期刊文献+
共找到2,024篇文章
< 1 2 102 >
每页显示 20 50 100
Generation of SARS-CoV-2 dual-target candidate inhibitors through 3D equivariant conditional generative neural networks 被引量:1
1
作者 Zhong-Xing Zhou Hong-Xing Zhang Qingchuan Zheng 《Journal of Pharmaceutical Analysis》 2025年第6期1291-1310,共20页
Severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)mutations are influenced by random and uncontrollable factors,and the risk of the next widespread epidemic remains.Dual-target drugs that synergistically act ... Severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)mutations are influenced by random and uncontrollable factors,and the risk of the next widespread epidemic remains.Dual-target drugs that synergistically act on two targets exhibit strong therapeutic effects and advantages against mutations.In this study,a novel computational workflow was developed to design dual-target SARS-CoV-2 candidate inhibitors with the Envelope protein and Main protease selected as the two target proteins.The drug-like molecules of our self-constructed 3D scaffold database were used as high-throughput molecular docking probes for feature extraction of two target protein pockets.A multi-layer perceptron(MLP)was employed to embed the binding affinities into a latent space as conditional vectors to control conditional distribution.Utilizing a conditional generative neural network,cG-SchNet,with 3D Euclidean group(E3)symmetries,the conditional probability distributions of molecular 3D structures were acquired and a set of novel SARS-CoV-2 dual-target candidate inhibitors were generated.The 1D probability,2D joint probability,and 2D cumulative probability distribution results indicate that the generated sets are significantly enhanced compared to the training set in the high binding affinity area.Among the 201 generated molecules,42 molecules exhibited a sum binding affinity exceeding 17.0 kcal/mol while 9 of them having a sum binding affinity exceeding 19.0 kcal/mol,demonstrating structure diversity along with strong dual-target affinities,good absorption,distribution,metabolism,excretion,and toxicity(ADMET)properties,and ease of synthesis.Dual-target drugs are rare and difficult to find,and our“high-throughput docking-multi-conditional generation”workflow offers a wide range of options for designing or optimizing potent dual-target SARS-CoV-2 inhibitors. 展开更多
关键词 SARS-CoV-2 Dual-target drug 3D generative neural networks Drug design
暂未订购
Association between antidiabetic drugs and cancer risk in patients with type 2 diabetes mellitus: A systematic review and network metaanalysis
2
作者 Xue-Dong An Li-Yun Duan +3 位作者 Yue-Hong Zhang Qian-You Jia Yan-Min Zhang Yun Qiao 《World Journal of Diabetes》 2025年第10期370-384,共15页
BACKGROUND Current evidence suggests that commonly used antidiabetic drugs have varying effects on cancer risk.Some antidiabetics offer protective effects against cancer,whereas others may increase risk in specific po... BACKGROUND Current evidence suggests that commonly used antidiabetic drugs have varying effects on cancer risk.Some antidiabetics offer protective effects against cancer,whereas others may increase risk in specific populations.AIM To comprehensively compare the effects of different antidiabetic drugs on the risk of various cancers in patients with type 2 diabetes mellitus(T2DM)through a systematic review and network meta-analysis.METHODS Four databases(PubMed,EMBASE,Cochrane Library,and Web of Science)were searched from their inception until April 11,2025.Published randomized controlled trials that enrolled at least 100 participants and had an intervention duration of at least 1 year were included.The inclusion criteria were studies involving adult patients with T2DM and interventions that compared different classes of antidiabetic drugs with a placebo or another antidiabetic drug.Network meta-analysis was conducted using Stata 17.0 software.Confidence in network meta-analysis was used to assess the quality of evidence regarding the risk of cancer associated with different antidiabetic drugs.RESULTS A total of 13535 articles were identified.After applying the inclusion and exclusion criteria,87 high-quality studies involving 216106 patients and 26 different drugs across seven classes were included in this study.Indirect evidence from network meta-analysis revealed some heterogeneity;however,this did not affect the reliability of the results.The results indicated that antidiabetic drugs did not increase the overall risk of cancer compared with placebo.In contrast,some antidiabetic medications demonstrated a more pronounced advantage in reducing cancer risk,such as dipeptidyl peptidase-4 inhibitors for thyroid and rectal cancers;sodium-glucose co-transporter type 2 inhibitors for lung and bronchial cancers;sulfonylureas for gastric and colon cancers;biguanides for pancreatic cancer;insulin for bladder cancer;glucagon-like peptide-1 receptor agonists for prostate,uterine,hepatocellular,renal,and hematologic cancers;and thiazolidinediones for breast cancer.CONCLUSION Antidiabetic drugs reduce cancer risk in patients with T2DM.However,given the limitations in the number and quality of the included studies,our conclusions should be interpreted with caution.More large-scale,high-quality clinical trials are required to validate our findings towards the optimization of comprehensive cancer management strategies for patients with T2DM. 展开更多
关键词 Antidiabetic drugs Type 2 diabetes mellitus Cancer risk Systematic review network meta-analysis
暂未订购
Effects of Oral Vitamin D Supplementation on Vitamin D Levels and Glycemic Parameters in Patients with Type 2 Diabetes Mellitus:A Systematic Review and Network Meta-Analysis
3
作者 Xiujuan Zhang Hongfei Wang +1 位作者 Xia Gao Yang Zhao 《Biomedical and Environmental Sciences》 2025年第6期716-726,共11页
Objective Epidemiological studies have shown that vitamin D status affects glycemic control in individuals with type 2 diabetes mellitus(T2DM).However,findings from intervention studies remain inconsistent.Therefore,a... Objective Epidemiological studies have shown that vitamin D status affects glycemic control in individuals with type 2 diabetes mellitus(T2DM).However,findings from intervention studies remain inconsistent.Therefore,a network meta-analysis was conducted to evaluate the comparative efficacy of various vitamin D supplementation strategies on glucose indicators in adults with T2DM.Methods Eligible studies published before September 12,2024,were retrieved from PubMed,EMBASE,Cochrane Library,and Web of Science.A network meta-analysis of multiple dosage strategies—low(<1,000 IU/day,LDS),medium(1,000–2,000 IU/day,MDS),high(2,000–4,000 IU/day,HDS),and extremely high(≥4,000 IU/day,EHDS)—was performed.Results The network meta-analysis of 40 RCTs indicated that,compared with placebo,vitamin D_(3)supplementation increased 25-hydroxyvitamin D[25-(OH)-D]levels,with pooled mean difference(MD)showing a stepwise increase from LDS to EHDS.Ranking probabilities showed a corresponding rise in 25-(OH)-D levels from LDS(46.7%)to EHDS(91.2%).EHDS reduced fasting blood glucose(FBG)relative to no treatment.LDS significantly decreased hemoglobin A1c(HbA1c),and vitamin D_(2) significantly affected FBG levels.MDS led to a significant change in fasting insulin(FIN)compared to both placebo(MD:-4.76;95%CI-8.91 to-0.61)and no treatment(MD:-7.30;95%CI-14.44 to-0.17).Conclusion The findings suggest that vitamin D supplementation may be a viable approach for improving glycemic control in adults with T2DM,with lower doses potentially offering benefit.The analysis also showed a dose-dependent increase in 25-(OH)-D levels. 展开更多
关键词 network meta-analysis Vitamin D supplementation Type 2 diabetes mellitus Glycemic biomarkers
暂未订购
Resource Allocation in V2X Networks:A Double Deep Q-Network Approach with Graph Neural Networks
4
作者 Zhengda Huan Jian Sun +3 位作者 Zeyu Chen Ziyi Zhang Xiao Sun Zenghui Xiao 《Computers, Materials & Continua》 2025年第9期5427-5443,共17页
With the advancement of Vehicle-to-Everything(V2X)technology,efficient resource allocation in dynamic vehicular networks has become a critical challenge for achieving optimal performance.Existing methods suffer from h... With the advancement of Vehicle-to-Everything(V2X)technology,efficient resource allocation in dynamic vehicular networks has become a critical challenge for achieving optimal performance.Existing methods suffer from high computational complexity and decision latency under high-density traffic and heterogeneous network conditions.To address these challenges,this study presents an innovative framework that combines Graph Neural Networks(GNNs)with a Double Deep Q-Network(DDQN),utilizing dynamic graph structures and reinforcement learning.An adaptive neighbor sampling mechanism is introduced to dynamically select the most relevant neighbors based on interference levels and network topology,thereby improving decision accuracy and efficiency.Meanwhile,the framework models communication links as nodes and interference relationships as edges,effectively capturing the direct impact of interference on resource allocation while reducing computational complexity and preserving critical interaction information.Employing an aggregation mechanism based on the Graph Attention Network(GAT),it dynamically adjusts the neighbor sampling scope and performs attention-weighted aggregation based on node importance,ensuring more efficient and adaptive resource management.This design ensures reliable Vehicle-to-Vehicle(V2V)communication while maintaining high Vehicle-to-Infrastructure(V2I)throughput.The framework retains the global feature learning capabilities of GNNs and supports distributed network deployment,allowing vehicles to extract low-dimensional graph embeddings from local observations for real-time resource decisions.Experimental results demonstrate that the proposed method significantly reduces computational overhead,mitigates latency,and improves resource utilization efficiency in vehicular networks under complex traffic scenarios.This research not only provides a novel solution to resource allocation challenges in V2X networks but also advances the application of DDQN in intelligent transportation systems,offering substantial theoretical significance and practical value. 展开更多
关键词 Resource allocation V2X double deep Q-network graph neural network
在线阅读 下载PDF
Cross-feature fusion speech emotion recognition based on attention mask residual network and Wav2vec 2.0
5
作者 Xiaoke Li Zufan Zhang 《Digital Communications and Networks》 2025年第5期1567-1577,共11页
Speech Emotion Recognition(SER)has received widespread attention as a crucial way for understanding human emotional states.However,the impact of irrelevant information on speech signals and data sparsity limit the dev... Speech Emotion Recognition(SER)has received widespread attention as a crucial way for understanding human emotional states.However,the impact of irrelevant information on speech signals and data sparsity limit the development of SER system.To address these issues,this paper proposes a framework that incorporates the Attentive Mask Residual Network(AM-ResNet)and the self-supervised learning model Wav2vec 2.0 to obtain AM-ResNet features and Wav2vec 2.0 features respectively,together with a cross-attention module to interact and fuse these two features.The AM-ResNet branch mainly consists of maximum amplitude difference detection,mask residual block,and an attention mechanism.Among them,the maximum amplitude difference detection and the mask residual block act on the pre-processing and the network,respectively,to reduce the impact of silent frames,and the attention mechanism assigns different weights to unvoiced and voiced speech to reduce redundant emotional information caused by unvoiced speech.In the Wav2vec 2.0 branch,this model is introduced as a feature extractor to obtain general speech features(Wav2vec 2.0 features)through pre-training with a large amount of unlabeled speech data,which can assist the SER task and cope with data sparsity problems.In the cross-attention module,AM-ResNet features and Wav2vec 2.0 features are interacted with and fused to obtain the cross-fused features,which are used to predict the final emotion.Furthermore,multi-label learning is also used to add ambiguous emotion utterances to deal with data limitations.Finally,experimental results illustrate the usefulness and superiority of our proposed framework over existing state-of-the-art approaches. 展开更多
关键词 Speech emotion recognition Residual network MASK ATTENTION Wav2vec 2.0 Cross-feature fusion
在线阅读 下载PDF
SC-GAN:A Spectrum Cartography with Satellite Internet Based on Pix2Pix Generative Adversarial Network
6
作者 Zhen Pan Zhang Bangning +2 位作者 Wang Heng MaWenfeng Guo Daoxing 《China Communications》 2025年第2期47-61,共15页
The increasing demand for radioauthorized applications in the 6G era necessitates enhanced monitoring and management of radio resources,particularly for precise control over the electromagnetic environment.The radio m... The increasing demand for radioauthorized applications in the 6G era necessitates enhanced monitoring and management of radio resources,particularly for precise control over the electromagnetic environment.The radio map serves as a crucial tool for describing signal strength distribution within the current electromagnetic environment.However,most existing algorithms rely on sparse measurements of radio strength,disregarding the impact of building information.In this paper,we propose a spectrum cartography(SC)algorithm that eliminates the need for relying on sparse ground-based radio strength measurements by utilizing a satellite network to collect data on buildings and transmitters.Our algorithm leverages Pix2Pix Generative Adversarial Network(GAN)to construct accurate radio maps using transmitter information within real geographical environments.Finally,simulation results demonstrate that our algorithm exhibits superior accuracy compared to previously proposed methods. 展开更多
关键词 electromagnetic situation Pix2Pix generative adversarial network radio map satellite internet spectrum cartography
在线阅读 下载PDF
Network pharmacology-based study on the mechanism of Tangfukang formula(糖复康方) against type 2 diabetes mellitus
7
作者 YAN Kai WANG Wei +2 位作者 WANG Yan GAO Huijuan FENG Xingzhong 《Journal of Traditional Chinese Medicine》 2025年第1期76-88,共13页
OBJECTIVE:To explore the mechanism of Tangfukang formula(糖复康方,TFK)in treating type 2 diabetes mellitus(T2DM).METHODS:We employed network pharmacology combined with experimental validation to explore the potential ... OBJECTIVE:To explore the mechanism of Tangfukang formula(糖复康方,TFK)in treating type 2 diabetes mellitus(T2DM).METHODS:We employed network pharmacology combined with experimental validation to explore the potential mechanism of TFK against T2DM.Initially,we filtered bioactive compounds with the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform(TCMSP)and Symptom Mapping(Sym Map),and gathered targets of TFK and T2DM.Subsequently,we constructed a protein-protein interaction(PPI)network,enriched core targets through Gene Ontology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG),and adopted molecular docking to study the binding mode of compounds and the signaling pathway.Finally,we employed a KKAy mice model to investigate the effect and mechanism of TFK against T2DM.Biochemical assay,histology assay,and Western blot(WB)were used to assess the mechanism.RESULTS:There were 492 bioactive compounds of TFK screened,and 1226 overlapping targets of TFK against T2DM identified.A compound-T2DM-related target network with 997 nodes and 4439 edges was constructed.KEGG enrichment analysis identified some core pathways related to T2DM,including adenosine 5-monophosphate-activated protein kinase(AMPK)signaling pathway.Molecular docking study revealed that compounds of TFK,including citric acid,could bind to the active pocket of AMPK crystal structure with free binding energy of-4.8,-8 and-7.9,respectively.Animal experiments indicated that TFK decreased body weight,fasting blood glucose,fasting serum insulin,homeostasis model of insulin resistance,glycosylated serum protein,total cholesterol,triglyceride,and low-density lipoprotein cholesterol,and improve oral glucose tolerance test results.TFK reduced steatosis in liver tissue,and infiltration of inflammatory cells,and protected liver cells to a certain extent.WB analysis revealed that,TFK upregulated the phosphorylation of AMPK and branchedchainα-ketoacid dehydrogenase proteins.CONCLUSION:TFK has the potential to effectively manage T2DM,possibly by regulating the AMPK signaling pathway.The present study lays a new foundation for the therapeutic application of TFK in the treatment of T2DM. 展开更多
关键词 network pharmacology diabetes mellitus type 2 AMP-activated protein kinase kinases signal transduction MECHANICS Tangfukang formula
原文传递
Graph neural network-driven prediction of high-performance CO_(2)reduction catalysts based on Cu-based high-entropy alloys
8
作者 Zihao Jiao Chengyi Zhang +2 位作者 Ya Liu Liejin Guo Ziyun Wang 《Chinese Journal of Catalysis》 2025年第4期197-207,共11页
High-entropy alloy(HEA)offer tunable composition and surface structures,enabling the creation of novel active sites that enhance catalytic performance in renewable energy application.However,the inherent surface compl... High-entropy alloy(HEA)offer tunable composition and surface structures,enabling the creation of novel active sites that enhance catalytic performance in renewable energy application.However,the inherent surface complexity and tendency for elemental segregation,which results in discrepancies between bulk and surface compositions,pose challenges for direct investigation via density functional theory.To address this,Monte Carlo simulations combined with molecular dynamics were employed to model surface segregation across a broad range of elements,including Cu,Ag,Au,Pt,Pd,and Al.The analysis revealed a trend in surface segregation propensity following the order Ag>Au>Al>Cu>Pd>Pt.To capture the correlation between surface site characteristics and the free energy of multi-dentate CO_(2)reduction intermediates,a graph neural network was designed,where adsorbates were transformed into pseudo-atoms at their centers of mass.This model achieved mean absolute errors of 0.08–0.15 eV for the free energies of C_(2)intermediates,enabling precise site activity quantification.Results indicated that increasing the concentration of Cu,Ag,and Al significantly boosts activity for CO and C_(2)formation,whereas Au,Pd,and Pt exhibit negative effects.By screening stable composition space,promising HEA bulk compositions for CO,HCOOH,and C_(2)products were predicted,offering superior catalytic activity compared to pure Cu catalysts. 展开更多
关键词 Density functional theory Machine learning CO_(2)reduction High entropy alloys Graph neural network
在线阅读 下载PDF
Mobility-Aware Edge Caching with Transformer-DQN in D2D-Enabled Heterogeneous Networks
9
作者 Yiming Guo Hongyu Ma 《Computers, Materials & Continua》 2025年第11期3485-3505,共21页
In dynamic 5G network environments,user mobility and heterogeneous network topologies pose dual challenges to the effort of improving performance of mobile edge caching.Existing studies often overlook the dynamic natu... In dynamic 5G network environments,user mobility and heterogeneous network topologies pose dual challenges to the effort of improving performance of mobile edge caching.Existing studies often overlook the dynamic nature of user locations and the potential of device-to-device(D2D)cooperative caching,limiting the reduction of transmission latency.To address this issue,this paper proposes a joint optimization scheme for edge caching that integrates user mobility prediction with deep reinforcement learning.First,a Transformer-based geolocation prediction model is designed,leveraging multi-head attention mechanisms to capture correlations in historical user trajectories for accurate future location prediction.Then,within a three-tier heterogeneous network,we formulate a latency minimization problem under a D2D cooperative caching architecture and develop a mobility-aware Deep Q-Network(DQN)caching strategy.This strategy takes predicted location information as state input and dynamically adjusts the content distribution across small base stations(SBSs)andmobile users(MUs)to reduce end-to-end delay inmulti-hop content retrieval.Simulation results show that the proposed DQN-based method outperforms other baseline strategies across variousmetrics,achieving a 17.2%reduction in transmission delay compared to DQNmethods withoutmobility integration,thus validating the effectiveness of the joint optimization of location prediction and caching decisions. 展开更多
关键词 Mobile edge caching D2D heterogeneous networks deep reinforcement learning transformer model transmission delay optimization
在线阅读 下载PDF
Experimental and Neural Network Modeling of the Thermal Behavior of an Agricultural Greenhouse Integrated with a Phase Change Material(CaCl_(2)⋅6H_(2)O)
10
作者 Abdelouahab Benseddik Djamel Daoud +4 位作者 Ahmed Badji Hocine Bensaha Tarik Hadibi Yunfeng Wang Li Ming 《Energy Engineering》 2025年第12期5021-5037,共17页
In Saharan climates,greenhouses face extreme diurnal temperature fluctuations that generate thermal stress,reduce crop productivity,and hinder sustainable agricultural practices.Passive thermal storage using Phase Cha... In Saharan climates,greenhouses face extreme diurnal temperature fluctuations that generate thermal stress,reduce crop productivity,and hinder sustainable agricultural practices.Passive thermal storage using Phase Change Materials(PCM)is a promising solution to stabilize microclimatic conditions.This study aims to evaluate experimentally and numerically the effectiveness of PCM integration for moderating greenhouse temperature fluctuations under Saharan climatic conditions.Two identical greenhouse prototypes were constructed in Ghardaia,Algeria:a reference greenhouse and a PCM-integrated greenhouse using calcium chloride hexahydrate(CaCl_(2)⋅6H_(2)O).Thermal performance was assessed during a five-day experimental period(7–11May 2025)under severe ambient conditions.To complement this,a Nonlinear Auto-Regressive with eXogenous inputs(NARX)neural network model was developed and trained using a larger dataset(7–25 May 2025)to predict greenhouse thermal dynamics.The PCM greenhouse reduced peak daytime air temperature by an average of 8.14℃and decreased the diurnal temperature amplitude by 53.6%compared to the reference greenhouse.The NARX model achieved high predictive accuracy(R^(2)=0.990,RMSE=0.425℃,MAE=0.223℃,MBE=0.008℃),capturing both sensible and latent heat transfer mechanisms,including PCM melting and solidification.The combined experimental and predictive modeling results confirm the potential of PCM integration as an effective passive thermal regulation strategy for greenhouses in arid regions.This approach enhances microclimatic stability,improves energy efficiency,and supports the sustainability of protected agriculture under extreme climatic conditions. 展开更多
关键词 Agricultural greenhouse phase changematerial(PCM) CaCl_(2)⋅6H_(2)O thermal regulation NARX neural network experimental study modeling
在线阅读 下载PDF
The transcriptomic-based disease network reveals synergistic therapeutic effect of total alkaloids from Coptis chinensis and total ginsenosides from Panax ginseng on type 2 diabetes mellitus
11
作者 Qian Chen Shuying Zhang +6 位作者 Xuanxi Jiang Jie Liao Xin Shao Xin Peng Zheng Wang Xiaoyan Lu Xiaohui Fan 《Chinese Journal of Natural Medicines》 2025年第8期997-1008,共12页
Coptis chinensis Franch.and Panax ginseng C.A.Mey.are traditional herbal medicines with millennia of documented use and broad therapeutic applications,including anti-diabetic properties.However,the synergistic effect ... Coptis chinensis Franch.and Panax ginseng C.A.Mey.are traditional herbal medicines with millennia of documented use and broad therapeutic applications,including anti-diabetic properties.However,the synergistic effect of total alkaloids from Coptis chinensis and total ginsenosides from Panax ginseng on type 2 diabetes mellitus(T2DM)and its underlying mechanism remain unclear.The research demonstrated that the optimal ratio of total alkaloids from Coptis chinensis and total ginsenosides from Panax ginseng was 4∶1,exhibiting maximal efficacy in improving insulin resistance and gluconeogenesis in primary mouse hepatocytes.This combination demonstrated significant synergistic effects in improving glucose tolerance,reducing fasting blood glucose(FBG),the weight ratio of epididymal white adipose tissue(eWAT),and the homeostasis model assessment of insulin resistance(HOMA-IR)in leptin receptor-deficient(db/db)mice.Subsequently,a T2DM liver-specific network was constructed based on RNA sequencing(RNA-seq)experiments and public databases by integrating transcriptional properties of disease-associated proteins and protein-protein interactions(PPIs).The network recovery index(NRI)score of the combined treatment group with a 4∶1 ratio exceeded that of groups treated with individual components.The research identified that activated adenosine 5'-monophosphate-activated protein kinase(AMPK)/acetyl-CoA carboxylase(ACC)signaling in the liver played a crucial role in the synergistic treatment of T2DM,as verified by western blot experiment in db/db mice.These findings demonstrate that the 4∶1 combination of total alkaloids from Coptis chinensis and total ginsenosides from Panax ginseng significantly improves insulin resistance and glucose and lipid metabolism disorders in db/db mice,surpassing the efficacy of individual treatments.The synergistic mechanism correlates with enhanced AMPK/ACC signaling pathway activity. 展开更多
关键词 Total alkaloids from Coptis chinensis ALKALOIDS Total ginsenosides from Panax ginseng Component compatibility network pharmacology Type 2 diabetes mellitus
原文传递
可解释反向传播神经网络在预测前哨淋巴结1~2枚阳性乳腺癌患者腋窝淋巴结负荷中的价值
12
作者 农盛 李湛雄 +4 位作者 张琪 卢振东 洪敏萍 陈武标 刘子霖 《实用医学杂志》 北大核心 2026年第1期45-55,共11页
目的 探讨基于临床及影像学特征的反向传播神经网络模型在预测前哨淋巴结活检1~2枚阳性乳腺癌患者腋窝淋巴结负荷水平中的准确性。方法 回顾性分析2021年1月至2024年12月在3家医疗机构接受腋窝淋巴结清扫的386例女性乳腺癌患者临床及影... 目的 探讨基于临床及影像学特征的反向传播神经网络模型在预测前哨淋巴结活检1~2枚阳性乳腺癌患者腋窝淋巴结负荷水平中的准确性。方法 回顾性分析2021年1月至2024年12月在3家医疗机构接受腋窝淋巴结清扫的386例女性乳腺癌患者临床及影像资料。根据病理检查结果将纳入患者分为腋窝淋巴结高负荷组(n=155)和腋窝淋巴结低负荷组(n=231)。将中心1和中心2(广东医科大学附属医院和广东医科大学附属阳江医院)共295例患者随机分为训练集(n=207)与验证集(n=88),将中心3(广东医科大学附属第二医院)的患者(n=91)作为外部验证集。在训练集上采用单因素、多因素逻辑回归筛选危险因素,并在此基础上应用逻辑回归、支持向量机、随机森林和BPNN四种算法构建风险预测模型,在内部验证集和外部验证集上评估模型的性能。结合Shapley可解释性算法对模型进行特征贡献度分析和可视化。结果 单因素和多因素逻辑回归分析显示中性粒细胞-淋巴细胞比值(neutrophil-to-lymphocyte ratio,NLR)、瘤周水肿及腋窝淋巴结皮质增厚为淋巴结负荷的独立危险因素。基于BPNN算法构建的预测模型显示良好预测性能,模型的曲线下面积为0.793。Shapley可解释性分析显示瘤周水肿具有最高贡献,其次为淋巴结皮质增厚和中性粒细胞-淋巴细胞比值。结论 整合临床及影像学特征的可解释BPNN模型能较准确预测腋窝淋巴结负荷水平,为乳腺癌腋窝管理和个体化治疗提供辅助决策。 展开更多
关键词 乳腺癌 腋窝淋巴结负荷 前哨淋巴结1~2枚阳性 反向传播神经网络 可解释性
暂未订购
Prediction of SO_2 Concentration in Urban Atmosphere Based on B-P Neural Network 被引量:1
13
作者 姚建 王丽梅 袁野 《Meteorological and Environmental Research》 CAS 2010年第11期9-11,14,共4页
Base on the principle and method of B-P neural network,the prediction model of SO2 concentration in urban atmosphere was established by using the statistical data of a city in southwest China from 1991 to 2009,so as t... Base on the principle and method of B-P neural network,the prediction model of SO2 concentration in urban atmosphere was established by using the statistical data of a city in southwest China from 1991 to 2009,so as to forecast atmospheric SO2 concentration in a city of southwest China.The results showed that B-P neural network applied in the prediction of SO2 concentration in urban atmosphere was reasonable and efficient with high accuracy and wide adaptability,so it was worthy to be popularized. 展开更多
关键词 B-P neural network SO2 concentration in urban atmospheric Prediction model China
在线阅读 下载PDF
改进Inception-Resnet-V2网络的无人机航向识别 被引量:1
14
作者 成怡 田文斌 郑腾龙 《计算机工程与应用》 CSCD 北大核心 2022年第24期307-312,共6页
为解决无人机在复杂环境下电力巡检的避障难题,研究并改进了基于Inception-Resnet-V2网络的一种无人机航向识别方法。引入深度可分离卷积,将卷积操作分解为深度卷积和逐点卷积两个过程,压缩了计算量。改进后的网络结构保证高精度的识别... 为解决无人机在复杂环境下电力巡检的避障难题,研究并改进了基于Inception-Resnet-V2网络的一种无人机航向识别方法。引入深度可分离卷积,将卷积操作分解为深度卷积和逐点卷积两个过程,压缩了计算量。改进后的网络结构保证高精度的识别,同时节约了计算成本。改进后的网络模型在标准数据集上达到了92.5%的准确率。在实际电力巡检实验中,改进的网络模型针对于基杆塔的航向预测精度达到95.63%。实验结果表明,搭载改进后Inception-Resnet-V2网络模型的无人机可以在复杂环境下成功识别大型基杆塔并进行精确地航向识别与预测。 展开更多
关键词 图像识别 卷积神经网络 可分离卷积 航向识别 inception-resnet-v2网络
在线阅读 下载PDF
基于网络药理学与实验验证研究地黄环烯醚萜苷调控AGEs/RAGE/MAPK通路保护2型糖尿病小鼠肝脏的作用机制 被引量:1
15
作者 王慧森 张宏伟 +3 位作者 刘明 梁瑞峰 张雪侠 张明利 《中草药》 北大核心 2025年第14期5061-5073,共13页
目的基于网络药理学和动物实验验证探讨地黄环烯醚萜苷类(Rehmannia glutinosa iridoid glycosides,RIG)治疗2型糖尿病(type 2 diabetes,T2DM)的作用机制。方法利用Swisstargetprediction和PharmMapper数据库预测筛选RIG相关作用靶点,O... 目的基于网络药理学和动物实验验证探讨地黄环烯醚萜苷类(Rehmannia glutinosa iridoid glycosides,RIG)治疗2型糖尿病(type 2 diabetes,T2DM)的作用机制。方法利用Swisstargetprediction和PharmMapper数据库预测筛选RIG相关作用靶点,OMMI、Genecard、DisGeNET数据库获取T2DM的相关靶标基因,将获得的共同靶点导入STRING数据库构建蛋白相互作用(protein-protein interaction,PPI)网络,Cytoscape软件构建“药物-成分-靶点”和核心靶点网络,通过DAVID数据库和微生信平台进行基因本体(gene ontology,GO)功能及京都基因与基因组百科全书(Kyoto encyclopedia of genes and genomes,KEGG)通路富集分析。采用高糖高脂喂养联合ip链脲佐菌素建立T2DM小鼠模型,将造模成功的小鼠随机分为模型组、二甲双胍(250 mg/kg)组和RIG低、高剂量(200、400 mg/kg)组,每组9只,另取10只正常小鼠作为对照组。药物干预8周,每周测定体质量、空腹血糖(fasting blood glucose,FBG)。给药结束后,分离血清,检测低密度脂蛋白胆固醇(low density lipoprotein cholesterol,LDL-C)、高密度脂蛋白胆固醇(high density lipoprotein cholesterol,HDL-C)、胰岛素(fasting insulin,FINS)水平,并计算胰岛素抵抗指数(homeostasis model assessment of insulin resistance,HOMA-IR);采用苏木素-伊红(HE)、Masson和油红O染色观察小鼠肝脏病理变化;采用免疫组化法测定肝组织炎症因子白细胞介素-1(interleukin-1,IL-1)、IL-6、肿瘤坏死因子-α(tumor necrosis factor-α,TNF-α)的表达量;采用Western blotting法检测肝组织晚期糖基化终末产物(advanced glycation end products,AGEs)、晚期糖基化末端受体(receptor for advanced glycation end products,RAGE)蛋白表达及p-p38丝裂原活化蛋白激酶(mitogen activated protein kinase,MAPK)/p38 MAPK水平;采用qRT-PCR法检测肝组织RAGE、p38 MAPK mRNA表达。结果共筛选得到RIG治疗T2DM潜在靶点175个,关键核心靶点有原癌基因酪氨酸蛋白激酶Src(proto-oncogene tyrosine-protein kinase Src,SRC)、表皮生长因子受体(epidermal growth factor receptor,EGFR)、信号转导和转录激活因子3(signal transducer and activator of transcription 3,STAT3)等。GO富集分析显示潜在作用靶点主要涉及炎症反应的调节等生物过程,KEGG通路分析筛选得到了277条信号通路,显示脂质和动脉粥样硬化、AGEs/RAGE信号通路和MAPK信号通路可能在治疗T2DM过程中发挥关键作用。动物实验结果显示,与模型组比较,RIG可以降低T2DM小鼠饮水量、FBG、FINS、HOMA-IR、LDL-C水平(P<0.01),升高HDL-C水平(P<0.01),改善肝细胞形态,减轻肝损伤,减少胶原沉积及脂质沉积,抑制肝组织IL-1、IL-6、TNF-α表达(P<0.01),下调肝组织AGEs、RAGE、p-p38 MAPK/p38 MAPK蛋白表达及RAGE、p38 MAPK mRNA表达(P<0.05、0.01)。结论RIG能够有效降低T2DM小鼠FBG,改善胰岛素抵抗,减轻炎症反应,保护肝组织,其机制可能与调控AGEs/RAGE/MAPK信号通路有关。 展开更多
关键词 地黄环烯醚萜苷 2型糖尿病 网络药理学 肝损伤 AGEs/RAGE/MAPK信号通路
原文传递
DPP-4抑制剂治疗的2型糖尿病患者中焦虑和抑郁发生风险的Network meta分析 被引量:6
16
作者 王巍巍 高乐 +4 位作者 杨俊 柴三葆 丰雷 武珊珊 孙凤 《中国医刊》 CAS 2018年第9期1044-1049,共6页
目的使用Network meta分析系统评价DPP-4抑制剂类降糖药致2型糖尿病(type 2 diabetes mellitus,T2DM)患者发生焦虑、抑郁的风险。方法系统检索Medline、Embase、Cochrane Library和Clinical Trials.gov网站数据库(截至2016年4月28日)中... 目的使用Network meta分析系统评价DPP-4抑制剂类降糖药致2型糖尿病(type 2 diabetes mellitus,T2DM)患者发生焦虑、抑郁的风险。方法系统检索Medline、Embase、Cochrane Library和Clinical Trials.gov网站数据库(截至2016年4月28日)中比较DPP-4抑制剂与其他降糖药发生焦虑、抑郁风险的随机对照试验(randomized controlled trial,RCT),采用传统meta分析和Network meta分析方法对纳入的RCT研究结果进行合并。结果共纳入44项研究,63 731例T2DM患者,包含9种干预措施:5种DPP-4抑制剂(西格列汀、维格列汀、沙格列汀、利格列汀和阿格列汀)、胰高糖素样肽1受体激动剂、磺脲类、噻唑烷二酮类和安慰剂。传统meta分析结果显示,分别与安慰剂、磺脲类、噻唑烷二酮类相比,DPP-4抑制剂导致焦虑、抑郁发生的风险均较低,但差异无显著性(P>0.05)。Network meta分析发现,与噻唑烷二酮类相比,维格列汀致T2DM患者发生焦虑、抑郁的风险较高,差异有显著性(P<0.05,OR=2.64,95%CI 1.03~6.79),与西格列汀相比,维格列汀致T2DM患者发生焦虑、抑郁的风险较高,差异有显著性(P<0.05,OR=2.42,95%CI 1.00~5.85)。与安慰剂或磺脲类比较,DPP-4抑制剂致T2DM患者发生焦虑、抑郁的风险相当,差异无显著性(P>0.05)。采用基于贝叶斯理论的Network meta分析对9种干预措施进行排序,结果显示西格列汀的风险最低。结论 DPP-4抑制剂不会加重T2DM患者罹患焦虑、抑郁等情绪问题的风险,但不同的DPP-4抑制剂导致的风险程度可能存在差异,建议今后开展的大型前瞻性研究应重视焦虑、抑郁等情绪问题的发生情况,以期为获得更加明确的结论提供证据支持。 展开更多
关键词 DPP-4抑制剂 2型糖尿病 焦虑 抑郁 network META分析
暂未订购
基于改进的Inception-ResNet-V2废钢类型识别算法 被引量:4
17
作者 王彪 陈里里 +3 位作者 徐向阳 何立 陈开 KONG Xiangying 《自动化与仪器仪表》 2023年第4期11-14,19,共5页
本研究提出了一种基于深度学习的废钢快速识别方法,提出的基于Inception-ResNet-V2的改进网络结构添加注意力机制模块经过微调得到SE-Inception-ResNet,并在此基础上采用学习率梯度更新策略自适应调节优化模型。采集了四种类型的废钢数... 本研究提出了一种基于深度学习的废钢快速识别方法,提出的基于Inception-ResNet-V2的改进网络结构添加注意力机制模块经过微调得到SE-Inception-ResNet,并在此基础上采用学习率梯度更新策略自适应调节优化模型。采集了四种类型的废钢数据,然后将样本图像按80%训练集,20%验证集进行训练。后与ResNet152、InceptionV3比较了模型的性能。结果表明,SE-Inception-ResNet、InceptionV3和ResNet152网络的总体分类准确率分别为98.10%、97.48%、95.67%。SE-Inception-ResNet的分类精度最高,该模型在不同学习率情况下能快速梯度收敛。实验结果表明,所提出的改进卷积神经网络模型能够有效地对废钢类型进行识别。同时期望提高其迁移学习模型泛化性,可以为其他快速分类鉴定提供参考,并应用于其他工业或商业领域。 展开更多
关键词 inception-resnet-v2 注意力机制 梯度收敛 迁移学习
原文传递
基于改进Inception-ResNet-v2的PCB缺陷检测 被引量:5
18
作者 孙灿 邓小颖 +1 位作者 李扬 朱金荣 《信息技术》 2020年第9期33-36,共4页
文中提出一种基于卷积神经网络的PCB板缺陷检测算法,能够有效识别和分类常见的电路版缺陷。该方法进行图像预处理,对缺陷图像与参考图像采取图像配准和差分得出感兴趣区域,经过数据扩张汇总成数据集。通过对部分结构针对性添加SE模块来... 文中提出一种基于卷积神经网络的PCB板缺陷检测算法,能够有效识别和分类常见的电路版缺陷。该方法进行图像预处理,对缺陷图像与参考图像采取图像配准和差分得出感兴趣区域,经过数据扩张汇总成数据集。通过对部分结构针对性添加SE模块来改进Inception-ResNet-v2模型,将Leaky ReLU作为激活函数。文中模型在测试集上对缺陷分类的正确率提升到了96.43%,提升了至少3%。 展开更多
关键词 卷积神经网络 图像预处理 数据扩张 inception-resnet-v2模型 缺陷检测
在线阅读 下载PDF
基于改进Inception-ResNet-v2的城市交通路面状态识别算法 被引量:5
19
作者 王佳 黄德启 +1 位作者 郭鑫 杨路明 《科学技术与工程》 北大核心 2022年第6期2524-2530,共7页
针对传统方法对于路面状态识别准确率低的问题,提出了一种改进Inception-ResNet-v2的路面状态识别算法,对6种城市交通路面状态进行识别。首先,在Inception-ResNet-v2算法的Inception-ResNet-C模块引入SENet注意力机制得到SE-Inception-R... 针对传统方法对于路面状态识别准确率低的问题,提出了一种改进Inception-ResNet-v2的路面状态识别算法,对6种城市交通路面状态进行识别。首先,在Inception-ResNet-v2算法的Inception-ResNet-C模块引入SENet注意力机制得到SE-Inception-ResNet-C模块,使算法学习到不同通道特征的重要程度;然后采用特征融合策略,将不同层级的特征信息融合,防止重要特征信息的丢失;最后采用全卷积结构,将原始算法中的全连接层换成卷积层,不仅保证了图像的空间结构,还能使网络接收任意尺度的图片。实验结果表明,该算法能提取关键的特征信息,有效提高了路面状态的识别精度。 展开更多
关键词 城市交通 路面状态识别 inception-resnet-v2算法 注意力机制 特征融合 全卷积结构
在线阅读 下载PDF
基于网络药理学探讨不忘散加味方治疗2型糖尿病轻度认知障碍的机制 被引量:3
20
作者 杨婕 秦玲玲 +4 位作者 吴丽丽 胡圣涓 王翔云 胡燕 刘铜华 《西部中医药》 2025年第5期24-30,共7页
目的:基于网络药理学和分子对接技术探究不忘散加味方治疗2型糖尿病(type 2 diabetes mellitus,T2DM)轻度认知障碍的作用机制。方法:利用中药系统药理学数据库与分析平台(traditional Chinese medicine systems pharmacology database a... 目的:基于网络药理学和分子对接技术探究不忘散加味方治疗2型糖尿病(type 2 diabetes mellitus,T2DM)轻度认知障碍的作用机制。方法:利用中药系统药理学数据库与分析平台(traditional Chinese medicine systems pharmacology database and analysis platform,TCMSP)和BATMAN-TCM数据库筛选不忘散加味方的药物成分及潜在作用靶点;通过在线人类孟德尔遗传数据库(online mendelian inheritance in man,OMIM)及人类基因数据库(the human gene database,GeneCards)筛选疾病相关靶点,获取疾病与药物交集靶点,得出不忘散加味方治疗T2DM轻度认知障碍的潜在作用靶点;通过Cytoscape 3.8.2软件构建“药物-成分-作用靶点”网络;将疾病与药物交集靶点导入STRING数据库,构建蛋白-蛋白互作(proteinprotein interactions,PPI)网络,筛选核心靶点;借助核心靶基因导入基因功能注释数据库(the database for annotation visualization and integrated discovery,DAVID)对疾病与药物交集靶点做基因本体论(gene ontology,GO)和京都基因与基因组百科全书(kyoto encyclopedia of genes and genomes,KEGG)通路富集分析;通过AutoDock Vina软件对筛选出的关键成分与靶点进行分子对接,验证药物与疾病的作用关系。结果:共筛选得到不忘散加味方活性成分135个,不忘散加味方与T2DM轻度认知障碍交集靶点293个;获得槲皮素、β-谷甾醇、山柰酚、木犀草素、豆甾醇等关键活性化合物;筛选得到TP53、IL-6、AKT1、TNF、STAT3、IL-1β、EGFR、JUN、INS、BCL2等核心靶点;潜在作用靶点主要富集在脂质与动脉粥样硬化通路、糖尿病并发症AGE-RAGE、流体剪切应力与动脉粥样硬化通路等。结论:不忘散加味存在多种活性成分,可能通过多个潜在靶点、多条信号通路发挥对T2DM合并轻度认知障碍的治疗作用。 展开更多
关键词 2型糖尿病轻度认知障碍 不忘散加味方 作用机制 网络药理学 分子对接技术
暂未订购
上一页 1 2 102 下一页 到第
使用帮助 返回顶部