ZnO and In203 films were prepared by thermal oxidation of vacuum deposited zinc and indium films, respec- tively onto the glass substrate at 30 ℃. The fabricated films have been irradiated with 100-MeV Ni7+ ions at ...ZnO and In203 films were prepared by thermal oxidation of vacuum deposited zinc and indium films, respec- tively onto the glass substrate at 30 ℃. The fabricated films have been irradiated with 100-MeV Ni7+ ions at different fluences ranging from 5×1011 to 5×1013 ions/cm2. The structural and gas sensing properties of pristine and irradiated films have been discussed. X-ray diffraction (XRD) pattern of pristine and irradiated films reveal that the films are polycrystalline in nature and crystallinity increases after irradiation. In this study, highly porous In203 nanorods evolved when being irradiated at a fluence of 5×1013 ions/cm2 while ZnO film shows decrease in number of nanowires. The ammonia sensing performance of the Ni^7+ irradiated In203 films shows an improvement as compared to its pristine counterpart.展开更多
Exploring electrode materials with attractive specific capacity and prominent cyclic durability is of the essence for promoting lithium ion batteries(LIBs).In2O3 has shown an extraordinary promise for LIBs with advant...Exploring electrode materials with attractive specific capacity and prominent cyclic durability is of the essence for promoting lithium ion batteries(LIBs).In2O3 has shown an extraordinary promise for LIBs with advantageous gravimetric capacity(theoretically 965 mA h g-1) and low working voltage.However,In2O3 still suffers from the inherent weaknesses of metal oxides in practical application,especially low conductivity and incorrigible volume expansion upon the cycling process.Here,we demonstrate the architecture of metal-organic framework(MOF)-derived In2O3 nanocrystals/hierarchically porous nitrogen-doped carbon composite(In2O3/HPNC) for ultra-stable LIBs anode.This hierarchically porous structure(micro/meso/macro-pores) with nitrogen doping not only ensures exceptional mechanical strength and accommodates the volume expansion of In2O3 nanocrystals,but also offers electrons and lithium ions efficient interpenetrating pathways to migrate rapidly during charge/discharge processes.Thus,In2O3/HPNC exhibits excellent cyclic stability with a high specific capacity of 623 mA h g-1 over2000 cycles at 1000 mA g-1,corresponding to an ultra-low specific capacity decay of 0.017% per cycle(the best among the ln203-based anode for LIBs),and outstanding rate performance,suggesting a critical step toward achieving long-life and high-rate LIBs in practical devices.展开更多
A liquefied petroleum gas (LPG) sensor with high selectivity, sensitivity and low power consumption has been developed based on indium oxide with very low resistance. Nanocrystalline In203 gas sensing materials were...A liquefied petroleum gas (LPG) sensor with high selectivity, sensitivity and low power consumption has been developed based on indium oxide with very low resistance. Nanocrystalline In203 gas sensing materials were directly synthesized through a one-step controllable solvothermal process at 210 ℃ for 24 h, using InCI3.4H2O as the starting material, cetyltrimethyl ammonium bromide (CTAB) as additive and ethanol as the solvent. The obtained samples were characterized by X-ray diffraction (XRD), and transmission electron microscopy (TEM). The results showed that indium oxide takes on uniform cubic shape with range size of 10~30 nm and fine dispersivity. Gas sensitivity was measured in a mixing static gas. The results indicated that 3.0 V is the best working voltage of the sensor to LPG. Sensitivity is 12.6. The response-time and recovery-time are 3 s and 10 s respectively. Power consumption is only around 200 mW.展开更多
Micro-sensors are fabricated by co-electrospinning In2O3and SnO2nanofibers on the substrates of SiO2/Si with interdigitated Pt signal electrodes.The total sensor area is 1.36 mm 9 0.55 mm and the active area is only0....Micro-sensors are fabricated by co-electrospinning In2O3and SnO2nanofibers on the substrates of SiO2/Si with interdigitated Pt signal electrodes.The total sensor area is 1.36 mm 9 0.55 mm and the active area is only0.63 mm 9 0.55 mm.Excellent NH3sensing properties are obtained based on the sensors at room temperature.The sensitivity is at most 28 when the sensors are exposed to NH3of 10 ppm.The response time is 8 s or so and the recovery time is nearly 2 s.Not only fine selectivity,but also longtime stability is obtained.The results not only demonstrate the obtained micro-sensors are very promising devices for NH3detection,but also show a possible route for large-scale NH3sensor fabrication at the industrial level.展开更多
文摘ZnO and In203 films were prepared by thermal oxidation of vacuum deposited zinc and indium films, respec- tively onto the glass substrate at 30 ℃. The fabricated films have been irradiated with 100-MeV Ni7+ ions at different fluences ranging from 5×1011 to 5×1013 ions/cm2. The structural and gas sensing properties of pristine and irradiated films have been discussed. X-ray diffraction (XRD) pattern of pristine and irradiated films reveal that the films are polycrystalline in nature and crystallinity increases after irradiation. In this study, highly porous In203 nanorods evolved when being irradiated at a fluence of 5×1013 ions/cm2 while ZnO film shows decrease in number of nanowires. The ammonia sensing performance of the Ni^7+ irradiated In203 films shows an improvement as compared to its pristine counterpart.
基金the financial support from the Fundamental Research Funds of the Central Universities(No.531118010112)the Double First-Class University Initiative of Hunan University(No.531109100004)+1 种基金the Fundamental Research Funds of the Central Universities(no.531107051048)the support from the Hunan Key Laboratory of Two-Dimensional Materials(No.801200005)
文摘Exploring electrode materials with attractive specific capacity and prominent cyclic durability is of the essence for promoting lithium ion batteries(LIBs).In2O3 has shown an extraordinary promise for LIBs with advantageous gravimetric capacity(theoretically 965 mA h g-1) and low working voltage.However,In2O3 still suffers from the inherent weaknesses of metal oxides in practical application,especially low conductivity and incorrigible volume expansion upon the cycling process.Here,we demonstrate the architecture of metal-organic framework(MOF)-derived In2O3 nanocrystals/hierarchically porous nitrogen-doped carbon composite(In2O3/HPNC) for ultra-stable LIBs anode.This hierarchically porous structure(micro/meso/macro-pores) with nitrogen doping not only ensures exceptional mechanical strength and accommodates the volume expansion of In2O3 nanocrystals,but also offers electrons and lithium ions efficient interpenetrating pathways to migrate rapidly during charge/discharge processes.Thus,In2O3/HPNC exhibits excellent cyclic stability with a high specific capacity of 623 mA h g-1 over2000 cycles at 1000 mA g-1,corresponding to an ultra-low specific capacity decay of 0.017% per cycle(the best among the ln203-based anode for LIBs),and outstanding rate performance,suggesting a critical step toward achieving long-life and high-rate LIBs in practical devices.
基金supported by the National Natural Science Foundation of China (Grant No.20471055)
文摘A liquefied petroleum gas (LPG) sensor with high selectivity, sensitivity and low power consumption has been developed based on indium oxide with very low resistance. Nanocrystalline In203 gas sensing materials were directly synthesized through a one-step controllable solvothermal process at 210 ℃ for 24 h, using InCI3.4H2O as the starting material, cetyltrimethyl ammonium bromide (CTAB) as additive and ethanol as the solvent. The obtained samples were characterized by X-ray diffraction (XRD), and transmission electron microscopy (TEM). The results showed that indium oxide takes on uniform cubic shape with range size of 10~30 nm and fine dispersivity. Gas sensitivity was measured in a mixing static gas. The results indicated that 3.0 V is the best working voltage of the sensor to LPG. Sensitivity is 12.6. The response-time and recovery-time are 3 s and 10 s respectively. Power consumption is only around 200 mW.
基金supported by the National Nat-ural Science Foundation of China(61106050,21201022,61205038)the Science Foundation for Young Scholars of Changchun University of Science and Technology(XQNJJ-2011-12)+1 种基金the Scientific and Technological Development Project of Jilin Province(201101103,201201121,20120435,20130203033GX)the Scientific and Technological Pillar Project of Changchun(11KZ38)
文摘Micro-sensors are fabricated by co-electrospinning In2O3and SnO2nanofibers on the substrates of SiO2/Si with interdigitated Pt signal electrodes.The total sensor area is 1.36 mm 9 0.55 mm and the active area is only0.63 mm 9 0.55 mm.Excellent NH3sensing properties are obtained based on the sensors at room temperature.The sensitivity is at most 28 when the sensors are exposed to NH3of 10 ppm.The response time is 8 s or so and the recovery time is nearly 2 s.Not only fine selectivity,but also longtime stability is obtained.The results not only demonstrate the obtained micro-sensors are very promising devices for NH3detection,but also show a possible route for large-scale NH3sensor fabrication at the industrial level.