期刊文献+
共找到127,567篇文章
< 1 2 250 >
每页显示 20 50 100
A 1D time-domain method for in-plane wave motions in a layered half-space 被引量:10
1
作者 Jingbo Liu Yan Wang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2007年第6期673-680,共8页
A 1D finite element method in time domain is developed in this paper and applied to calculate in-plane wave motions of free field exited by SV or P wave oblique incidence in an elastic layered half-space. First, the l... A 1D finite element method in time domain is developed in this paper and applied to calculate in-plane wave motions of free field exited by SV or P wave oblique incidence in an elastic layered half-space. First, the layered half-space is discretized on the basis of the propagation characteristic of elastic wave according to the Snell law. Then, the finite element method with lumped mass and the central difference method are incorporated to establish 2D wave motion equations, which can be transformed into 1D equations by discretization principle and explicit finite element method. By solving the 1D equations, the displacements of nodes in any vertical line can be obtained, and the wave motions in layered half-space are finally determined based on the characteristic of traveling wave. Both the theoretical analysis and the numerical results demonstrate that the proposed method has high accuracy and good stability. 展开更多
关键词 in-plane wave Oblique incidence Time-domain method Snell law
在线阅读 下载PDF
IN-PLANE WAVE MOTION IN FINITE ELEMENT MODEL 被引量:3
2
作者 刘晶波 廖振鹏 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 1992年第1期80-87,共8页
The analysis method of lattice dynamics in classical physics is extended to study the properties of in-plane wave motion in the hybrid-mass finite element model in this paper. The dispersion equations of P and SV wave... The analysis method of lattice dynamics in classical physics is extended to study the properties of in-plane wave motion in the hybrid-mass finite element model in this paper. The dispersion equations of P and SV waves in the discrete model are first obtained by means of separating the characteristic equation of the motion equation, and then used to analyse the properties of P-and SV-homogeneous, inhomogeneous waves and other types of motion in the model. The dispersion characters, cut-off frequencies of P and SV waves, the polarization drift and appendent anisotropic property of wave motion caused by the discretization are finally discussed. 展开更多
关键词 finite element discrete model in-plane wave motion lattice dynamics
在线阅读 下载PDF
Bandgap calculation for mixed in-plane waves in 2D phononic crystals based on Dirichlet-to-Neumann map 被引量:7
3
作者 Ni Zhen Feng-Lian Li +1 位作者 Yue-Sheng Wang Chuan-Zeng Zhang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2012年第4期1143-1153,共11页
In this paper, a method based on the Dirichlet- to-Neumann map is developed for bandgap calculation of mixed in-plane waves propagating in 2D phononic crystals with square and triangular lattices. The method expresses... In this paper, a method based on the Dirichlet- to-Neumann map is developed for bandgap calculation of mixed in-plane waves propagating in 2D phononic crystals with square and triangular lattices. The method expresses the scattered fields in a unit cell as the cylindrical wave expansions and imposes the Bloch condition on the boundary of the unit cell. The Dirichlet-to-Neumann (DtN) map is applied to obtain a linear eigenvalue equation, from which the Bloch wave vectors along the irreducible Brillouin zone are calculated for a given frequency. Compared with other methods, the present method is memory-saving and time-saving. It can yield accurate results with fast convergence for various material combinations including those with large acoustic mismatch without extra computational cost. The method is also efficient for mixed fluid-solid systems because it considers the different wave modes in the fluid and solid as well as the proper fluid-solid interface condition. 展开更多
关键词 Phononic crystal Band structure Cylindrical wave expansion Dirichlet-to-Neumann (DtN) map Bloch theorem
在线阅读 下载PDF
Tunnel effect of fractal fault and transient S-wave velocity rupture (TSVR) of in-plane shear fault 被引量:3
4
作者 李世愚 陈运泰 《Acta Seismologica Sinica(English Edition)》 CSCD 1999年第1期19-25,共7页
Transient S wave velocity rupture (TSVR) means the velocity of fault rupture propagation is between S wave velocity α and P wave velocity β . Its existing in the rupture of in plane ( i.e . strike slip... Transient S wave velocity rupture (TSVR) means the velocity of fault rupture propagation is between S wave velocity α and P wave velocity β . Its existing in the rupture of in plane ( i.e . strike slip) fault has been proved, but in 2 dimensional classical model, there are two difficulties in transient S wave velocity rupture, i.e ., initialization difficulty and divergence difficulty in interpreting the realization of TSVR. The initialization difficulty means, when v ↑ v R (Rayleigh wave velocity), the dynamic stress strength factor K 2(t) →+0, and changes from positive into negative in the interval ( v R, β ). How v transit the forbidden of ( v R, β )? The divergence difficulty means K 2(t) →+∞ when v ↓ β . Here we introduce the concept of fractal and tunnel effect that exist everywhere in fault. The structure of all the faults is fractal with multiple cracks. The velocity of fault rupture is differentiate of the length of the fault respect to time, so the rupture velocity is also fractal. The tunnel effect means the dynamic rupture crosses over the interval of the cracks, and the coalescence of the intervals is slower than the propagation of disturbance. Suppose the area of earthquake nucleation is critical or sub critical propagation everywhere, the arriving of disturbance triggers or accelerates the propagation of cracks tip at once, and the observation system cannot distinguish the front of disturbance and the tip of fracture. Then the speed of disturbance may be identified as fracture velocity, and the phenomenon of TSVR appears, which is an apparent velocity. The real reason of apparent velocity is that the mathematics model of shear rupture is simplified of complex process originally. The dual character of rupture velocity means that the apparent velocity of fault and the real velocity of micro crack extending, which are different in physics, but are unified in rupture criterion. Introducing the above mentioned concept to the calculation of K 2 (t) , the difficulty of initialization can be overcome, and the integral equation of triggering the initialization of TSVR is given quantitatively. By solving this integral equation, the lower limit of TSVR is 1.105 3 β , not β , and the divergence difficulty is overcome. TSVR is unstable solution, and may degenerate to sub Rayleigh wave velocity rupture immediately where the non critical condition can be measured. The results of this paper show that the initialization and continuum depends on the condition of earthquake nucleation in seismogenic area. 展开更多
关键词 dynamics of earthquake rupture in plane shear fault fractal transient S wave velocity RUPTURE
在线阅读 下载PDF
In-plane negative magnetoresistance and quantum oscillations in van der Waals antiferromagnet DyTe_(3)
5
作者 Qi Qi Senhao Lv +11 位作者 Ke Zhu Yaofeng Xie Guojing Hu Zhen Zhao Guoyu Xian Yechao Han Yang Yang Lihong Bao Xiao Lin Hui Guo Haitao Yang Hong-Jun Gao 《Chinese Physics B》 2025年第7期127-133,共7页
Two-dimensional van der Waals(vdW)magnetic materials,characterized by their tunable magnetism,spin transport properties,and remarkable quantum effects,provide significant promise for the development of efficient,low-p... Two-dimensional van der Waals(vdW)magnetic materials,characterized by their tunable magnetism,spin transport properties,and remarkable quantum effects,provide significant promise for the development of efficient,low-power spintronic devices.Intriguingly,the rare earth tritelluride(RTe3)materials have attracted great attention due to their unique magnetic structure,exotic electronic properties,multiple charge density wave(CDW),and superconductivity under pressure.Here,we report the successful synthesis of high-quality DyTe_(3)single crystals using a self-flux method.DyTe_(3)shows an antiferromagnetic transition at 4.5 K and demonstrates the magnetic field-induced ferromagnetism.The high-quality DyTe_(3)single crystal demonstrates outstanding transport properties,featuring a high carrier mobility of approximately1.4×10^(4)cm^(2)·V^(-1)·s^(-1)and large linear magnetoresistance of 1300%.Furthermore,distinct Shubnikov-de Haas(SdH)oscillations are observed in DyTe_(3),revealing a small Fermi pocket and an effective mass of 0.24 me.Remarkably,the unconventional in-plane negative magnetoresistances appear along the a-axis below 2 T and c-axis until 9 T from 2 K to17 K,which are attributed to the complex helimagnetic structures caused by CDW coupling and weak single-ion anisotropy.Our findings offer a significant platform for understanding the complex magnetoresistance behavior and quantum transport effects in RTe3-type materials,holding great promise for advancing applications in electronic and spintronic devices. 展开更多
关键词 in-plane negative magnetoresistance SdH oscillations helimagnetic charge density wave(CDW)
原文传递
Investigation of tensile twinning on texture and microstructure evolution of Mg-3Al-1Zn-1Ca alloy under in-plane shear deformation
6
作者 Saurav Kumar Mahesh Panchal +3 位作者 Appala N.Gandi Lalit Kaushik Shi-Hoon Choi Jaiveer Singh 《Journal of Magnesium and Alloys》 2025年第4期1815-1828,共14页
The evolution of microstructure and texture in Mg-3Al-1Zn-1Ca alloy sheets subjected to in-plane shear(IPS)loading was investigated using experimental techniques and viscoplastic self-consistent(VPSC)modeling.The spec... The evolution of microstructure and texture in Mg-3Al-1Zn-1Ca alloy sheets subjected to in-plane shear(IPS)loading was investigated using experimental techniques and viscoplastic self-consistent(VPSC)modeling.The specimens were deformed under varying degrees of IPS strain(γ12=0.05,0.10,and 0.15)using a customized jig.Electron backscatter diffraction(EBSD)observations revealed profuse tensile twinning(TTW)even at an IPS strain of 0.05,with its intensity continuously increased as the IPS strain increased.The TTWs progressively engulfed parent grains with increasing shear strain,evolving into an unusual deformation twin morphology.Furthermore,VPSC model predictions confirmed basal slip as the dominant deformation mode at low IPS strains,transitioning to prismatic slip dominance at higher IPS strains.The activity of the TTW mode was significantly higher during the initial stages of IPS strain and saturated to lower values at higher strains.VPSC simulation results also indicated preferential shear accumulation on a single twin system,explaining the phenomenon of a single twin variant engulfing a parent grain.Additionally,the influence of individual slip and twin modes on texture evolution was evaluated through orientation tracking of representative grains at various shear strain increments using VPSC simulation.The simulation results quantitatively highlighted the activities of basal slip,prismatic slip,and tensile twinning,establishing a correlation between texture evolution and the underlying deformation mechanisms. 展开更多
关键词 Mg alloys in-plane shear Tensile twinning TEXTURE VPSC simulation
在线阅读 下载PDF
Locally-doped MoS_(2) monolayer with in-plane bifunctional heterostructure toward overall water splitting
7
作者 Zhuo-Jun Duan Hang Xia +10 位作者 Han-Ze Li Gong-Lei Shao Yi-Zhang Ren Xuan Tang Qiu-Nan Liu Jin-Hua Hong Sheng Dai Yung-Chang Lin Kazu Suenaga Yong-Min He Song Liu 《Rare Metals》 2025年第5期3130-3140,共11页
Exploring earth-abundant,highly active bifunctional electrocatalysts for efficient hydrogen and oxygen evolution is crucial for water splitting.However,due to their distinct free energies and conducting behaviors(elec... Exploring earth-abundant,highly active bifunctional electrocatalysts for efficient hydrogen and oxygen evolution is crucial for water splitting.However,due to their distinct free energies and conducting behaviors(electron/hole),balancing the catalytic efficiency between hydrogen and oxygen evolution remains challenging for achieving bifunctional electrocatalysts.Here,we report a locally-doped MoS_(2)monolayer with an in-plane heterostructure acting as a bifunctional electrocatalyst and apply it to the overall water splitting.In this heterostructure,the core region contains Mo/S vacancies,while the ring region was doped by Fe atoms(in two substitution configurations:1FeMo and 3FeMo-VS clusters)with a p-type conductive characteristic.Our micro-cell measurements,combined with density functional theory(DFT)calculations,reveal that the vacancies-rich core region presents remarkable hydrogen evolution reaction(HER)activity while the Fe-doped ring gives an excellent oxygen evolution reaction(OER)activity,thus forming an in-plane bifunctional electrocatalyst.Finally,as a proof-of-concept for overall water splitting,we constructed a full-cell configuration based on a locally-doped MoS_(2)monolayer,which achieved a cell voltage of 1.87 V at 10 mA·cm^(-2),demonstrating outstanding performance in strong acid electrolytes.Our work provides insight into the hetero-integration of bifunctional electrocatalysts at the atomic level,paving the way for designing transition metal dichalcogenide catalysts with activity-manipulated regions capable of multiple reactions. 展开更多
关键词 Locally-doped monolayer in-plane heterostructure MoS_(2) Bifunctional catalysts Overall water salitting
原文传递
In-plane optical anisotropy of InGaN/GaN quantum disks in nanowires investigated by reflectance difference spectroscopy
8
作者 Tingting Wei Jinling Yu +5 位作者 Zhu Diao Zhaonan Li Shuying Cheng Yunfeng Lai Yonghai Chen Chao Zhao 《Chinese Physics B》 2025年第6期505-510,共6页
The in-plane optical anisotropy(IPOA) of c-plane In Ga N/Ga N quantum disks(Qdisks) in nanowires grown on MoS_(2)/Mo and Ti/Mo substrates is investigated using reflectance difference spectroscopy(RDS) at room temperat... The in-plane optical anisotropy(IPOA) of c-plane In Ga N/Ga N quantum disks(Qdisks) in nanowires grown on MoS_(2)/Mo and Ti/Mo substrates is investigated using reflectance difference spectroscopy(RDS) at room temperature. A large IPOA related to defect or impurity states is observed. The IPOA of samples grown on MoS_(2)/Mo is approximately one order of magnitude larger than that of samples grown on Ti/Mo substrates. Numerical calculations based on the envelope function approximation have been performed to analyze the origin of the IPOA. It is found that the IPOA primarily results from the segregation of indium atoms in the In Ga N/Ga N Qdisks. This work highlights the significant influence of substrate materials on the IPOA of semiconductor heterostructures. 展开更多
关键词 in-plane optical anisotropy k·p method INGAN/GAN reflectance difference spectroscopy
原文传递
3D Diffractive Focusing THz of In-Plane Surface Plasmon Polarition Waves
9
作者 I. Minin O. Minin 《Journal of Electromagnetic Analysis and Applications》 2010年第2期116-119,共4页
Demonstrated that analog of diffractive and refractive 3D optics in free space can be developed to manipulate surface waves such as surface plasmon polaritons (SPPs). It has been shown that an air-gap control of a flo... Demonstrated that analog of diffractive and refractive 3D optics in free space can be developed to manipulate surface waves such as surface plasmon polaritons (SPPs). It has been shown that an air-gap control of a floating dielectric block can generate the dynamic phase and amplitude modulation of the SPP transmission coefficient. Unlike conventional bulk optics, the nano-scale surface optics for SPP processing contains several unexpected and interesting features in addition to the physical features described. Dynamic plasmonic information processing on the nano-scale using air-gap control may be an effective mechanism for building a dynamic plasmonic information processing system. 展开更多
关键词 DIFFRACTIVE Optical Element Surface PLASMON Polarition waveS Three DIMENSION
暂未订购
In-plane uniaxial-strain tuning of superconductivity and charge-density wave in CsV_(3)Sb_(5)
10
作者 杨晓冉 唐绮 +8 位作者 周秋韵 王怀平 李意 付雪 张加文 宋宇 袁辉球 戴鹏程 鲁兴业 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第12期468-473,共6页
The kagome superconductor CsV_(3)Sb_(5) with exotic electronic properties has attracted substantial research interest,and the interplay between the superconductivity and the charge-density wave is crucial for understa... The kagome superconductor CsV_(3)Sb_(5) with exotic electronic properties has attracted substantial research interest,and the interplay between the superconductivity and the charge-density wave is crucial for understanding its unusual electronic ground state.In this work,we performed resistivity and AC magnetic susceptibility measurements on CsV_(3)Sb_(5) single crystals uniaxially-strained along[100]and[110]directions.We find that the uniaxial-strain tuning effect of T_(c)(dT_(c)/dε)and T_(CDW)(dT_(CDW)/dε)are almost identical along these distinct high-symmetry directions.These findings suggest the in-plane uniaxial-strain-tuning of T_(c) and T_(CDW)in CsV_(3)Sb_(5) are dominated by associated c-axis strain,whereas the response to purely in-plane strains is likely small. 展开更多
关键词 kagome metal SUPERCONDUCTIVITY charge-density wave uniaxial-strain
原文传递
Enhanced electromagnetic wave absorption in biochar/yttrium iron garnet hybrid composites for electromagnetic interference shielding applications
11
作者 Ozgur Yasin Keskin 《International Journal of Minerals,Metallurgy and Materials》 2026年第1期335-346,共12页
Biochar and biochar composites are versatile materials that can be used in many applications.In this study,biochar was prepared from sawdust and combined with the yttrium iron garnet(YIG)nanocrystal to investigate the... Biochar and biochar composites are versatile materials that can be used in many applications.In this study,biochar was prepared from sawdust and combined with the yttrium iron garnet(YIG)nanocrystal to investigate the shielding effectiveness of the composite structure.Firstly,the effect of the pyrolysis temperature on the shielding effectiveness of biochar was investigated.Secondly,biochars combined with YIG nanocrystals with different contents and shielding effectiveness of the composites were investigated.The electromagnetic effectiveness of the samples was investigated within the X band(8-12 GHz).The findings indicate that biochar demonstrates enhanced absorption properties with elevated pyrolysis temperatures.Biochars demonstrated an approximate 40 d B shielding effectiveness,while YIG exhibited approximately 7 d B,corresponding to absorption at 8 GHz.However,the combination of biochar and YIG exhibited exceptional absorption,reaching 67.12 d B at 8 GHz. 展开更多
关键词 BIOCHAR electromagnetic shielding electromagnetic wave absorption COMPOSITE
在线阅读 下载PDF
Load of the Small-Scale Vertical Cylinder in a Wave-Current Field
12
作者 Mingjie Li Binbin Zhao Wengyang Duan 《哈尔滨工程大学学报(英文版)》 2026年第1期82-94,共13页
Studies of wave-current interactions are vital for the safe design of structures.Regular waves in the presence of uniform,linear shear,and quadratic shear currents are explored by the High-Level Green-Naghdi model in ... Studies of wave-current interactions are vital for the safe design of structures.Regular waves in the presence of uniform,linear shear,and quadratic shear currents are explored by the High-Level Green-Naghdi model in this paper.The five-point central difference method is used for spatial discretization,and the fourth-order Adams predictor-corrector scheme is employed for marching in time.The domain-decomposition method is applied for the wave-current generation and absorption.The effects of currents on the wave profile and velocity field are examined under two conditions:the same velocity of currents at the still-water level and the constant flow volume of currents.Wave profiles and velocity fields demonstrate substantial differences in three types of currents owing to the diverse vertical distribution of current velocity and vorticity.Then,loads on small-scale vertical cylinders subjected to regular waves and three types of background currents with the same flow volume are investigated.The maximum load intensity and load fluctuation amplitude in uniform,linear shear,and quadratic shear currents increase sequentially.The stretched superposition method overestimates the maximum load intensity and load fluctuation amplitude in opposing currents and underestimates these values in following currents.The stretched superposition method obtains a poor approximation for strong nonlinear waves,particularly in the case of the opposing quadratic shear current. 展开更多
关键词 wave-current interaction Cylinder load HLGN model Morison equation Regular waves
在线阅读 下载PDF
Vertical Structure and Energy Transfer of Stationary Planetary Waves in Different Prescribed Atmospheric Stratifications
13
作者 Wenqi ZHANG Lin WANG 《Advances in Atmospheric Sciences》 2026年第1期233-246,共14页
This study investigates the relationship between atmospheric stratification (i.e., static stability given by N^(2)) and the vertical energy transfer of stationary planetary waves, and further illustrates the underlyin... This study investigates the relationship between atmospheric stratification (i.e., static stability given by N^(2)) and the vertical energy transfer of stationary planetary waves, and further illustrates the underlying physical mechanism. Specifically, for the simplified case of constant stratospheric N^(2), the refractive index square of planetary waves has a theoretical tendency to increase first and then decrease with an increased N^(2), whereas the group velocity weakens. Mechanistically, this behavior can be understood as an intensified suppression of vertical isentropic surface displacement caused by meridional heat transport of planetary waves under strong N^(2) conditions. Observational analysis corroborates this finding, demonstrating a reduction in the vertical-propagation velocity of waves with increased N^(2). A linear, quasi- geostrophic, mid-latitude beta-plane model with a constant background westerly wind and a prescribed N^(2) applicable to the stratosphere is used to obtain analytic solutions. In this model, the planetary waves are initiated by steady energy influx from the lower boundary. The analysis indicates that under strong N^(2) conditions, the amplitude of planetary waves can be sufficiently increased by the effective energy convergence due to the slowing vertical energy transfer, resulting in a streamfunction response in this model that contains more energy. For N^(2) with a quasi-linear vertical variation, the results bear a resemblance to the constant case, except that the wave amplitude and oscillating frequency show some vertical variations. 展开更多
关键词 planetary waves vertical propagation atmospheric stratification stratospheric circulation group velocity
在线阅读 下载PDF
A sustainable and high value-added strategy under lignite and waste silicon powder to construct SiC nanowires for electromagnetic wave absorption
14
作者 Wenhao Wang Xiaolin Lan +6 位作者 Haoquan Hao Jingxiang Liu Yong Shuai Qinghe Jing Shouqing Yan Jie Guo Zhijiang Wang 《International Journal of Minerals,Metallurgy and Materials》 2026年第1期347-356,共10页
The electromagnetic wave absorption of silicon carbide nanowires is improved by their uniform and diverse cross-structures.This study introduces a sustainable and high value-added method for synthesizing silicon carbi... The electromagnetic wave absorption of silicon carbide nanowires is improved by their uniform and diverse cross-structures.This study introduces a sustainable and high value-added method for synthesizing silicon carbide nanowires using lignite and waste silicon powder as raw materials through carbothermal reduction.The staggered structure of nanowires promotes the creation of interfacial polarization,impedance matching,and multiple loss mechanisms,leading to enhanced electromagnetic absorption performance.The silicon carbide nanowires demonstrate outstanding electromagnetic absorption capabilities with the minimum reflection loss of-48.09 d B at10.08 GHz and an effective absorption bandwidth(the reflection loss less than-10 d B)ranging from 8.54 to 16.68 GHz with a thickness of 2.17 mm.This research presents an innovative approach for utilizing solid waste in an environmentally friendly manner to produce broadband silicon carbide composite absorbers. 展开更多
关键词 LIGNITE waste silicon powder SiC nanowires electromagnetic wave absorption high value-added
在线阅读 下载PDF
The In-plane Orientation and Thermal Mechanical Properties of the Chemically Imidized Polyimide Films 被引量:13
15
作者 Zhen-He Wang Xing Chen +2 位作者 Hai-Xia Yang Jiang Zhao Shi-Yong Yang 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2019年第3期268-278,共11页
The thermal and mechanical properties of the chemically imidized polyimide(CIPI) films and thermally imidized polyimide(TIPI) films were investigated systematically. Experimental results indicated that the CIPI films ... The thermal and mechanical properties of the chemically imidized polyimide(CIPI) films and thermally imidized polyimide(TIPI) films were investigated systematically. Experimental results indicated that the CIPI films show dramatically enhanced tensile strength and modulus with obviously reduced coefficient of thermal expansion(CTE) in comparison with TIPI films. These enhancements results from the high in-plane orientation and close packing of the CIPI backbones. Compared with thermal imidization which starts at about 140 °C, the chemical imidization activated by acetic anhydride and isoquinoline initiates the cyclization even at room temperature.The resulting imide rings restrict the mobility of polymer chains and lead to the in-plane orientation with solvent evaporation.Additionally, fewer small molecules remain in the films after treated at 120 °C by chemical imidization than by thermal imidization. The polymer chain plasticization caused by the evaporation of small molecules at high temperature is obviously restricted. Moreover, the partially imidized polymer inhibits the decomposition of mainchains that occurs at subsequent high temperature process, being beneficial to the formation of high molecular weight PI films. Hence, chemical imidization pathway shows apparent advantage to produce PI films with great combined properties, including high modulus, strength and toughness, as well as high thermal dimension stability etc. 展开更多
关键词 POLYIMIDE film Chemical IMIDIZATION Thermal IMIDIZATION in-plane ORIENTATION CTE
原文传递
A PREDICTIVE APPROACH TO THE IN-PLANE MECHANICAL PROPERTIES OF STITCHED COMPOSITE LAMINATES 被引量:5
16
作者 Zhang Junqian Wei Yuqing 《Acta Mechanica Solida Sinica》 SCIE EI 2007年第2期130-140,共11页
This contribution attempts to model the alteration of the in-plane elastic properties in laminates caused by stitching, and to predict the in-plane effective tensile strength of the stitched composite laminates. The d... This contribution attempts to model the alteration of the in-plane elastic properties in laminates caused by stitching, and to predict the in-plane effective tensile strength of the stitched composite laminates. The distortion of in-plane fibers is considered to be the main cause that affects the in-plane mechanical properties. A fiber distortion model is proposed to characterize the fiber misalignment and the fiber content concentration due to stitching. The undistorted region, the fiber distortion region, the resin-rich pocket and the through-thickness reinforcement section are taken into account. The fiber misalignment and inhomogeneous fiber content due to stitching have been formulated by introducing two parameters, the distortion width and maximum misalignment. It has been found that the ply stress concentration in stitched laminates is influenced by the two concurrent factors, the stitch hole and inhomogeneous fiber content. The stitch hole brings about the stress concentration whereas the higher fiber content at the local region induced by stitching restrains the local deformation of the composite. The model is used to predict the tensile strength of the [0/45/0/-45/90/45/0/-45]58 T300/QY9512 composite laminate stitched by Kevlar 29 yarn with different stitching configurations, showing an acceptable agreement with experimental data. 展开更多
关键词 stitched composites fiber distortion in-plane elastic properties in-plane tensile strength and micromechanics
在线阅读 下载PDF
Triggering in-plane defect cluster on MoS_(2) for accelerated dinitrogen electroreduction to ammonia 被引量:9
17
作者 Wanru Liao Ke Xie +5 位作者 Lijuan Liu Xiuyun Wang Yu Luo Shijing Liang Fujian Liu Lilong Jiang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第11期359-366,I0008,共9页
Electrochemical nitrogen reduction reaction (eNRR) is an alternative promising manner for sustainable N2 fixation with low-emission. The major challenge for developing an efficient electrocatalyst is the cleaving of t... Electrochemical nitrogen reduction reaction (eNRR) is an alternative promising manner for sustainable N2 fixation with low-emission. The major challenge for developing an efficient electrocatalyst is the cleaving of the stable Ntriple bondN triple bonds. Herein, we design a new MoS_(2) with in-plane defect cluster through a bottom-up approach for the first time, where the defect cluster is composed of three adjacent S vacancies. The well-defined in-plane defect clusters could contribute to the strong chemical adsorption and activation towards inert nitrogen, achieving an excellent eNRR performance with an ammonia yield rate of 43.4 ± 3 μg h^(−1) mgcat.^(−1) and a Faradaic efficiency of 16.8 ± 2% at −0.3 V (vs. RHE). The performance is much higher than that of MoS_(2) with the edge defect. Isotopic labeling confirms that N atoms of produced NH4+ originate from N2. Furthermore, the in-plane defect clusters realized the alternate hydrogenation of nitrogen in a side-on way to synthesize ammonia. This work provides a prospecting strategy for fine-tuning in-plane defects in a catalyst, and also promotes the progress of eNRR. 展开更多
关键词 in-plane defect clusters Ammonia synthesis MoS_(2) ELECTROCATALYSIS Isotopic labeling
在线阅读 下载PDF
In-plane forced vibration of curved pipe conveying fluid by Green function method 被引量:8
18
作者 Qianli ZHAO Zhili SUN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2017年第10期1397-1414,共18页
The Green function method (GFM) is utilized to analyze the in-plane forced vibration of curved pipe conveying fluid, where the randomicity and distribution of the external excitation and the added mass and damping r... The Green function method (GFM) is utilized to analyze the in-plane forced vibration of curved pipe conveying fluid, where the randomicity and distribution of the external excitation and the added mass and damping ratio are considered. The Laplace transform is used, and the Green functions with various boundary conditions are obtained subsequently. Numerical calculations are performed to validate the present solutions, and the effects of some key parameters on both tangential and radial displacements are further investigated. The forced vibration problems with linear and nonlinear motion constraints are also discussed briefly. The method can be radiated to study other forms of forced vibration problems related with pipes or more extensive issues. 展开更多
关键词 in-plane forced vibration curved pipe conveying fluid Green functionmethod (GFM) motion constraint
在线阅读 下载PDF
Micromechanical Analysis of In-Plane Constraint Effect on Local Fracture Behavior of Cracks in the Weakest Locations of Dissimilar Metal Welded Joint 被引量:9
19
作者 Jie Yang 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2017年第9期840-850,共11页
In this work, a set of GTN (Gurson-Tvergaard-Needleman) parameters of the Alloy52M dissimilar metal welded joint (DMWJ) have been calibrated, and a micromechanical analysis of in-plane constraint effects on the lo... In this work, a set of GTN (Gurson-Tvergaard-Needleman) parameters of the Alloy52M dissimilar metal welded joint (DMWJ) have been calibrated, and a micromechanical analysis of in-plane constraint effects on the local fracture behavior of two cracks, which located in the weakest regions of the DMWJ, has been investigated by the local approach based on the GTN damage model. The results show that the partition of the material and the variation of the q2 parameter make the J-resistance curves obtained by numerical simulations close to the experimental values. The numerical J-resistance curves and crack growth paths are consistent with the experiment results, which show that the GTN damage model can incorporate the in-plane constraint effect. Furthermore, after the stress, strain and damage fields at the crack tip during the crack propagation process have been calculated, and the change of the J-resistance curves, crack growth paths and fracture mechanism with in-plane constraint have been analyzed. 展开更多
关键词 Micromechanical analysis in-plane constraint Fracture behavior Dissimilar metal weldedjoint GTN (Gurson-Tvergaard-Needleman) damage model
原文传递
Recent advances in the in-plane shear testing of Mg alloy sheets 被引量:3
20
作者 Mahesh Panchal Lalit Kaushik +3 位作者 Ravi K.R Rajesh Khatirkar Shi-Hoon Choi Jaiveer Singh 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第2期405-424,共20页
Sheet-metal products are integral parts of engineering industries and academia research. Various testing techniques have revealed the deformation behaviors of sheet metals under complex stress states. Information obta... Sheet-metal products are integral parts of engineering industries and academia research. Various testing techniques have revealed the deformation behaviors of sheet metals under complex stress states. Information obtained from tensile and compression tests, however, are insufficient for the identification of material parameters relevant to modern constitutive laws, which require experimental setups capable of generating various loading conditions and applying great amounts of strain to sheet metals. In-plane shear testing has emerged as an important method to overcome the challenges associated with tension and compression tests and can provide additional information about deformation behaviors under large plastic strains. Materials such as Mg alloys with poor levels of both ductility and formability cannot accommodate large plastic strains. Therefore, tension and compression tests have limitations in explaining the material behaviors that occur during sheet metal forming where large plastic strains are introduced. Many studies have been conducted to explain the deformation behaviors of Mg alloys under shear deformation techniques. These include severe plastic deformation(SPD), especially the equal channel angular pressing(ECAP)and equal channel angular extrusion, rolling combined with shear deformation i.e. differential speed rolling(DSR), and also in-plane shear for sheet metals, particularly under large levels of plastic strain. These in-plane shear technique involves the Miyauchi shear test, ASTM shear test, and twin bridge shear tests. Moreover, many experimental results have revealed that the evolution of microstructure and texture during in-plane shear is closely related to the failure behavior of materials. Therefore, this review is focused on techniques for in-plane shear testing that have been reported thus far, on the effect of in-plane shear on the microstructure development of Mg alloy sheets, and on the usefulness of in-plane shear testing to evaluate the formability of Mg alloy sheets. 展开更多
关键词 Mg alloys in-plane shear TEXTURE FORMABILITY EBSD
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部