Citations based relevant research paper recommendations can be generated primarily with the assistance of three citation models:(1)Bibliographic Coupling,(2)Co-Citation,and(3)Direct Citations.Millions of new scholarly...Citations based relevant research paper recommendations can be generated primarily with the assistance of three citation models:(1)Bibliographic Coupling,(2)Co-Citation,and(3)Direct Citations.Millions of new scholarly articles are published every year.This flux of scientific information has made it a challenging task to devise techniques that could help researchers to find the most relevant research papers for the paper at hand.In this study,we have deployed an in-text citation analysis that extends the Direct Citation Model to discover the nature of the relationship degree-ofrelevancy among scientific papers.For this purpose,the relationship between citing and cited articles is categorized into three categories:weak,medium,and strong.As an experiment,around 5,000 research papers were crawled from the CiteSeerX.These research papers were parsed for the identification of in-text citation frequencies.Subsequently,0.1 million references of those articles were extracted,and their in-text citation frequencies were computed.A comprehensive benchmark dataset was established based on the user study.Afterwards,the results were validated with the help of Least Square Approximation by Quadratic Polynomial method.It was found that degreeof-relevancy between scientific papers is a quadratic increasing/decreasing polynomial with respect to-increase/decrease in the in-text citation frequencies of a cited article.Furthermore,the results of the proposed model were compared with state-of-the-art techniques by utilizing a well-known measure,known as the normalized Discount Cumulative Gain(nDCG).The proposed method received an nDCG score of 0.89,whereas the state-of-the-art models such as the Content,Bibliographic-coupling,and Metadata-based Models were able to acquire the nDCG values of 0.65,0.54,and 0.51 respectively.These results indicate that the proposed mechanism may be applied in future information retrieval systems for better results.展开更多
This article examines the in-text images from literature textbooks of Nigerian primary schools and how these are succinctly used to positively enhance the learning process of pupils at that level.The data for the stud...This article examines the in-text images from literature textbooks of Nigerian primary schools and how these are succinctly used to positively enhance the learning process of pupils at that level.The data for the study comprises seventy-eight(78)in-text images from 5 literature books for pupils from grade 3–5.The data was analyzed using van Leeuwen’s Visual Grammar and a discussion of how various visual elements may impact on their understanding of the messages and key themes in the texts with a focus on the representative metafunction level of analysis.The findings of the study show that in-text images deployed in the literature texts effectively complement the written texts,and has valuable pedagogical implications,including providing more interactive and personalized learning experiences.Also,the finding show that visual elements help pupils to cultivate good attributes in relation to taking responsibility,cultural diversity,ethics,decision making,friend-ship and so on.The study concludes that incorporating visual elements in the liter-ature textbooks for primary schools can create a more impactful learning engagement for the target audience.展开更多
Purpose: (1) To test basic assumptions underlying frequency-weighted citation analysis: (a) Uni-citations correspond to citations that are nonessential to the citing papers; (b) The influence of a cited paper ...Purpose: (1) To test basic assumptions underlying frequency-weighted citation analysis: (a) Uni-citations correspond to citations that are nonessential to the citing papers; (b) The influence of a cited paper on the citing paper increases with the frequency with which it is cited in the citing paper. (2) To explore the degree to which citation location may be used to help identify nonessential citations. Design/methodology/approach: Each of the in-text citations in all research articles published in Issue 1 of the Journal of the Association for Information Science and Technology (JASIST) 2016 was manually classified into one of these five categories: Applied, Contrastive, Supportive, Reviewed, and Perfunctory. The distributions of citations at different in-text frequencies and in different locations in the text by these functions were analyzed. Findings: Filtering out nonessential citations before assigning weight is important for frequency-weighted citation analysis. For this purpose, removing citations by location is more effective than re-citation analysis that simply removes uni-citations. Removing all citation occurrences in the Background and Literature Review sections and uni-citations in the Introduction section appears to provide a good balance between filtration and error rates. Research limitations: This case study suffers from the limitation of scalability and generalizability. We took careful measures to reduce the impact of other limitations of the data collection approach used. Relying on the researcher's judgment to attribute citation functions, this approach is unobtrusive but speculative, and can suffer from a low degree of confidence, thus creating reliability concerns. Practical implications: Weighted citation analysis promises to improve citation analysis for research evaluation, knowledge network analysis, knowledge representation, and information retrieval. The present study showed the importance of filtering out nonessential citations before assigning weight in a weighted citation analysis, which may be a significant step forward to realizing these promises. Originality/value: Weighted citation analysis has long been proposed as a theoretical solution to the problem of citation analysis that treats all citations equally, and has attracted increasing research interest in recent years. The present study showed, for the first time, the importance of filtering out nonessential citations in weighted citation analysis, pointing research in this area in a new direction.展开更多
文摘Citations based relevant research paper recommendations can be generated primarily with the assistance of three citation models:(1)Bibliographic Coupling,(2)Co-Citation,and(3)Direct Citations.Millions of new scholarly articles are published every year.This flux of scientific information has made it a challenging task to devise techniques that could help researchers to find the most relevant research papers for the paper at hand.In this study,we have deployed an in-text citation analysis that extends the Direct Citation Model to discover the nature of the relationship degree-ofrelevancy among scientific papers.For this purpose,the relationship between citing and cited articles is categorized into three categories:weak,medium,and strong.As an experiment,around 5,000 research papers were crawled from the CiteSeerX.These research papers were parsed for the identification of in-text citation frequencies.Subsequently,0.1 million references of those articles were extracted,and their in-text citation frequencies were computed.A comprehensive benchmark dataset was established based on the user study.Afterwards,the results were validated with the help of Least Square Approximation by Quadratic Polynomial method.It was found that degreeof-relevancy between scientific papers is a quadratic increasing/decreasing polynomial with respect to-increase/decrease in the in-text citation frequencies of a cited article.Furthermore,the results of the proposed model were compared with state-of-the-art techniques by utilizing a well-known measure,known as the normalized Discount Cumulative Gain(nDCG).The proposed method received an nDCG score of 0.89,whereas the state-of-the-art models such as the Content,Bibliographic-coupling,and Metadata-based Models were able to acquire the nDCG values of 0.65,0.54,and 0.51 respectively.These results indicate that the proposed mechanism may be applied in future information retrieval systems for better results.
文摘This article examines the in-text images from literature textbooks of Nigerian primary schools and how these are succinctly used to positively enhance the learning process of pupils at that level.The data for the study comprises seventy-eight(78)in-text images from 5 literature books for pupils from grade 3–5.The data was analyzed using van Leeuwen’s Visual Grammar and a discussion of how various visual elements may impact on their understanding of the messages and key themes in the texts with a focus on the representative metafunction level of analysis.The findings of the study show that in-text images deployed in the literature texts effectively complement the written texts,and has valuable pedagogical implications,including providing more interactive and personalized learning experiences.Also,the finding show that visual elements help pupils to cultivate good attributes in relation to taking responsibility,cultural diversity,ethics,decision making,friend-ship and so on.The study concludes that incorporating visual elements in the liter-ature textbooks for primary schools can create a more impactful learning engagement for the target audience.
文摘Purpose: (1) To test basic assumptions underlying frequency-weighted citation analysis: (a) Uni-citations correspond to citations that are nonessential to the citing papers; (b) The influence of a cited paper on the citing paper increases with the frequency with which it is cited in the citing paper. (2) To explore the degree to which citation location may be used to help identify nonessential citations. Design/methodology/approach: Each of the in-text citations in all research articles published in Issue 1 of the Journal of the Association for Information Science and Technology (JASIST) 2016 was manually classified into one of these five categories: Applied, Contrastive, Supportive, Reviewed, and Perfunctory. The distributions of citations at different in-text frequencies and in different locations in the text by these functions were analyzed. Findings: Filtering out nonessential citations before assigning weight is important for frequency-weighted citation analysis. For this purpose, removing citations by location is more effective than re-citation analysis that simply removes uni-citations. Removing all citation occurrences in the Background and Literature Review sections and uni-citations in the Introduction section appears to provide a good balance between filtration and error rates. Research limitations: This case study suffers from the limitation of scalability and generalizability. We took careful measures to reduce the impact of other limitations of the data collection approach used. Relying on the researcher's judgment to attribute citation functions, this approach is unobtrusive but speculative, and can suffer from a low degree of confidence, thus creating reliability concerns. Practical implications: Weighted citation analysis promises to improve citation analysis for research evaluation, knowledge network analysis, knowledge representation, and information retrieval. The present study showed the importance of filtering out nonessential citations before assigning weight in a weighted citation analysis, which may be a significant step forward to realizing these promises. Originality/value: Weighted citation analysis has long been proposed as a theoretical solution to the problem of citation analysis that treats all citations equally, and has attracted increasing research interest in recent years. The present study showed, for the first time, the importance of filtering out nonessential citations in weighted citation analysis, pointing research in this area in a new direction.