The rapid growth of distributed data-centric applications and AI workloads increases demand for low-latency,high-throughput communication,necessitating frequent and flexible updates to network routing configurations.H...The rapid growth of distributed data-centric applications and AI workloads increases demand for low-latency,high-throughput communication,necessitating frequent and flexible updates to network routing configurations.However,maintaining consistent forwarding states during these updates is challenging,particularly when rerouting multiple flows simultaneously.Existing approaches pay little attention to multi-flow update,where improper update sequences across data plane nodes may construct deadlock dependencies.Moreover,these methods typically involve excessive control-data plane interactions,incurring significant resource overhead and performance degradation.This paper presents P4LoF,an efficient loop-free update approach that enables the controller to reroute multiple flows through minimal interactions.P4LoF first utilizes a greedy-based algorithm to generate the shortest update dependency chain for the single-flow update.These chains are then dynamically merged into a dependency graph and resolved as a Shortest Common Super-sequence(SCS)problem to produce the update sequence of multi-flow update.To address deadlock dependencies in multi-flow updates,P4LoF builds a deadlock-fix forwarding model that leverages the flexible packet processing capabilities of the programmable data plane.Experimental results show that P4LoF reduces control-data plane interactions by at least 32.6%with modest overhead,while effectively guaranteeing loop-free consistency.展开更多
Objective:To predict the nephrotoxicity mechanism of Lianqiao-4 through network pharmacology and molecular docking methods.Methods:The main chemical components of Lianqiao(Forsythia suspensa),Bistortae rhizoma,Ophiopo...Objective:To predict the nephrotoxicity mechanism of Lianqiao-4 through network pharmacology and molecular docking methods.Methods:The main chemical components of Lianqiao(Forsythia suspensa),Bistortae rhizoma,Ophiopogonis radix,and Clematidis radix et rhizoma,as well as nephrotoxicity-related targets,were screened through databases such as TCMSP,Swiss Target Prediction,GeneCards,and ETCM.Venny 2.1.0 was used to identify the main components of Lianqiao-4 and nephrotoxicity targets.The STRING platform and David database were utilized to construct a protein-protein interaction(PPI)network diagram,while gene function(GO)enrichment analysis and KEGG pathway analysis were conducted.The“Lianqiao-4 active ingredients-nephrotoxicity targets-signaling pathways”network model was constructed using Cytoscape 3.9.1 software.Results:Network pharmacology and molecular docking analysis revealed that the core active ingredients responsible for the nephrotoxicity mechanism of Mongolian medicine Lianqiao-4 include steroidal saponins such as ophiopogonin A,flavonoids like kaempferol and quercetin,steroidal compounds such asβ-sitosterol and sitosterol,and other key regulatory targets including STAT3,ABCG2,HSP90AA1,MMP9,PTGS2,and EGFR.Major pathways involved include lipid and atherosclerosis,chemical carcinogenesis-DNA adducts,and arachidonic acid metabolism.Conclusion:Mongolian medicine Lianqiao-4 exerts its therapeutic effect on nephrotoxicity through multiple components,targets,and pathways,pending experimental verification.展开更多
We collected the data on the Sendeng-4 chemical composition corresponding targets through the literature and from Drug Bank, SuperT arget, TTD(Therapeutic Targets Database) and other databases and the relevant signali...We collected the data on the Sendeng-4 chemical composition corresponding targets through the literature and from Drug Bank, SuperT arget, TTD(Therapeutic Targets Database) and other databases and the relevant signaling pathways from the KEGG(Kyoto Encyclopedia of Genes and Genomes) database and established models of the chemical composition-target network and chemical composition-target- disease network using Cytoscape software, the analysis indicated that the chemical composition had at least nine different types of targets that acted together to exert effects on the diseases, suggesting a "multi-component, multi-target" feature of the traditional Mongolian medicine. We also employed the rat model of rheumatoid arthritis induced by Collgen Type II to validate the key targets of the chemical components of Sendeng-4, and three of the key targets were validated through laboratory experiments, further confirming the anti-inflammatory effects of Sendeng-4. In all, this study predicted the active ingredients and targets of Sendeng-4, and explored its mechanism of action, which provided new strategies and methods for further research and development of Sendeng-4 and other traditional Mongolian medicines as well.展开更多
A new three-dimensional supramolecular [Ce2(2,5-pydc)3(H2O)2](1) has been hydrothermally synthesized at 180 ℃ and characterized by single-crystal X-ray diffraction.X-ray crystal analyses reveal that the compoun...A new three-dimensional supramolecular [Ce2(2,5-pydc)3(H2O)2](1) has been hydrothermally synthesized at 180 ℃ and characterized by single-crystal X-ray diffraction.X-ray crystal analyses reveal that the compound belongs to the monoclinic system,space group P21/c,C21H13Ce2N3O14,a = 6.561(1),b = 17.986(5),c = 9.411(3) ,β = 95.558(5)° and Z = 2.In the structure of 1,each Ce(1) center is surrounded by 2,5-pydc ligands,forming the 6-connected node,and the 2,5-pydc ligand coordinates to the Ce(Ⅲ) in two different coordination modes.In mode 1,the four oxygen atoms of two carboxyl groups connect neighboring Ce(Ⅲ) ions,giving 4-connected(4-c) second building unit(SBU-1).Furthermore,the structure is extended into a 2-D layer from SBU-1 by sharing Ce(1) atoms.In mode 2,the ligand coordinates to the Ce(Ⅲ) ion from the adjacent chain with the 4-connected(4-c) second building unit(SBU-2),generating a 1-D ladder from SBU-2 by sharing Ce(1) atoms.Finally,the structure is extended into a 6,4,4-c network.Its photoluminescence property was also investigated.展开更多
A fuzzy neural network (FNN) model is developed to predict the 4-CBA concentration of the oxidation unit in purified terephthalic acid process. Several technologies are used to deal with the process data before modeli...A fuzzy neural network (FNN) model is developed to predict the 4-CBA concentration of the oxidation unit in purified terephthalic acid process. Several technologies are used to deal with the process data before modeling.First,a set of preliminary input variables is selected according to prior knowledge and experience. Secondly,a method based on the maximum correlation coefficient is proposed to detect the dead time between the process variables and response variables. Finally, the fuzzy curve method is used to reduce the unimportant input variables.The simulation results based on industrial data show that the relative error range of the FNN model is narrower than that of the American Oil Company (AMOCO) model. Furthermore, the FNN model can predict the trend of the 4-CBA concentration more accurately.展开更多
Carbon fiber(C_(f))reinforced pyrolytic carbon(PyC)composites simultaneously possessing robust mechanical strength,excellent friction performances and outstanding anti-ablation properties are demanded for advanced aer...Carbon fiber(C_(f))reinforced pyrolytic carbon(PyC)composites simultaneously possessing robust mechanical strength,excellent friction performances and outstanding anti-ablation properties are demanded for advanced aerospace applications.Efficient architecture design and optimization of composites are promi-nent yet remain high challenging for realizing the above requirements.Herein,binary reinforcements of networked silicon nitride nanowires(Si_(3)N_(4) nws)and interconnected graphene(GE)have been successfully constructed into C f/PyC by precursor impregnation-pyrolysis and chemical vapor deposition.Notably,net-worked Si_(3)N_(4) nws are uniformly distributed among the carbon fibers,while interconnected GE is firmly rooted on the surface of both networked Si_(3)N_(4) nws and carbon fibers.In the networked Si_(3)N_(4) nws and interconnected GE reinforced C_(f)/PyC,networked Si_(3)N_(4) nws significantly boost the cohesion strength of PyC,while GE markedly improves the interface bonding of both Si_(3)N_(4) nws/PyC and fiber/PyC.Benefiting from the synergistic reinforcement effect of networked Si_(3)N_(4) nws and interconnected GE,the C_(f)/PyC have a prominent enhancement in mechanical(shear and compressive strengths increased by 119.9% and 52.84%,respectively)and friction(friction coefficient and wear rate reduced by 25.40% and 60.10%,respectively)as well as anti-ablation(mass ablation rate and linear ablation rate decreased by 71.25% and 63.01%,respectively).This present strategy for networked Si_(3)N_(4) nws and interconnected GE reinforced C_(f)/PyC provides a dominant route to produce mechanically robust,frictionally resisting and ablatively resistant materials for use in advanced aerospace applications.展开更多
Soft sensor is attractive in dealing with online product quality measurement by virtue of other easily measured variables. In AMOCO PTA (purified terephthalic acid) production process, the unavailability of real-time ...Soft sensor is attractive in dealing with online product quality measurement by virtue of other easily measured variables. In AMOCO PTA (purified terephthalic acid) production process, the unavailability of real-time measurement of 4-CBA makes it impossible for timely adjustment and thereby influences the product quality and the plant economy benefit. In this paper, a kind of FCMAC (fuzzy cerebellar model articulation controller) method is presented to solve the online measurement problem. Different from the conventional CMAC (cerebellar model articulation controller) networks, which has inferior smoothing ability because of its table look-up based technology. Integrating fuzzy model into CMAC networks, it becomes more accurate in functional mapping without weakening its generalization ability. Numerical example and industrial application results show the method proposed here is satisfactory and feasible.展开更多
This paper relates to an advanced open mobile communication system and method of integrating the mobile communications, wireless access systems and wired communications into one common platform architecture for China&...This paper relates to an advanced open mobile communication system and method of integrating the mobile communications, wireless access systems and wired communications into one common platform architecture for China's 4th generation mobile communications, supporting costeffective broadband voice, data and video services in wireless, mobile and wired environment with one single integrated mobile terminal device. The paper includes new architecture in the integrated mobile device and converged network access, and minimum modifi cation in the existing mobile telecommunication infrastructures. This paper introduces the long-term evolution strategy for China's TDD system platform towards China's future 4G mobile communications.展开更多
Warm rotary draw bending provides a feasible method to form the large-diameter thin-walled(LDTW)TC4 bent tubes, which are widely used in the pneumatic system of aircrafts. An accurate prediction of flow behavior of ...Warm rotary draw bending provides a feasible method to form the large-diameter thin-walled(LDTW)TC4 bent tubes, which are widely used in the pneumatic system of aircrafts. An accurate prediction of flow behavior of TC4 tubes considering the couple effects of temperature,strain rate and strain is critical for understanding the deformation behavior of metals and optimizing the processing parameters in warm rotary draw bending of TC4 tubes. In this study, isothermal compression tests of TC4 tube alloy were performed from 573 to 873 K with an interval of 100 K and strain rates of 0.001, 0.010 and0.100 s^(-1). The prediction of flow behavior was done using two constitutive models, namely modified Arrhenius model and artificial neural network(ANN) model. The predictions of these constitutive models were compared using statistical measures like correlation coefficient(R), average absolute relative error(AARE) and its variation with the deformation parameters(temperature, strain rate and strain). Analysis of statistical measures reveals that the two models show high predicted accuracy in terms of R and AARE. Comparatively speaking, the ANN model presents higher predicted accuracy than the modified Arrhenius model. In addition, the predicted accuracy of ANN model presents high stability at the whole deformation parameter ranges, whereas the predictability of the modified Arrhenius model has some fluctuation at different deformation conditions. It presents higher predicted accuracy at temperatures of 573-773 K, strain rates of 0.010-0.100 s^(-1)and strain of 0.04-0.32, while low accuracy at temperature of 873 K, strain rates of 0.001 s^(-1)and strain of 0.36-0.48.Thus, the application of modified Arrhenius model is limited by its relatively low predicted accuracy at some deformation conditions, while the ANN model presents very high predicted accuracy at all deformation conditions,which can be used to study the compression behavior of TC4 tube at the temperature range of 573-873 K and the strain rate of 0.001-0.100 s^(-1). It can provide guideline for the design of processing parameters in warm rotary draw bending of LDTW TC4 tubes.展开更多
Multi-bond network(MBN) hydrogels contain hierarchical dynamic bonds with different bond association energy as energy dissipation units,enabling super-tough mechanical properties.In this work,we copolymerize a protona...Multi-bond network(MBN) hydrogels contain hierarchical dynamic bonds with different bond association energy as energy dissipation units,enabling super-tough mechanical properties.In this work,we copolymerize a protonated 2-ureido-4[1 H]-pyrimidone(UPy)-contained monomer with acrylic acid in HCl solution.After removing excess HCl,UPy motifs are deprotonated and from dimers,thus generating an UPy-contained MBN hydrogel.The obtained MBN hydrogels(75 wt% watercontent) exhibit super-tough mechanical properties(0.39 MPa to 2.51 MPa tensile strength),with tremendous amount of energy(1.68 MJ/m^(3) to 11.1 MJ/m^(3)) dissipated by the dissociation of UPy dimers.The introduction of ionic bonds can further improve the mechanical properties.Moreover,owing to their dynamic nature,both UPy dimers and ionic bonds can re-associate after being dissociated,resulting in excellent self-recovery ability(around 90% recovery efficiency within only 1 h).The excellent self-recovery ability mainly originates from the re-association of UPy dimers based on the high dimerization constant of UPy motifs.展开更多
A 2D coordination polymer built by sodium ion and water-soluble p-sulfonatothiacalix[4]arene of trivalent yttrium complex [Na(H2O)2Y(H2O)6(DMF) (p-sulfonatothiaca lix[4]arene)]-9H2O is reported. The complex be...A 2D coordination polymer built by sodium ion and water-soluble p-sulfonatothiacalix[4]arene of trivalent yttrium complex [Na(H2O)2Y(H2O)6(DMF) (p-sulfonatothiaca lix[4]arene)]-9H2O is reported. The complex belongs to the monoclinic system, space group P2 1/c, with a = 16.703(3), b = 17.819(4), c = 17.357(4)A, β = 106.23(3)°, Z = 4, V = 4960.0(17)A^3, Mr = 1304.08, Dc = 1.746 g/cm^3,μ= 1.624 mm^-1, F(000) = 2688, the final R = 0.0398 and wR = 0.1132 for 7534 observed reflections with I 〉 2σ(I). One yttrium(Ⅲ) ion is coordinated by the thiacalixarene ligand via the sulfonato group, and also ligated by an oxygen atom of a DMF molecule occupying the cavity of thiacalixarene and six aqua ligands.展开更多
Back-propagation neural network was applied to predict and optimize the synthetic technology of 2-chloro-4,6-dinitroresorcinol. A model was established based on back-propagation neural network using the experimental d...Back-propagation neural network was applied to predict and optimize the synthetic technology of 2-chloro-4,6-dinitroresorcinol. A model was established based on back-propagation neural network using the experimental data of homogeneous design as the training sample set and the technological parameters were optimized by it. The optimal technological parameters are as follows: the reaction time is 4h, the reaction temperature is 80℃, the molar ratio of NaOH to 4,6-dinitro-1,2,3-trichlorobenzene is 5.5:1, the molar ratio of methanol to 4,6-dinitro-1,2,3- trichlorobenzene is 11:1, and the molar ratio of water to 4,6-dinitro-1,2,3-trichlorobenzene is 70:1. Under the optimal conditions, three groups of experiments were performed and the average yield of 2-chloro-4,6-dinitroresorcinol is 96.64%, the absolute error of it with the predicted value is -1.07%.展开更多
Mobile cellular data networks have allowed users to access the Internet whilst on the move. Many companies use this technology in their products. Examples of this would be Smart Meters in the home and Tesla cars havin...Mobile cellular data networks have allowed users to access the Internet whilst on the move. Many companies use this technology in their products. Examples of this would be Smart Meters in the home and Tesla cars having their “over the air updates”. Both of these two companies use the 4G and 5G technology. So this report will include a technical overview of the technology and protocols (LTE Advanced) used in 4G and 5G networks and how they provide services to the user and how data is transferred within the networks. And there are lots of different parts about the network architecture between the 4G and 5G systems. This report will talk about some different parts between these two systems and some challenges in them.展开更多
The first tier of automotive manufacturers has faced to pressures about move,modify,updating tasks for manufacturing resources in production processes from demand response of production order sequence for motor compan...The first tier of automotive manufacturers has faced to pressures about move,modify,updating tasks for manufacturing resources in production processes from demand response of production order sequence for motor company and process innovation purpose for productivity. For meets this requirements,it has to require absolutely lead time to re-wiring of physical interface for production equipment,needs for change existing program and test over again.For prepare this constraints,it needs studying an auto-configuration functions that build for both visibility and flexibility based on the 4M(Man,Machine,Material, Method)group management which is supports from WSN (Wireless Sensor Network)of the open embedded device called M2M(Machine to Machine)and major functions of middleware including point manager for real-time device communication,real-time data management,Standard API (Application Program Interface)and application template management.To be application system to RMS (Reconfigurable Manufacturing System)for rapidly response from various orders and model from motor company that is beginning to establishing the mapping of manufacturing resources of 4M using WSN.展开更多
The FuTURE 4G Time Division Duplex (TDD) trial system uses 3.5 GHz carrier frequency and several crucial technologies including broadband Multiple Input Multiple Output (MIMO) and Orthogonal Frequency Division Multipl...The FuTURE 4G Time Division Duplex (TDD) trial system uses 3.5 GHz carrier frequency and several crucial technologies including broadband Multiple Input Multiple Output (MIMO) and Orthogonal Frequency Division Multiplexing (OFDM). These technologies challenge the link budget and networking analysis of the FuTURE 4G TDD trial network. This paper analyzes the practical 3.5 GHz propagation model and the link budget of Radio Frequency (RF) parameters of the trial system. Moreover,it introduces networking analysis and network planning of the trial system,which combines the field test results of the MIMO system. The FuTURE 4G TDD trial system and its trial network have been accomplished with successful checkup. The trial system fulfills all the requirements with two Access Points (AP) and three Mobile Terminals (MT),which supports multi-user,mobility,a high peak rate of 100 Mb/s,High-Definition TV (HDTV),high-speed data download,and Voice over IP (VoIP) services.展开更多
基金supported by the National Key Research and Development Program of China under Grant 2022YFB2901501in part by the Science and Technology Innovation leading Talents Subsidy Project of Central Plains under Grant 244200510038.
文摘The rapid growth of distributed data-centric applications and AI workloads increases demand for low-latency,high-throughput communication,necessitating frequent and flexible updates to network routing configurations.However,maintaining consistent forwarding states during these updates is challenging,particularly when rerouting multiple flows simultaneously.Existing approaches pay little attention to multi-flow update,where improper update sequences across data plane nodes may construct deadlock dependencies.Moreover,these methods typically involve excessive control-data plane interactions,incurring significant resource overhead and performance degradation.This paper presents P4LoF,an efficient loop-free update approach that enables the controller to reroute multiple flows through minimal interactions.P4LoF first utilizes a greedy-based algorithm to generate the shortest update dependency chain for the single-flow update.These chains are then dynamically merged into a dependency graph and resolved as a Shortest Common Super-sequence(SCS)problem to produce the update sequence of multi-flow update.To address deadlock dependencies in multi-flow updates,P4LoF builds a deadlock-fix forwarding model that leverages the flexible packet processing capabilities of the programmable data plane.Experimental results show that P4LoF reduces control-data plane interactions by at least 32.6%with modest overhead,while effectively guaranteeing loop-free consistency.
文摘Objective:To predict the nephrotoxicity mechanism of Lianqiao-4 through network pharmacology and molecular docking methods.Methods:The main chemical components of Lianqiao(Forsythia suspensa),Bistortae rhizoma,Ophiopogonis radix,and Clematidis radix et rhizoma,as well as nephrotoxicity-related targets,were screened through databases such as TCMSP,Swiss Target Prediction,GeneCards,and ETCM.Venny 2.1.0 was used to identify the main components of Lianqiao-4 and nephrotoxicity targets.The STRING platform and David database were utilized to construct a protein-protein interaction(PPI)network diagram,while gene function(GO)enrichment analysis and KEGG pathway analysis were conducted.The“Lianqiao-4 active ingredients-nephrotoxicity targets-signaling pathways”network model was constructed using Cytoscape 3.9.1 software.Results:Network pharmacology and molecular docking analysis revealed that the core active ingredients responsible for the nephrotoxicity mechanism of Mongolian medicine Lianqiao-4 include steroidal saponins such as ophiopogonin A,flavonoids like kaempferol and quercetin,steroidal compounds such asβ-sitosterol and sitosterol,and other key regulatory targets including STAT3,ABCG2,HSP90AA1,MMP9,PTGS2,and EGFR.Major pathways involved include lipid and atherosclerosis,chemical carcinogenesis-DNA adducts,and arachidonic acid metabolism.Conclusion:Mongolian medicine Lianqiao-4 exerts its therapeutic effect on nephrotoxicity through multiple components,targets,and pathways,pending experimental verification.
基金supported by the National Natural Science Foundation of China(No.81160550)Inner Mongolia Natural Science Foundation(No.2013JQ03)2010 Science and Technology Project of social development in Inner Mongolia
文摘We collected the data on the Sendeng-4 chemical composition corresponding targets through the literature and from Drug Bank, SuperT arget, TTD(Therapeutic Targets Database) and other databases and the relevant signaling pathways from the KEGG(Kyoto Encyclopedia of Genes and Genomes) database and established models of the chemical composition-target network and chemical composition-target- disease network using Cytoscape software, the analysis indicated that the chemical composition had at least nine different types of targets that acted together to exert effects on the diseases, suggesting a "multi-component, multi-target" feature of the traditional Mongolian medicine. We also employed the rat model of rheumatoid arthritis induced by Collgen Type II to validate the key targets of the chemical components of Sendeng-4, and three of the key targets were validated through laboratory experiments, further confirming the anti-inflammatory effects of Sendeng-4. In all, this study predicted the active ingredients and targets of Sendeng-4, and explored its mechanism of action, which provided new strategies and methods for further research and development of Sendeng-4 and other traditional Mongolian medicines as well.
文摘A new three-dimensional supramolecular [Ce2(2,5-pydc)3(H2O)2](1) has been hydrothermally synthesized at 180 ℃ and characterized by single-crystal X-ray diffraction.X-ray crystal analyses reveal that the compound belongs to the monoclinic system,space group P21/c,C21H13Ce2N3O14,a = 6.561(1),b = 17.986(5),c = 9.411(3) ,β = 95.558(5)° and Z = 2.In the structure of 1,each Ce(1) center is surrounded by 2,5-pydc ligands,forming the 6-connected node,and the 2,5-pydc ligand coordinates to the Ce(Ⅲ) in two different coordination modes.In mode 1,the four oxygen atoms of two carboxyl groups connect neighboring Ce(Ⅲ) ions,giving 4-connected(4-c) second building unit(SBU-1).Furthermore,the structure is extended into a 2-D layer from SBU-1 by sharing Ce(1) atoms.In mode 2,the ligand coordinates to the Ce(Ⅲ) ion from the adjacent chain with the 4-connected(4-c) second building unit(SBU-2),generating a 1-D ladder from SBU-2 by sharing Ce(1) atoms.Finally,the structure is extended into a 6,4,4-c network.Its photoluminescence property was also investigated.
基金Supported by the National Outstanding Youth Science Foundation of China (No. 60025308).
文摘A fuzzy neural network (FNN) model is developed to predict the 4-CBA concentration of the oxidation unit in purified terephthalic acid process. Several technologies are used to deal with the process data before modeling.First,a set of preliminary input variables is selected according to prior knowledge and experience. Secondly,a method based on the maximum correlation coefficient is proposed to detect the dead time between the process variables and response variables. Finally, the fuzzy curve method is used to reduce the unimportant input variables.The simulation results based on industrial data show that the relative error range of the FNN model is narrower than that of the American Oil Company (AMOCO) model. Furthermore, the FNN model can predict the trend of the 4-CBA concentration more accurately.
基金financially supported by the National Natural Science Foundation of China(No.51872232)the Research Fund of the State Key Laboratory of Solidification Processing(NWPU),China(No.136-QP-2015)+4 种基金the“111”project of China(No.B08040)the National Training Program of Innovation and Entrepreneurship for Undergraduates(No.S202010699336)the Joint Funds of the National Natural Science Foundation of China(No.U21B2067)the Key Scientific and Technological Innovation Research Team of Shaanxi Province(No.2022TD-31)the Key R&D Program of Shaanxi Province(No.2021ZDLGY14-04).
文摘Carbon fiber(C_(f))reinforced pyrolytic carbon(PyC)composites simultaneously possessing robust mechanical strength,excellent friction performances and outstanding anti-ablation properties are demanded for advanced aerospace applications.Efficient architecture design and optimization of composites are promi-nent yet remain high challenging for realizing the above requirements.Herein,binary reinforcements of networked silicon nitride nanowires(Si_(3)N_(4) nws)and interconnected graphene(GE)have been successfully constructed into C f/PyC by precursor impregnation-pyrolysis and chemical vapor deposition.Notably,net-worked Si_(3)N_(4) nws are uniformly distributed among the carbon fibers,while interconnected GE is firmly rooted on the surface of both networked Si_(3)N_(4) nws and carbon fibers.In the networked Si_(3)N_(4) nws and interconnected GE reinforced C_(f)/PyC,networked Si_(3)N_(4) nws significantly boost the cohesion strength of PyC,while GE markedly improves the interface bonding of both Si_(3)N_(4) nws/PyC and fiber/PyC.Benefiting from the synergistic reinforcement effect of networked Si_(3)N_(4) nws and interconnected GE,the C_(f)/PyC have a prominent enhancement in mechanical(shear and compressive strengths increased by 119.9% and 52.84%,respectively)and friction(friction coefficient and wear rate reduced by 25.40% and 60.10%,respectively)as well as anti-ablation(mass ablation rate and linear ablation rate decreased by 71.25% and 63.01%,respectively).This present strategy for networked Si_(3)N_(4) nws and interconnected GE reinforced C_(f)/PyC provides a dominant route to produce mechanically robust,frictionally resisting and ablatively resistant materials for use in advanced aerospace applications.
基金Supported by the special Funds for Major State Basic Research Program of China (973 Program) (No. 2002CB312200) the 863 Hi-Tech. Research and Development Program of China (No. 2001AA413130, No.2002AA412110)the Key Technologies R&D Programme of China (No. 2001BA201A04).
文摘Soft sensor is attractive in dealing with online product quality measurement by virtue of other easily measured variables. In AMOCO PTA (purified terephthalic acid) production process, the unavailability of real-time measurement of 4-CBA makes it impossible for timely adjustment and thereby influences the product quality and the plant economy benefit. In this paper, a kind of FCMAC (fuzzy cerebellar model articulation controller) method is presented to solve the online measurement problem. Different from the conventional CMAC (cerebellar model articulation controller) networks, which has inferior smoothing ability because of its table look-up based technology. Integrating fuzzy model into CMAC networks, it becomes more accurate in functional mapping without weakening its generalization ability. Numerical example and industrial application results show the method proposed here is satisfactory and feasible.
文摘This paper relates to an advanced open mobile communication system and method of integrating the mobile communications, wireless access systems and wired communications into one common platform architecture for China's 4th generation mobile communications, supporting costeffective broadband voice, data and video services in wireless, mobile and wired environment with one single integrated mobile terminal device. The paper includes new architecture in the integrated mobile device and converged network access, and minimum modifi cation in the existing mobile telecommunication infrastructures. This paper introduces the long-term evolution strategy for China's TDD system platform towards China's future 4G mobile communications.
基金financially supported by the National Natural Science Foundation of China(Nos.51275415 and50905144)the Natural Science Basic Research Plan in Shanxi Province(No.2011JQ6004)the Program of the Ministry of Education of China for Introducing Talents of Discipline to Universities(No.B08040)
文摘Warm rotary draw bending provides a feasible method to form the large-diameter thin-walled(LDTW)TC4 bent tubes, which are widely used in the pneumatic system of aircrafts. An accurate prediction of flow behavior of TC4 tubes considering the couple effects of temperature,strain rate and strain is critical for understanding the deformation behavior of metals and optimizing the processing parameters in warm rotary draw bending of TC4 tubes. In this study, isothermal compression tests of TC4 tube alloy were performed from 573 to 873 K with an interval of 100 K and strain rates of 0.001, 0.010 and0.100 s^(-1). The prediction of flow behavior was done using two constitutive models, namely modified Arrhenius model and artificial neural network(ANN) model. The predictions of these constitutive models were compared using statistical measures like correlation coefficient(R), average absolute relative error(AARE) and its variation with the deformation parameters(temperature, strain rate and strain). Analysis of statistical measures reveals that the two models show high predicted accuracy in terms of R and AARE. Comparatively speaking, the ANN model presents higher predicted accuracy than the modified Arrhenius model. In addition, the predicted accuracy of ANN model presents high stability at the whole deformation parameter ranges, whereas the predictability of the modified Arrhenius model has some fluctuation at different deformation conditions. It presents higher predicted accuracy at temperatures of 573-773 K, strain rates of 0.010-0.100 s^(-1)and strain of 0.04-0.32, while low accuracy at temperature of 873 K, strain rates of 0.001 s^(-1)and strain of 0.36-0.48.Thus, the application of modified Arrhenius model is limited by its relatively low predicted accuracy at some deformation conditions, while the ANN model presents very high predicted accuracy at all deformation conditions,which can be used to study the compression behavior of TC4 tube at the temperature range of 573-873 K and the strain rate of 0.001-0.100 s^(-1). It can provide guideline for the design of processing parameters in warm rotary draw bending of LDTW TC4 tubes.
基金the National Natural Science Foundation of China(Nos.21774069,51633003 and 21474058)for financial support。
文摘Multi-bond network(MBN) hydrogels contain hierarchical dynamic bonds with different bond association energy as energy dissipation units,enabling super-tough mechanical properties.In this work,we copolymerize a protonated 2-ureido-4[1 H]-pyrimidone(UPy)-contained monomer with acrylic acid in HCl solution.After removing excess HCl,UPy motifs are deprotonated and from dimers,thus generating an UPy-contained MBN hydrogel.The obtained MBN hydrogels(75 wt% watercontent) exhibit super-tough mechanical properties(0.39 MPa to 2.51 MPa tensile strength),with tremendous amount of energy(1.68 MJ/m^(3) to 11.1 MJ/m^(3)) dissipated by the dissociation of UPy dimers.The introduction of ionic bonds can further improve the mechanical properties.Moreover,owing to their dynamic nature,both UPy dimers and ionic bonds can re-associate after being dissociated,resulting in excellent self-recovery ability(around 90% recovery efficiency within only 1 h).The excellent self-recovery ability mainly originates from the re-association of UPy dimers based on the high dimerization constant of UPy motifs.
文摘A 2D coordination polymer built by sodium ion and water-soluble p-sulfonatothiacalix[4]arene of trivalent yttrium complex [Na(H2O)2Y(H2O)6(DMF) (p-sulfonatothiaca lix[4]arene)]-9H2O is reported. The complex belongs to the monoclinic system, space group P2 1/c, with a = 16.703(3), b = 17.819(4), c = 17.357(4)A, β = 106.23(3)°, Z = 4, V = 4960.0(17)A^3, Mr = 1304.08, Dc = 1.746 g/cm^3,μ= 1.624 mm^-1, F(000) = 2688, the final R = 0.0398 and wR = 0.1132 for 7534 observed reflections with I 〉 2σ(I). One yttrium(Ⅲ) ion is coordinated by the thiacalixarene ligand via the sulfonato group, and also ligated by an oxygen atom of a DMF molecule occupying the cavity of thiacalixarene and six aqua ligands.
文摘Back-propagation neural network was applied to predict and optimize the synthetic technology of 2-chloro-4,6-dinitroresorcinol. A model was established based on back-propagation neural network using the experimental data of homogeneous design as the training sample set and the technological parameters were optimized by it. The optimal technological parameters are as follows: the reaction time is 4h, the reaction temperature is 80℃, the molar ratio of NaOH to 4,6-dinitro-1,2,3-trichlorobenzene is 5.5:1, the molar ratio of methanol to 4,6-dinitro-1,2,3- trichlorobenzene is 11:1, and the molar ratio of water to 4,6-dinitro-1,2,3-trichlorobenzene is 70:1. Under the optimal conditions, three groups of experiments were performed and the average yield of 2-chloro-4,6-dinitroresorcinol is 96.64%, the absolute error of it with the predicted value is -1.07%.
文摘Mobile cellular data networks have allowed users to access the Internet whilst on the move. Many companies use this technology in their products. Examples of this would be Smart Meters in the home and Tesla cars having their “over the air updates”. Both of these two companies use the 4G and 5G technology. So this report will include a technical overview of the technology and protocols (LTE Advanced) used in 4G and 5G networks and how they provide services to the user and how data is transferred within the networks. And there are lots of different parts about the network architecture between the 4G and 5G systems. This report will talk about some different parts between these two systems and some challenges in them.
基金supported by the Industry Foundation project from the Ministry of Knowledge Economy in the Korean Government.
文摘The first tier of automotive manufacturers has faced to pressures about move,modify,updating tasks for manufacturing resources in production processes from demand response of production order sequence for motor company and process innovation purpose for productivity. For meets this requirements,it has to require absolutely lead time to re-wiring of physical interface for production equipment,needs for change existing program and test over again.For prepare this constraints,it needs studying an auto-configuration functions that build for both visibility and flexibility based on the 4M(Man,Machine,Material, Method)group management which is supports from WSN (Wireless Sensor Network)of the open embedded device called M2M(Machine to Machine)and major functions of middleware including point manager for real-time device communication,real-time data management,Standard API (Application Program Interface)and application template management.To be application system to RMS (Reconfigurable Manufacturing System)for rapidly response from various orders and model from motor company that is beginning to establishing the mapping of manufacturing resources of 4M using WSN.
基金the National Natural Science Foundation of China under Grant 60496312the 863 Program of China under Grants 2003AA12331004 and 2006AA01Z260.
文摘The FuTURE 4G Time Division Duplex (TDD) trial system uses 3.5 GHz carrier frequency and several crucial technologies including broadband Multiple Input Multiple Output (MIMO) and Orthogonal Frequency Division Multiplexing (OFDM). These technologies challenge the link budget and networking analysis of the FuTURE 4G TDD trial network. This paper analyzes the practical 3.5 GHz propagation model and the link budget of Radio Frequency (RF) parameters of the trial system. Moreover,it introduces networking analysis and network planning of the trial system,which combines the field test results of the MIMO system. The FuTURE 4G TDD trial system and its trial network have been accomplished with successful checkup. The trial system fulfills all the requirements with two Access Points (AP) and three Mobile Terminals (MT),which supports multi-user,mobility,a high peak rate of 100 Mb/s,High-Definition TV (HDTV),high-speed data download,and Voice over IP (VoIP) services.