exclusionary Multiple Modelling(EMM).Scientific thinking over IMMs is captured as a framework with four dimensions:Model Reuse(MR),Hierarchical Recursion(HR),Elastic Learning Environment(ELE)and Goal Orientation(GO)and these together make the acronym of RHEO.Therefore,IMM-RHEO is piloted in the aquifer of Tabriz Plain with sparse and possibly heterogeneous data.The results provide some evidence that(i)IMM at two levels improves on the accuracy of individual models;and(ii)model combinations in IMM practices bring‘model-learning’into fashion for learning with the goal to explain baseline conditions and impacts of subsequent management changes.展开更多
We proposed a microscopic mechanical model for the effective elastic modulus of resin mineral composites based on the Mori-Tanaka method and equivalent inclusion theory to predict the elastic modulus of these material...We proposed a microscopic mechanical model for the effective elastic modulus of resin mineral composites based on the Mori-Tanaka method and equivalent inclusion theory to predict the elastic modulus of these materials.The model-predicted values were compared with the experimental results.The results show that when the resin dosage is lower than 10 wt%,the predicted value is lower than the measured value,and the decrease in porosity is obvious;when the resin dosage is higher than 10 wt%,the predicted value is higher than the measured value,the maximum error is 7.95%,and the decrease of porosity is not obvious.The model can predict the trend of the change of elastic modulus.The elastic modulus of resin mineral composites decreases with the increase of porosity.Therefore,the resin dosage should be controlled within 10 wt%when designing the experiments,which provides a guiding direction for the mechanical properties of resin mineral composites to be improved afterward.展开更多
文摘Based on the theoretical expression of the three-dimension rheologic inclusion model, we analyze in detail the spatio-temporal changes on the ground of the bulk-strain produced by a spherical rheologic inclusion in a semi-infinite rheologic medium. The results show that the spatio-temporal change of bulk-strain produced by the hard inclusion has three stages of different characteristics, which are similar to most of those geodetic deformation curves, but those by a soft inclusion do not. The α-stage is a long stage in which the precursors in both the near source region and the far field develop from the focal region to the periphery. The β-stage indicates a very rapid propagation of the precursors, so that they almost appear everywhere. During the γ-stage, the precursors in the far-field converge from the periphery, and the precursors in the near source region develop outwards. The theoretical results have been used to explain tentatively the stage characteristics of the spatio-temporal change of earthquake precursors.
基金supported by the National Natural Science Foundation of China [grant number 51278250]
文摘The influence of concrete components on projectile penetration is significant.To study the relationship between the equivalent mechanical properties and components of concrete under a penetration load,concrete is simplified as a two-phase composite of coarse aggregate and mortar,and a meso-mechanical model is established,including the equivalent equation of state model,the equivalent confining pressure strength model and the equivalent dynamic tensile strength model,considering shear stress,large deformation and pore compression.Tests of the mechanical properties of mortar,concrete and limestone were conducted;the results show that the equivalent mechanical properties of concrete calculated by the meso-mechanical model are consistent with the test results,and the equivalent mechanical properties of concrete with different volume fractions of coarse aggregate are obtained.Meso-scale and macro-scale numerical simulations of a projectile penetrating into concrete are carried out,the penetration depths obtained by meso-scale and macro-scale numerical simulations are consistent for different volume fractions of coarse aggregate and different velocities of the projectile,which verifies the rationality of the meso-mechanical model.
基金the University of Tabriz through a Grant scheme No.808.
文摘An explicit model management framework is introduced for predictive Groundwater Levels(GWL),particularly suitable to Observation Wells(OWs)with sparse and possibly heterogeneous data.The framework implements Multiple Models(MM)under the architecture of organising them at levels,as follows:(i)Level 0:treat heterogeneity in the data,e.g.Self-Organised Mapping(SOM)to classify the OWs;and decide on model structure,e.g.formulate a grey box model to predict GWLs.(ii)Level 1:construct MMs,e.g.two Fuzzy Logic(FL)and one Neurofuzzy(NF)models.(iii)Level 2:formulate strategies to combine the MM at Level 1,for which the paper uses Artificial Neural Networks(Strategy 1)and simple averaging(Strategy 2).Whilst the above model management strategy is novel,a critical view is presented,according to which modelling practices are:Inclusive Multiple Modelling(IMM)practices contrasted with existing practices,branded by the paper as Exclusionary Multiple Modelling(EMM).Scientific thinking over IMMs is captured as a framework with four dimensions:Model Reuse(MR),Hierarchical Recursion(HR),Elastic Learning Environment(ELE)and Goal Orientation(GO)and these together make the acronym of RHEO.Therefore,IMM-RHEO is piloted in the aquifer of Tabriz Plain with sparse and possibly heterogeneous data.The results provide some evidence that(i)IMM at two levels improves on the accuracy of individual models;and(ii)model combinations in IMM practices bring‘model-learning’into fashion for learning with the goal to explain baseline conditions and impacts of subsequent management changes.
基金Funded by Demonstration Platform for the Production and Application of Key Materials for High-grade CNC Machine Tools(No.2020-370104-34-03-043952)。
文摘We proposed a microscopic mechanical model for the effective elastic modulus of resin mineral composites based on the Mori-Tanaka method and equivalent inclusion theory to predict the elastic modulus of these materials.The model-predicted values were compared with the experimental results.The results show that when the resin dosage is lower than 10 wt%,the predicted value is lower than the measured value,and the decrease in porosity is obvious;when the resin dosage is higher than 10 wt%,the predicted value is higher than the measured value,the maximum error is 7.95%,and the decrease of porosity is not obvious.The model can predict the trend of the change of elastic modulus.The elastic modulus of resin mineral composites decreases with the increase of porosity.Therefore,the resin dosage should be controlled within 10 wt%when designing the experiments,which provides a guiding direction for the mechanical properties of resin mineral composites to be improved afterward.