期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于优化的Inception ResNet A模块与Gradient Boosting的人群计数方法 被引量:9
1
作者 郭瑞琴 陈雄杰 +1 位作者 骆炜 符长虹 《同济大学学报(自然科学版)》 EI CAS CSCD 北大核心 2019年第8期1216-1224,共9页
针对人群计数问题,基于优化Inception-ResNet-A模块,使用集成学习中的Gradient Boosting方法提出了一种可用于稀疏人群和密集人群的人群计数方法,并给出此方法实现的具体细节.通过在三个公开数据集和真实场景(含光照和视角变化)中进行测... 针对人群计数问题,基于优化Inception-ResNet-A模块,使用集成学习中的Gradient Boosting方法提出了一种可用于稀疏人群和密集人群的人群计数方法,并给出此方法实现的具体细节.通过在三个公开数据集和真实场景(含光照和视角变化)中进行测试,检验了该方法对于光照、人群密度、视角等变化的鲁棒性.实验结果表明,该方法对于以上变化具有较强的鲁棒性,并且相比于之前的人群计数方法在准确性和稳定性方面具有更好的性能. 展开更多
关键词 人群计数 优化inception-resnet-a模块 GRADIENT BOOSTING 多尺度特征 感知野
在线阅读 下载PDF
Multi-Object Detection of Chinese License Plate in Complex Scenes
2
作者 Dan Liu Yajuan Wu +2 位作者 Yuxin He Lu Qin Bochuan Zheng 《Computer Systems Science & Engineering》 SCIE EI 2021年第1期145-156,共12页
Multi-license plate detection in complex scenes is still a challenging task because of multiple vehicle license plates with different sizes and classes in the images having complex background.The edge features of high... Multi-license plate detection in complex scenes is still a challenging task because of multiple vehicle license plates with different sizes and classes in the images having complex background.The edge features of high-density distribution and the high curvature features of stroke turning of Chinese character are important signs to distinguish Chinese license plate from other objects.To accurately detect multiple vehicle license plates with different sizes and classes in complex scenes,a multi-object detection of Chinese license plate method based on improved YOLOv3 network was proposed in this research.The improvements include replacing the residual block of the YOLOv3 backbone network with the Inception-ResNet-A block,imbedding the SPP block into the detection network,cutting the redundant Inception-ResNet-A block to suit for the multi-license plate detection task,and clustering the ground truth boxes of license plates to obtain a new set of anchor boxes.A Chinese vehicle license plate image dataset was built for training and testing the improved network,and the location and class of the license plates in each image were accurately labeled.The dataset has 62,153 pieces of images and 4 classes of China vehicle license plates,almost images have multiple license plates with different sizes.Experiments demonstrated that the multilicense plate detection method obtained 83.4%mAP,98.88%precision,98.17%recall,98.52 F1 score,89.196 BFLOPS and 22 FPS on the test dataset,and whole performance was better than the other five compared networks including YOLOv3,SSD,Faster-RCNN,EfficientDet and RetinaNet. 展开更多
关键词 Chinese vehicle license plate multiple license plate multi-object detection inception-resnet-a spatial pyramid pooling
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部