期刊文献+
共找到311篇文章
< 1 2 16 >
每页显示 20 50 100
基于Inception和注意力机制的双分支日前电价预测 被引量:1
1
作者 毕贵红 孔凡文 +3 位作者 黄泽 陈冬静 骆钊 杨毅 《电力系统自动化》 北大核心 2025年第5期128-144,共17页
在电力市场化的背景下,开放电力市场受需求端负荷、新能源出力和市场间耦合关系等复杂因素影响,其电价波动变得愈发强烈且难以预测。为合理选择影响电价波动的综合因素,降低原始电价序列非稳定性、强波动性对电价预测所产生的负面影响,... 在电力市场化的背景下,开放电力市场受需求端负荷、新能源出力和市场间耦合关系等复杂因素影响,其电价波动变得愈发强烈且难以预测。为合理选择影响电价波动的综合因素,降低原始电价序列非稳定性、强波动性对电价预测所产生的负面影响,提出了一种基于双模式分解与Inception、注意力机制组合的双分支日前电价预测方法。首先,将最大信息系数筛选和与日前电价相关性较高的影响因素进行组合,作为模型相关变量特征矩阵输入;然后,通过变分模态分解和群分解将原始电价序列分解为多个更能反映电价波动规律的子序列,将不同分解方法得到的子序列按高频到低频进行排序,再组合构造多尺度电价分量矩阵作为模型电价分支输入,以提高模态分量的规律性和信息的丰富性;最后,将改进的Inception模块与并行多维注意力(PMDA)、自注意力机制分别进行组合,搭建双分支输入的日前电价预测模型,以提取不同分支输入数据的重要特征并进行融合,输出次日电价预测结果。以北欧电力市场历史数据为例进行验证,并与传统注意力机制进行对比,实验结果表明所提PMDA机制能够更有效地提取电价序列重要特征,以提高日前电价预测精度。 展开更多
关键词 电价预测 注意力 最大信息系数 inception网格 电力市场
在线阅读 下载PDF
基于Inception-BiGRU和注意力机制的频谱感知方法研究
2
作者 殷晓虎 张安熠 +1 位作者 张珂珂 田冲 《电子测量技术》 北大核心 2025年第6期90-98,共9页
频谱感知是缓解频谱资源短缺的关键技术之一,其中智能频谱感知已成为当前研究的热点方向。针对现有频谱感知方法对信号特征提取不充分以及在低信噪比下频谱感知效果不佳的问题,提出一种由Inception模块、双向门控循环单元、时间注意力... 频谱感知是缓解频谱资源短缺的关键技术之一,其中智能频谱感知已成为当前研究的热点方向。针对现有频谱感知方法对信号特征提取不充分以及在低信噪比下频谱感知效果不佳的问题,提出一种由Inception模块、双向门控循环单元、时间注意力机制和全连接层网络组成的频谱感知混合模型。首先,Inception模块对接收到的I/Q信号进行多尺度空间特征的提取;然后,采用双向门控循环单元获取信号的时间序列特征,并通过时间注意力机制强化重要时序特征;最后,全连接层网络将提取到的特征映射到频谱状态的分类空间完成分类识别。实验结果表明,本文方法与多种现有频谱感知方法相比显著提升了感知性能,模型的整体检测准确率达到84.55%,当信噪比为-20 dB时,该方法的感知误差为24%;且对多种调制类型的无线电信号具有较好的适应性。所提方法无需依赖任何先验信息,在低信噪比和复杂无线电环境下展现出较强的鲁棒性,实现了感知性能与模型复杂度的有效平衡,为智能频谱感知提供了一种新的解决方案。 展开更多
关键词 频谱感知 深度学习 inception模块 双向门控循环单元 时间注意力机制
原文传递
基于Inception-GRU模型的混凝土重力坝变形预测方法及应用
3
作者 董晓宁 王勇刚 +4 位作者 白钰 赵灏 张野 康心语 钟雯 《南水北调与水利科技(中英文)》 北大核心 2025年第4期1007-1014,1024,共9页
因为混凝土坝是复杂的动态系统,现有的预测方法多基于统计模型或机器学习模型,难以捕捉位移与多个特征因子之间的复杂耦合关系。为此,提出一种基于Inception和门控循环神经网络(gated recurrent unit,GRU)的混凝土重力坝变形预测模型,其... 因为混凝土坝是复杂的动态系统,现有的预测方法多基于统计模型或机器学习模型,难以捕捉位移与多个特征因子之间的复杂耦合关系。为此,提出一种基于Inception和门控循环神经网络(gated recurrent unit,GRU)的混凝土重力坝变形预测模型,其中,Inception模块用于提取监测数据中的复杂特征,GRU模块则用于学习变形监测数据中的长期时间依赖性,两者结合能够获得更丰富的数据特征表示,有效提升预测性能。以某混凝土重力坝的长期监测数据为例,Inception-GRU模型在3个变形测点上的均方根误差(root mean square error,E_(RMS))、平均绝对误差(mean absolute error,E_(MA))和决定系数(coefficient of determination,R^(2))的平均值分别为0.100、0.074和0.995;与卷积神经网络-门控循环单元(convolutional neural network-gated recurrent unit,CNN-GRU)、GRU以及支持向量回归(support vector regression,SVR)3种模型相比,所提模型在预测精度和泛化能力上均表现出一定的优势,为大坝安全监控提供新的方法和手段。 展开更多
关键词 混凝土重力坝 变形预测 深度学习 inception GRU
在线阅读 下载PDF
采用Inception-LSTM模型的锂电池健康状态估计与剩余寿命预测研究 被引量:1
4
作者 于蕊 胡恒杰 田兴勇 《时代汽车》 2025年第18期114-117,共4页
针对锂电池健康状态(State of Health,SOH)估计和剩余使用寿命(Remaining Useful Life,RUL)预测过程中健康特征提取单一、估计精度低等问题,提出了一种Inception-LSTM模型用于锂电池SOH估计与RUL预测。首先选取合适的恒压恒流充电时间... 针对锂电池健康状态(State of Health,SOH)估计和剩余使用寿命(Remaining Useful Life,RUL)预测过程中健康特征提取单一、估计精度低等问题,提出了一种Inception-LSTM模型用于锂电池SOH估计与RUL预测。首先选取合适的恒压恒流充电时间构建特征序列HF,并采用Pearson相关性系数分析HF和容量之间的相关性;另外针对特征变量的特征提取不够全面问题,采用Inception模型进行特征提取,采用LSTM进行时序建模,随后利用注意力机制进一步提取对电池健康度影响较大的特征来估计电池健康状态,利用该深度学习模型来挖掘电池在复杂使用条件下的动态变化特征。实验结果表明文章模型SOH估计最大均方根误差在3.86%以内,RUL预测最大误差在1个循环。实验结果表明该方法在SOH估计和RUL预测方面优于传统模型。 展开更多
关键词 深度学习 inception网络 LSTM 注意力机制 状态估计
在线阅读 下载PDF
基于改进GAF-inception网络的非侵入式工业负荷识别算法
5
作者 李辉 高嘉颉 +3 位作者 席荣军 陈思颖 黄轶群 沈泽帆 《电力科学与技术学报》 北大核心 2025年第4期103-112,共10页
针对现有非侵入式负荷识别(non-intrusive load monitoring,NILM)在低频工业数据中的辨识准确率低、泛化能力弱等问题,提出一种基于格拉夫角场格拉夫角场(Gramian angular field,GAF)与改进Inception网络结合的非侵入式工业负荷识别算... 针对现有非侵入式负荷识别(non-intrusive load monitoring,NILM)在低频工业数据中的辨识准确率低、泛化能力弱等问题,提出一种基于格拉夫角场格拉夫角场(Gramian angular field,GAF)与改进Inception网络结合的非侵入式工业负荷识别算法。先基于GAF,将功率的一维时序信息转换为带有时间特性的二维数据,提取不同工业场景下负荷特征信息;再建立改进Inception网络,利用其稀疏连接特性对多参数负荷特征进行多尺度提取,降低模型复杂度、提高计算效率,实现多场景工业负荷的高精度辨识;最后,采用工业负荷数据集(industrial appliance identification dataset,IAID)对所提算法进行验证。研究结果表明:所提算法能有效提高辨识准确率,其准确率可达94.48%,降低8%的计算成本。 展开更多
关键词 非侵入式负荷识别 工业负荷 格拉夫角场 inception网络 深度学习
在线阅读 下载PDF
基于Inception-BiLSTM的航空电缆电弧故障检测
6
作者 刘岱 李晨辉 《科学技术与工程》 北大核心 2025年第14期6100-6108,共9页
针对航空电缆电弧故障引起的微小电流变化难以识别的问题,提出了一种基于Inception模块和双向长短期记忆网络(bidirectional long short-term memory, BiLSTM)的交流串联电弧故障诊断方法。首先通过计算自相关系数的离散平方和(discrete... 针对航空电缆电弧故障引起的微小电流变化难以识别的问题,提出了一种基于Inception模块和双向长短期记忆网络(bidirectional long short-term memory, BiLSTM)的交流串联电弧故障诊断方法。首先通过计算自相关系数的离散平方和(discrete sum of squares of the atocorrelation coefficient)、信息熵(Shannon entropy)以及小波能量熵(wavelet energy entropy)提取原始电流数据的特征,将特征合并形成新的特征矩阵,对原始数据实现特征增强。之后Inception-BiLSTM网络利用特征矩阵进行学习,最后完成对电弧故障的诊断。为了验证模型在实际环境中的诊断性能,在充分考虑实际情况下,基于航空电缆电弧模拟实验平台进行了振动试验、应力实验以及潮湿电缆实验,并将实验数据整合作为检测样本。实验结果表明,本文方法对于识别电弧故障有着较高的准确度,可以达到99.69%。 展开更多
关键词 inception模块 双向长短期记忆网络 航空电缆电弧故障 特征提取
在线阅读 下载PDF
Experimental investigation of instability inception on a transonic compressor under various inlet guide vanes
7
作者 Tianyu PAN Jingsai ZHOU +2 位作者 Wenqian WU Zhaoqi YAN Qiushi LI 《Chinese Journal of Aeronautics》 2025年第3期18-29,共12页
The utilization of Inlet Guide Vane (IGV) plays a key factor in affecting the instability evolution. Existing literature mainly focuses on the effect of IGV on instability inception that occurs in the rotor region. Ho... The utilization of Inlet Guide Vane (IGV) plays a key factor in affecting the instability evolution. Existing literature mainly focuses on the effect of IGV on instability inception that occurs in the rotor region. However, with the emergence of compressor instability starting from the stator region, the mechanism of various instability inceptions that occurs in different blade rows due to the change of IGV angles should be further examined. In this study, experiments were focused on three types of instability inceptions observed previously in a 1.5-stage axial flow compressor. To analyze the conversion of stall evolutions, the compressor rotating speed was set to 17 160 r/min, at which both the blade loading in the stator hub region and rotor tip region were close to the critical value before final compressor stall. Meanwhile, the dynamic test points with high-response were placed to monitor the pressures both at the stator trailing edges and rotor tips. The results indicate that the variation of reaction determines the region where initial instability occurs. Indeed, negative pre-rotation of the inlet guide vane leads to high-reaction, initiating stall disturbance from the rotor region. Positive pre-rotation results in low-reaction, initiating stall disturbance from the stator region. Furthermore, the type of instability evolution is affected by the radial loading distribution under different IGV angles. Specifically, a spike-type inception occurs at the rotor blade tip with a large angle of attack at the rotor inlet (−2°, −4° and −6°). Meanwhile, the critical total pressure ratio at the rotor tip is 1.40 near stall. As the angle of attack decreases, the stator blade loading reaches its critical boundary, with a value of approximately 1.35. At this moment, if the rotor tip maintains high blade loading similar to the stator hub, the partial surge occurs (0° and +2°);otherwise, the hub instability occurs (+4° and +6°). 展开更多
关键词 Transonic comnpressor Inlet guide vane Instability inception Partial suge SPIKE Hub instability
原文传递
融合Inception V1-CBAM-CNN的轴承剩余寿命预测模型 被引量:8
8
作者 余江鸿 彭雄露 +2 位作者 刘涛 杨文 叶帅 《机电工程》 北大核心 2024年第1期107-114,共8页
针对现有的滚动轴承剩余寿命(RUL)预测方法精度低、轴承健康指标(HI)构建困难等问题,提出了一种基于卷积神经网络(CNN)并融合Inception V1模块和卷积注意力机制模块(CBAM)的滚动轴承RUL预测模型。首先,在CNN中添加了CBAM机制,并进行了... 针对现有的滚动轴承剩余寿命(RUL)预测方法精度低、轴承健康指标(HI)构建困难等问题,提出了一种基于卷积神经网络(CNN)并融合Inception V1模块和卷积注意力机制模块(CBAM)的滚动轴承RUL预测模型。首先,在CNN中添加了CBAM机制,并进行了加权处理,在通道和空间维度对重要特征进行了强化,对次要特征进行了抑制,通过添加改进的InceptionV1模块,提高了CNN通道间信息交互水平,全面提取了退化特征;然后,进行了网络优化,采用全局最大池化(GMP)方法对模型进行了简化,采用Dropout和批量归一化(BN)方法,避免了过拟合,提高了精度,且克服了训练时出现的梯度消失问题;最后,对数据进行了处理,将降噪后的信号重组为三维张量,将其作为HI,构建了退化标签,引入了评价指标,采用PHM2012轴承数据集进行了实验验证,在3种工况下将其与深度神经网络(DNN)、CNN方法、结合注意力机制的残差网络方法(ResNet)进行了对比。研究结果表明:该方法在变负载条件下的平均RMSE为0.033,较其他方法的RMSE值分别降低了86%、78%和69%,在预测精度和泛化能力方面具有明显优势。 展开更多
关键词 滚动轴承 剩余使用寿命 inception V1模块 卷积注意力机制模块 卷积神经网络 全局最大池化 批量归一化
在线阅读 下载PDF
基于Inception-BiLSTM的小样本刀具磨损状态识别研究 被引量:5
9
作者 魏永合 王耿 吴静远 《组合机床与自动化加工技术》 北大核心 2024年第5期147-151,共5页
针对工业生产中故障数据不足难以准确进行故障诊断问题,以Inception模块为主体结构,结合双向长短时记忆网络(BiLSTM),提出了Inception-BiLSTM故障诊断方法,并用刀具磨损状态识别进行实验验证。首先,将振动信号通过连续小波变换(CWT)得... 针对工业生产中故障数据不足难以准确进行故障诊断问题,以Inception模块为主体结构,结合双向长短时记忆网络(BiLSTM),提出了Inception-BiLSTM故障诊断方法,并用刀具磨损状态识别进行实验验证。首先,将振动信号通过连续小波变换(CWT)得到时频特征图,利用Inception网络对时频图进行特征提取;然后,使用全局平均池化(GAP)将特征向量降维;最后,使用BiLSTM提取数据信息,以识别刀具磨损状态。实验结果表明,在小样本条件下,该方法相较于对比方法对刀具磨损状态识别的准确率更高。 展开更多
关键词 inception 双向长短时记忆网络 刀具 状态识别 连续小波变换 小样本
在线阅读 下载PDF
基于Inception-BiLSTM和迁移学习的结构损伤识别 被引量:1
10
作者 王二成 肖俊伟 +3 位作者 李家豪 吴雪 柴颖珂 李彦苍 《科学技术与工程》 北大核心 2024年第18期7776-7784,共9页
针对传统卷积神经网络(convolutional neural network,CNN)方法在时空特征提取存在不足,提出了一种改进的Inception与双向长短期记忆(bi-directional long short-term memory,BiLSTM)联合模型,以全面学习振动信号中的空间和时序信息。首... 针对传统卷积神经网络(convolutional neural network,CNN)方法在时空特征提取存在不足,提出了一种改进的Inception与双向长短期记忆(bi-directional long short-term memory,BiLSTM)联合模型,以全面学习振动信号中的空间和时序信息。首先,构建具有多尺度感受野的Inception模块,自适应地提取不同尺度下的空间特征;其次,BiLSTM序列化处理时间特征,以深度挖掘时间相关性;最后,通过全局平均池化和Softmax分类器来实现钢框架结构的损伤识别。为评估该模型对噪声的鲁棒性,引入高斯白噪声作为干扰。此外,采用迁移学习策略来评估模型在不同强度激励和小样本下的泛化能力,确保适用于不同的损伤识别任务。结果表明,与传统的CNN方法相比,该模型在无噪声条件下及信噪比超过25 dB时保持了100%的识别精度。该方法解决了土木工程应用中样本量不足和不同强度激励的实际挑战。通过微调预训练模型的参数,实现了在不同强度激励和小样本情况下的知识迁移与泛化,从而增强了模型的实际适用性。 展开更多
关键词 钢框架 损伤识别 inception BiLSTM 迁移学习
在线阅读 下载PDF
基于Res-Inception的农作物病虫害识别技术
11
作者 王洪波 杨永政 +2 位作者 谢志成 郁志宏 王春光 《江苏农业科学》 北大核心 2024年第20期181-189,共9页
针对现有视觉识别技术对于农作物病虫害识别存在实际农业生产中识别效果不佳的问题,研究提出了一种结合ResNet和Inception 2种模型优点的新构架Res-Inception块。Res-Inception块中采取了ResNet中的残差结构使得模型可以有效应对深度过... 针对现有视觉识别技术对于农作物病虫害识别存在实际农业生产中识别效果不佳的问题,研究提出了一种结合ResNet和Inception 2种模型优点的新构架Res-Inception块。Res-Inception块中采取了ResNet中的残差结构使得模型可以有效应对深度过深造成的过拟合和模型退化的问题;Res-Inception块中的卷积层采用Inception模型中的并行联结策略,将传统的3×3卷积核由并行的1×3、3×1卷积核代替,在简化模型参数量的同时使得模型获得了更强的多尺度特征提取能力;最后通过迁移学习使模型拥有高效的学习能力。在训练过程中将公开数据集PlantVillage中的多种作物病虫害作为预训练样本,通过迁移学习后对PlantVillage中6种番茄病虫害图像进行识别,模型对于训练集中病虫害的检测准确率达到99.1%,验证集的检测准确率达到98.9%,平均F 1分数达到98.82%。通过与VGG-16、ResNet34、ResNet50等检测模型在PlantVillage数据集中的6种番茄病虫害识别测试中,本模型的检测准确率远高于这些模型;并且通过对比采用迁移学习前后的模型检测能力,验证了本研究提出的模型可以有效解决模型过拟合问题。本研究提出的Res-Inception块在有效解决了现有模型过拟合及模型退化问题的同时提高了模型的实际检测效果,该模块可为农业生产中病虫害识别模型的轻量化提供新思路,助力模型在实际农业生产中的应用。 展开更多
关键词 农作物病虫害 迁移学习 ResNet inception 图像识别
在线阅读 下载PDF
基于SMOTE和Inception-CNN的种植和组培金线莲鉴别 被引量:2
12
作者 蓝艳 王武 +3 位作者 许文 柴琴琴 李玉榕 张勋 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2024年第1期158-163,共6页
金线莲是一种珍贵中药材,其治疗、保健作用十分显著。金线莲培育方式主要有种植、组培等,不同培育方式的金线莲,在性状上仅表现出细微差异,但药用、市场价值差异显著,培育方式鉴别能有效保证药用疗效、维护良好市场秩序,然而由于不同品... 金线莲是一种珍贵中药材,其治疗、保健作用十分显著。金线莲培育方式主要有种植、组培等,不同培育方式的金线莲,在性状上仅表现出细微差异,但药用、市场价值差异显著,培育方式鉴别能有效保证药用疗效、维护良好市场秩序,然而由于不同品系、产地、培育时间等复合差异的影响,增加了培育方式鉴别难度与复杂度。提出一种基于改进1D-Inception-CNN模型的金线莲培育方式鉴别方法。采用近红外光谱仪采集种植、组培金线莲的光谱,首先使用合成少数类过采样技术(SMOTE)进行过采样以解决种植品、组培品样本比例不平衡问题,其次构建基于改进Inception结构的一维卷积神经网络对来自不同品系、产地、培育时间的金线莲进行种植品、组培品鉴别,最后采用贝叶斯优化方法对构建的卷积神经网络模型超参数进行优化;最终五折交叉验证平均鉴别准确率、精确率、召回率、综合评价指标高达97.95%、 96.16%、 100%、 98.02%。研究表明,实验提出的鉴别模型为快速鉴别金线莲种植品、组培品提供一种有效方法。 展开更多
关键词 金线莲 少数类过采样技术 inception模块 一维卷积神经网络 贝叶斯优化
在线阅读 下载PDF
基于时空Inception残差注意力网络的脑电情绪识别 被引量:1
13
作者 王伟 周建华 +2 位作者 刘紫恒 赵世昊 伏云发 《重庆邮电大学学报(自然科学版)》 CSCD 北大核心 2024年第1期68-75,共8页
为了提高脑电情绪识别分类精度,最大限度利用脑电信号的空间和时间信息,提出一种Inception残差注意力卷积神经网络与双向长短期记忆(bi-directional long short-term memory, BiLSTM)网络相结合的新型架构时空Inception残差注意力网络... 为了提高脑电情绪识别分类精度,最大限度利用脑电信号的空间和时间信息,提出一种Inception残差注意力卷积神经网络与双向长短期记忆(bi-directional long short-term memory, BiLSTM)网络相结合的新型架构时空Inception残差注意力网络。将脑电信号采集电极位置映射到二维矩阵中,采集信号作为通道,构成三维数据;将得到的三维数据输入到时空Inception残差注意力卷积网络之中,提取时空信息;将得到的特征输入到全连接层进行分类;将Inception结构引入脑电情绪识别领域,实现多尺度特征提取,并将电极映射到矩阵之中,保留电极位置信息,使用时空Inception残差注意力网络从时空两个维度获取脑电相关信息。实验表明,使用该模型对DEAP数据集进行情绪四分类可得到93.71%的准确度,相较于对比模型,识别精度提高了10%~20%。提出的模型在脑电信号情绪识别领域具有优良性能。 展开更多
关键词 脑电信号 情绪识别 电极平面映射 inception残差注意力网络 双向长短期记忆网络
在线阅读 下载PDF
基于孪生Inception网络的燃烧器火焰状态监测 被引量:1
14
作者 马赟 付伟 +2 位作者 王昕 杨如意 钱相臣 《化工进展》 EI CAS CSCD 北大核心 2024年第2期760-767,共8页
燃煤电厂炉膛火焰的实时监测关系到发电经济性和锅炉的安全运行,而基于光能、热能和辐射能等能量信号的传统火检技术仅能探测火焰的有无,已无法满足日益迫切的火力发电精细化“调峰”需求。本文以实际电厂燃烧器火焰图像为研究对象,应... 燃煤电厂炉膛火焰的实时监测关系到发电经济性和锅炉的安全运行,而基于光能、热能和辐射能等能量信号的传统火检技术仅能探测火焰的有无,已无法满足日益迫切的火力发电精细化“调峰”需求。本文以实际电厂燃烧器火焰图像为研究对象,应用基于改进的Inception深度卷积神经网络(deep convolutional neural network,DCNN)的火焰状态分类方法,通过深入分析燃烧器火焰图像特点,对火焰多维度特征进行提取并制作数据集,同时将预处理后的不同类别火焰图像制作成火焰图像数据集,构建Inception DCNN,实现自动特征提取的火焰状态分类,并提出基于孪生Inception DCNN对燃烧器火焰状态进行分类。结果表明,改进的孪生Inception DCNN网络模型将火焰的状态分类问题转化为评价状态相似度问题,间接实现分类目标,识别准确率达到99.86%。 展开更多
关键词 燃烧器火焰状态监测 燃煤电厂 inception深度卷积神经网络 孪生网络
在线阅读 下载PDF
基于Attention-Inception网络集成的雷达HRRP序列目标识别方法 被引量:1
15
作者 方梦瑶 张贞凯 李汪华 《电讯技术》 北大核心 2024年第9期1370-1378,共9页
传统的雷达高分辨距离像(High Resolution Range Profile,HRRP)序列识别方法依赖于人工提取特征,并且在使用现有的经典深度学习方法识别小数据集时存在梯度消失和过拟合问题,导致收敛速度慢,识别率低。针对上述问题,提出了一种基于注意... 传统的雷达高分辨距离像(High Resolution Range Profile,HRRP)序列识别方法依赖于人工提取特征,并且在使用现有的经典深度学习方法识别小数据集时存在梯度消失和过拟合问题,导致收敛速度慢,识别率低。针对上述问题,提出了一种基于注意力机制的集成Inception网络模型,通过集成Attention-Inception单分支网络,实现了HRRP序列更深层次特征的提取;通过对模型的损失函数加入L2正则化,缓解小数据集在集成网络中的过拟合问题;利用Inception Ⅰ和Inception Ⅱ结构提取HRRP序列多尺度特征,并引入注意力机制计算特征序列的分配权重;加入残差结构,减缓了集成网络梯度消失问题。在预处理后的HRRP序列上进行实验结果表明,所提方法的目标识别率达到93.3%,并且与未去除噪声的HRRP序列相比目标识别率提高了14.67%。 展开更多
关键词 高分辨距离像序列 目标识别 神经网络集成 注意力机制 inception结构
在线阅读 下载PDF
基于Inception模块与改进GRU的混凝土坝变形预测模型 被引量:4
16
作者 宋蕾 雷兆星 《水利水电科技进展》 CSCD 北大核心 2024年第6期100-105,共6页
针对现有基于经典线性回归方法或浅层机器学习技术的混凝土坝变形预测模型在提取环境量因子复杂特征与学习变形-环境量长期依赖关系上的不足,提出了基于Inception模块与自注意力机制改进的门控循环单元(GRU)的混凝土坝变形预测模型。该... 针对现有基于经典线性回归方法或浅层机器学习技术的混凝土坝变形预测模型在提取环境量因子复杂特征与学习变形-环境量长期依赖关系上的不足,提出了基于Inception模块与自注意力机制改进的门控循环单元(GRU)的混凝土坝变形预测模型。该模型综合运用了Inception模块的特征提取能力和GRU的长期依赖性学习能力,可从不同尺度提取大坝环境量监测序列的特征并进行大坝变形的长期预测,同时通过引入注意力机制,降低了学习多种环境因子特征时的模型过拟合风险。某特高混凝土双曲拱坝工程实例验证结果表明,该模型在典型监测点的预测性能都优于其他常用的浅层或深度学习模型,可用于混凝土坝变形预测。 展开更多
关键词 混凝土坝 变形预测 深度学习 inception模块 门控循环单元
在线阅读 下载PDF
融合Inception与SE-Attention的加密流量移动业务识别 被引量:1
17
作者 王依菁 王清贤 +2 位作者 丁大钊 闫廷聚 曹琰 《计算机科学》 CSCD 北大核心 2024年第10期399-407,共9页
移动设备通常接入无线局域网,并依赖WiFi加密协议对网络中数据链路层流量进行加密,以维护通信安全。然而,现有加密流量识别方法主要针对网络层及以上的流量载荷进行分析,无法有效识别链路层加密流量的移动业务类别。针对该问题,提出了... 移动设备通常接入无线局域网,并依赖WiFi加密协议对网络中数据链路层流量进行加密,以维护通信安全。然而,现有加密流量识别方法主要针对网络层及以上的流量载荷进行分析,无法有效识别链路层加密流量的移动业务类别。针对该问题,提出了一种在WiFi加密场景下基于链路层流量的移动业务识别方法。通过被动嗅探WiFi数据帧,提取链路层中可用的流量侧信道特征,将流量数据转换为二维直方图矩阵。融合Inception网络和SE-Attention机制,提出识别模型——SE-Inception,旨在更好地捕捉到流量数据帧分布特征中的细节和全局信息,突出对重要特征的关注,以提高识别准确率。文中采用真实数据集进行实验验证,结果表明该方法在WiFi加密场景下可有效识别链路层加密流量的移动业务类别,平均准确率可达98.29%,相比于已有的识别方法具有更优的性能。 展开更多
关键词 无线局域网 链路层加密流量 流量识别 inception SE注意力机制
在线阅读 下载PDF
基于改进Inception ResNet V2网络的可回收垃圾分拣系统
18
作者 徐丽 周腊吾 李高嘉 《环境工程》 CAS CSCD 2024年第4期233-241,共9页
垃圾围城一直是困扰我国城市管理的一大难题。针对可回收垃圾处理过程难度大的问题,提出了1套基于改进的Inception ResNet V2网络结合ROBOT MG400机械臂进行可回收垃圾自动化分拣的系统。首先,对MG400机械臂上的夹具进行改进,使之更适... 垃圾围城一直是困扰我国城市管理的一大难题。针对可回收垃圾处理过程难度大的问题,提出了1套基于改进的Inception ResNet V2网络结合ROBOT MG400机械臂进行可回收垃圾自动化分拣的系统。首先,对MG400机械臂上的夹具进行改进,使之更适用于垃圾抓取;然后,自主创建了50850张数据集,在此基础上对垃圾图像经过背景降噪、图像分类以及投票算法的处理,并在Inception ResNet V2网络的输出层加入CBAM注意力机制,提高模型识别的准确性;最后对整个系统进行了实验验证。结果表明:该系统可较为准确地分类垃圾并收集至对应垃圾收集容器中,训练时模型的准确率为99.35%,在系统中传送带运行时识别准确率为95.39%,改进的网络在实际应用中的mAP值比原模型高2.56%,并且系统的分拣效率可达到60件/min。该系统可高效率、高准确率、高精度独立地完成可回收垃圾的分拣工作。 展开更多
关键词 inception ResNet V2 图像分类 可回收垃圾 深度学习 注意力机制
原文传递
神经网络搭载Inception模块的框架结构集成故障诊断 被引量:1
19
作者 蔡超志 池耀磊 郭璐彬 《机械设计与制造》 北大核心 2024年第6期170-176,共7页
针对于框架结构的使用环境恶劣,同时常常伴随着大量的噪声,在使用普通的一维卷积神经网络对框架结构进行故障诊断时,存在无法做出有效故障诊断的问题。本研究在一种抗噪声能力较强的卷积神经网络中加入Inception模块,提出了一种识别率... 针对于框架结构的使用环境恶劣,同时常常伴随着大量的噪声,在使用普通的一维卷积神经网络对框架结构进行故障诊断时,存在无法做出有效故障诊断的问题。本研究在一种抗噪声能力较强的卷积神经网络中加入Inception模块,提出了一种识别率和抗噪声能力更高的卷积神经网络—BICNN(Convolution Neural Network based on Inception),并用BICNN卷积神经网络基于数据驱动的方式,对楼体框架模型进行了集成故障诊断研究。集成诊断结果表明BICNN具有更高的识别率和较强的抗噪声能力,而且在训练步数较少的情况下振荡次数少收敛情况良好。因此采取本研究所提出的方法,对框架结构进行故障诊断时具有高诊断率和稳定性,为维护框架结构的稳定运行具有重大安全意义。 展开更多
关键词 框架结构 故障诊断 卷积神经网络 inception模块 抗噪声能力 正确率
在线阅读 下载PDF
基于小波变换和Inception网络的心跳分类
20
作者 林鸣放 席燕辉 《长沙理工大学学报(自然科学版)》 2024年第6期142-151,共10页
【目的】针对临床专业人士对心电图进行逐拍分析诊断时存在的耗时耗力问题,本文提出了一种基于预训练的Inception网络心电图自动识别方法。【方法】首先使用墨西哥小波变换将心电图从时域转换到时频域,提取心跳信号的时域和频域信息,然... 【目的】针对临床专业人士对心电图进行逐拍分析诊断时存在的耗时耗力问题,本文提出了一种基于预训练的Inception网络心电图自动识别方法。【方法】首先使用墨西哥小波变换将心电图从时域转换到时频域,提取心跳信号的时域和频域信息,然后利用Inception网络对心跳时频图进行自动诊断识别。训练中采用随机梯度下降算法对模型进行优化。【结果】为验证所提方法的有效性,在公开心律失常数据集中选取5种心跳数据进行测试。结果表明,本文算法在阳性预测值、召回率和准确率等指标都取得了很好的成绩,且在相同试验条件下,收敛更快,其准确度比预训练好的残差网络和视觉几何群网络的更高。【结论】采用墨西哥小波基函数能更好地表征单个心跳形状,而采用端到端的Inception模型能将不同宽度心跳信号特征矩阵按深度进行拼接,提取更丰富的特征。 展开更多
关键词 心电图 心跳分类 inception网络 小波变换
在线阅读 下载PDF
上一页 1 2 16 下一页 到第
使用帮助 返回顶部