Dear Editor,This letter addresses the impulse game problem for a general scope of deterministic,multi-player,nonzero-sum differential games wherein all participants adopt impulse controls.Our objective is to formulate...Dear Editor,This letter addresses the impulse game problem for a general scope of deterministic,multi-player,nonzero-sum differential games wherein all participants adopt impulse controls.Our objective is to formulate this impulse game problem with the modified objective function including interaction costs among the players in a discontinuous fashion,and subsequently,to derive a verification theorem for identifying the feedback Nash equilibrium strategy.展开更多
Optimal impulse control and impulse games provide the cutting-edge frameworks for modeling systems where control actions occur at discrete time points,and optimizing objectives under discontinuous interventions.This r...Optimal impulse control and impulse games provide the cutting-edge frameworks for modeling systems where control actions occur at discrete time points,and optimizing objectives under discontinuous interventions.This review synthesizes the theoretical advancements,computational approaches,emerging challenges,and possible research directions in the field.Firstly,we briefly review the fundamental theory of continuous-time optimal control,including Pontryagin's maximum principle(PMP)and dynamic programming principle(DPP).Secondly,we present the foundational results in optimal impulse control,including necessary conditions and sufficient conditions.Thirdly,we systematize impulse game methodologies,from Nash equilibrium existence theory to the connection between Nash equilibrium and systems stability.Fourthly,we summarize the numerical algorithms including the intelligent computation approaches.Finally,we examine the new trends and challenges in theory and applications as well as computational considerations.展开更多
While the moisture content of soil affects significantly the blast impulse of shallow buried explosives,the role of surface-covering water(SCW)on soil in such blast impulse remains elusive.A combined experimental and ...While the moisture content of soil affects significantly the blast impulse of shallow buried explosives,the role of surface-covering water(SCW)on soil in such blast impulse remains elusive.A combined experimental and numerical study has been carried out to characterize the effect of SCW on transferred impulse and loading magnitude of shallow buried explosives.Firstly,blast tests of shallow buried explosives were conducted,with and without the SCW,to quantitatively assess the blast loading impulse.Subsequently,finite element(FE)simulations were performed and validated against experimental measurement,with good agreement achieved.The validated FE model was then employed to predict the dynamic response of a fully-clamped metallic circular target,subjected to the explosive impact of shallow buried explosives with SCW,and explore the corresponding physical mechanisms.It was demonstrated that shallow buried explosives in saturated soil generate a greater impulse transferred towards the target relative to those in dry soil.The deformation displacement of the target plate is doubled.Increasing the height of SCW results in enhanced center peak deflection of the loaded target,accompanied by subsequent fall,due to the variation of deformation pattern of the loaded target from concentrated load to uniform load.Meanwhile,the presence of SCW increases the blast impulse transferred towards the target by three times.In addition,there exists a threshold value of the burial depth that maximizes the impact impulse.This threshold exhibits a strong sensitivity to SCW height,decreasing with increasing SCW height.An empirical formula for predicting threshold has been provided.Similar conclusions can be drawn for different explosive masses.The results provide technical guidance on blast loading intensity and its spatial distribution considering shallow buried explosives in coast-land battlefields,which can ultimately contribute to better protective designs.展开更多
Nowadays,force sensors play an important role in industrial production,electronic information,medical health,and many other fields.Two-dimensional material-based filed effect transistor(2D-FET)sensors are competitive ...Nowadays,force sensors play an important role in industrial production,electronic information,medical health,and many other fields.Two-dimensional material-based filed effect transistor(2D-FET)sensors are competitive with nano-level size,lower power consumption,and accurate response.However,few of them has the capability of impulse detection which is a path function,expressing the cumulative effect of the force on the particle over a period of time.Herein we fabricated the flexible polymethyl methacrylate(PMMA)gate dielectric MoS_(2)-FET for force and impulse sensor application.We systematically investigated the responses of the sensor to constant force and varying forces,and achieved the conversion factors of the drain current signals(I_(ds))to the detected impulse(I).The applied force was detected and recorded by I_(ds)with a low power consumption of~30 nW.The sensitivity of the device can reach~8000%and the 4×1 sensor array is able to detect and locate the normal force applied on it.Moreover,there was almost no performance loss for the device as left in the air for two months.展开更多
A stochastic stage-structure predator-prey system with impulsive effect is investigated.First,we build the corresponding system without impulse in order to demonstrate the existence and uniqueness of the global positi...A stochastic stage-structure predator-prey system with impulsive effect is investigated.First,we build the corresponding system without impulse in order to demonstrate the existence and uniqueness of the global positive solution.Second,by selecting an appropriate Lyapunov function,we provide the sufficient condition for the existence of a positive T-periodic solution.Finally,numerical simulations illustrate our theoretical results,which show that the impulse or the white noises can result in the extinction of the predator in a certain condition.展开更多
The article studies the evolutionary dynamics of two-population two-strategy game models with and without impulses. First, the payment matrix is given and two evolutionary dynamics models are established by adding sto...The article studies the evolutionary dynamics of two-population two-strategy game models with and without impulses. First, the payment matrix is given and two evolutionary dynamics models are established by adding stochastic and impulse. For the stochastic model without impulses, the existence and uniqueness of solution, and the existence of positive periodic solutions are proved, and a sufficient condition for strategy extinction is given. For the stochastic model with impulses, the existence of positive periodic solutions is proved. Numerical results show that noise and impulses directly affect the model, but the periodicity of the model does not change.展开更多
Dear Editor,This letter studies finite-time stability (FTS) of impulsive and switched hybrid systems with delay-dependent impulses. Some conditions, based on Lyapunov method, are proposed for ensuring FTS and estimati...Dear Editor,This letter studies finite-time stability (FTS) of impulsive and switched hybrid systems with delay-dependent impulses. Some conditions, based on Lyapunov method, are proposed for ensuring FTS and estimating settling-time function (STF) of the hybrid systems.When switching dynamics are FTS and impulsive dynamics involve destabilizing delay-dependent impulses, the FTS is retained if the impulses occur infrequently.展开更多
The behaviors of unsteady flow structures and corresponding hydrodynamics for a pitching hydrofoil are investigated numerically and theoretically in the present paper.The aims are to derive the total lift by finite-do...The behaviors of unsteady flow structures and corresponding hydrodynamics for a pitching hydrofoil are investigated numerically and theoretically in the present paper.The aims are to derive the total lift by finite-domain impulse theory for subcavitating flow(σ=8.0)and cavitating flow(σ=3.0),and to quantify the distinct impact of individual vortex structures on the transient lift to appreciate the interplay among cavitation,flow structures,and vortex dynamics.The motion of the hydrofoil is set to pitch up clockwise with an almost constant rate from 0°to 15°and then back to 0°,for the Reynolds number,7.5×105,and the frequency,0.2 Hz,respectively.The results reveal that the presence of cavities delays the migration of the laminar separation bubble(LSB)from the trailing edge(TE)to the leading edge(LE),consequently postponing the hysteresis in the inflection of lift coefficients.The eventual stall under the sub-cavitation regime is the result of LSB bursting.While the instabilities within the leading-edge LSB induce the convection of cavitation-dominated vortices under the cavitation regime instead.Having validated the lift coefficients on the hydrofoil through the finite-domain impulse theory using the standard force expression,the Lamb vector integral emerges as the main contribution to the generation of unsteady lift.Moreover,the typical vortices’contributions to the transient lift during dynamic stall are accurately quantified.The analysis indicates that the clockwise leading-edge vortex(−LEV)contributes positively,while the counterclockwise trailing-edge vortex(+TEV)contributes negatively.The negative influence becomes particularly pronounced after reaching the peak of total lift,as the shedding of the concentrated wake vortex precipitates a sharp decline due to a predominant negative lift contribution from the TEV region.Generally,the vortices’contribution is relatively modest in sub-cavitating flow,but it is notably more significant in the context of incipient cavitating flow.展开更多
Economically and effectively managing the risk of landslide-generated impulse waves(LGIWs)presents a significant challenge following the impoundment of newly constructed reservoirs in western China.To address this iss...Economically and effectively managing the risk of landslide-generated impulse waves(LGIWs)presents a significant challenge following the impoundment of newly constructed reservoirs in western China.To address this issue,we selected the Wangjiashan(WJS)landslide in the Baihetan Reservoir area as a case study to evaluate LGIW hazards and develop corresponding mitigation strategies.Using 2D physical model tests and 3D numerical simulations,we established a 3D hazard assessment method for LGIWs based on 2D experimental results.This method confirmed the effectiveness of slope-cutting engineering in mitigating LGIW hazards.Based on this assessment framework,we proposed a novel approach for LGIW risk reduction.The results showed that the maximum wave amplitude reached 19.64 m in the Jinsha River channel,and the maximum run-up was 11.5 m in the XiangBiLing(XBL)community,indicating a substantial LGIW threat to the area.By reducing the rear edge of the sliding mass to 920 m above sea level(asl),the LGIW risk to the XBL community could be lowered to a tolerable level.Compared with traditional landslide prevention and control measures,the proposed mitigation scheme can reduce excavation costs by approximately 37 million CNY,making it a more scientifically sound and economically feasible solution.We explored the concept and the implementation of LGIW risk mitigation in depth,offering new insights for global LGIW risk management.This case study enhances our understanding of LGIW hazard prevention and provides valuable guidance for policymaking and engineering practices in similar geological settings worldwide.展开更多
The concept of the spacecraft Reachable Domain(RD)has garnered significant scholarly attention due to its crucial role in space situational awareness and on-orbit service applications.While the existing research has l...The concept of the spacecraft Reachable Domain(RD)has garnered significant scholarly attention due to its crucial role in space situational awareness and on-orbit service applications.While the existing research has largely focused on single-impulse RD analysis,the challenge of Multi-Impulse RD(MIRD)remains a key area of interest.This study introduces a methodology for the precise calculation of spacecraft MIRD.The reachability constraints specific to MIRD are first formulated through coordinate transformations.Two restricted maneuvering strategies are examined.The derivation of two extremum conditions allows for determining the accessible orientation range and the nodes encompassing the MIRD.Subsequently,four nonlinear programming models are developed to address two types of MIRD by skillfully relaxing constraints using scale factors.Numerical results validate the robustness and effectiveness of the proposed approach,showing substantial agreement with Monte Carlo simulations and confirming its applicability to spacecraft on various elliptical orbits.展开更多
In this article,we study the approximate controllability of neutral partial differential equations with Hilfer fractional derivative and not instantaneous impulses effects.By using the Sadovskii's fixed point theo...In this article,we study the approximate controllability of neutral partial differential equations with Hilfer fractional derivative and not instantaneous impulses effects.By using the Sadovskii's fixed point theorem,fractional calculus and resolvent operator functions,we prove the approximate controllability of the considered system.展开更多
The problem of collision avoidance for non-cooperative targets has received significant attention from researchers in recent years.Non-cooperative targets exhibit uncertain states and unpredictable behaviors,making co...The problem of collision avoidance for non-cooperative targets has received significant attention from researchers in recent years.Non-cooperative targets exhibit uncertain states and unpredictable behaviors,making collision avoidance significantly more challenging than that for space debris.Much existing research focuses on the continuous thrust model,whereas the impulsive maneuver model is more appropriate for long-duration and long-distance avoidance missions.Additionally,it is important to minimize the impact on the original mission while avoiding noncooperative targets.On the other hand,the existing avoidance algorithms are computationally complex and time-consuming especially with the limited computing capability of the on-board computer,posing challenges for practical engineering applications.To conquer these difficulties,this paper makes the following key contributions:(A)a turn-based(sequential decision-making)limited-area impulsive collision avoidance model considering the time delay of precision orbit determination is established for the first time;(B)a novel Selection Probability Learning Adaptive Search-depth Search Tree(SPL-ASST)algorithm is proposed for non-cooperative target avoidance,which improves the decision-making efficiency by introducing an adaptive-search-depth mechanism and a neural network into the traditional Monte Carlo Tree Search(MCTS).Numerical simulations confirm the effectiveness and efficiency of the proposed method.展开更多
This paper proposes a novel impulsive thrust strategy guided by optimal continuous thrust strategy to address two-player orbital pursuit-evasion game under impulsive thrust control.The strategy seeks to enhance the in...This paper proposes a novel impulsive thrust strategy guided by optimal continuous thrust strategy to address two-player orbital pursuit-evasion game under impulsive thrust control.The strategy seeks to enhance the interpretability of impulsive thrust strategy by integrating it within the framework of differential game in traditional continuous systems.First,this paper introduces an impulse-like constraint,with periodical changes in thrust amplitude,to characterize the impulsive thrust control.Then,the game with the impulse-like constraint is converted into the two-point boundary value problem,which is solved by the combined shooting and deep learning method proposed in this paper.Deep learning and numerical optimization are employed to obtain the guesses for unknown terminal adjoint variables and the game terminal time.Subsequently,the accurate values are solved by the shooting method to yield the optimal continuous thrust strategy with the impulse-like constraint.Finally,the shooting method is iteratively employed at each impulse decision moment to derive the impulsive thrust strategy guided by the optimal continuous thrust strategy.Numerical examples demonstrate the convergence of the combined shooting and deep learning method,even if the strongly nonlinear impulse-like constraint is introduced.The effect of the impulsive thrust strategy guided by the optimal continuous thrust strategy is also discussed.展开更多
Differential tigated. We study the properties of solutions sufficient conditions for equations with impulses at random moments are set up and invescase of Gamma distributed random moments of impulses. Several are stud...Differential tigated. We study the properties of solutions sufficient conditions for equations with impulses at random moments are set up and invescase of Gamma distributed random moments of impulses. Several are studied based on properties of Gammma distributions. Some p-moment exponential stability of the solutions are given.展开更多
Because muzzle impulse noise could cause damage to or have an intluence on the operator, tiae ettecnve protecnve measures should be taken. Therefore, correct analysis of impulse noise characteristics is very significa...Because muzzle impulse noise could cause damage to or have an intluence on the operator, tiae ettecnve protecnve measures should be taken. Therefore, correct analysis of impulse noise characteristics is very significant. Considering the shortcomings of fast Fourier transform method (FFT) in analysis of muzzle impulse noise frequency characteristics, wavelet energy spectrum method is put forward. Based on specific experiment data, the frequency characteristics and spectral energy dis tribution can be obtained. The experiment results show that wavelet energy spectrum method is applicable in muzzle impulse noise characteristic analysis.展开更多
Isolationism and expansionism are two themes of American diplomacy. From the beginning of the state’s history, isolationism and expansionism have manifested themselves as two policy imperatives in American diplomacy....Isolationism and expansionism are two themes of American diplomacy. From the beginning of the state’s history, isolationism and expansionism have manifested themselves as two policy imperatives in American diplomacy. On the surface, isolationism and expansionism represent contradictory attitudes and assumptions about America’s proper relationship with the outside world: isolationism advocates diplomatic and military non-entanglement in world affairs; expansionism urges active involvement in external affairs. But in a deeper sense, both isolationism and expansionism are manifestations of American sense of mission, the belief that the US has a special role to perform for all nations in the world. Isolationism is a passive approach to accomplish that mission: it emphasizes the exemplary nature of their country. Expansionism stresses the need for active involvement to achieve that mission; thus, is an active approach to American mission.展开更多
基金supported in part by the National Natural Science Foundation of China(62173051)the Fundamental Research Funds for the Central Universities(2024CDJCGJ012,2023CDJXY-010)+1 种基金the Chongqing Technology Innovation and Application Development Special Key Project(CSTB2022TIADCUX0015,CSTB2022TIAD-KPX0162)the China Postdoctoral Science Foundation(2024M763865)
文摘Dear Editor,This letter addresses the impulse game problem for a general scope of deterministic,multi-player,nonzero-sum differential games wherein all participants adopt impulse controls.Our objective is to formulate this impulse game problem with the modified objective function including interaction costs among the players in a discontinuous fashion,and subsequently,to derive a verification theorem for identifying the feedback Nash equilibrium strategy.
文摘Optimal impulse control and impulse games provide the cutting-edge frameworks for modeling systems where control actions occur at discrete time points,and optimizing objectives under discontinuous interventions.This review synthesizes the theoretical advancements,computational approaches,emerging challenges,and possible research directions in the field.Firstly,we briefly review the fundamental theory of continuous-time optimal control,including Pontryagin's maximum principle(PMP)and dynamic programming principle(DPP).Secondly,we present the foundational results in optimal impulse control,including necessary conditions and sufficient conditions.Thirdly,we systematize impulse game methodologies,from Nash equilibrium existence theory to the connection between Nash equilibrium and systems stability.Fourthly,we summarize the numerical algorithms including the intelligent computation approaches.Finally,we examine the new trends and challenges in theory and applications as well as computational considerations.
基金supported by the National Natural Science Foundation of China(Grant Nos.12002156,11972185,12372136)Research Fund of State Key Laboratory of Mechanics and Control for Aerospace Structures(Grant No.MCMS-I-0222K01)。
文摘While the moisture content of soil affects significantly the blast impulse of shallow buried explosives,the role of surface-covering water(SCW)on soil in such blast impulse remains elusive.A combined experimental and numerical study has been carried out to characterize the effect of SCW on transferred impulse and loading magnitude of shallow buried explosives.Firstly,blast tests of shallow buried explosives were conducted,with and without the SCW,to quantitatively assess the blast loading impulse.Subsequently,finite element(FE)simulations were performed and validated against experimental measurement,with good agreement achieved.The validated FE model was then employed to predict the dynamic response of a fully-clamped metallic circular target,subjected to the explosive impact of shallow buried explosives with SCW,and explore the corresponding physical mechanisms.It was demonstrated that shallow buried explosives in saturated soil generate a greater impulse transferred towards the target relative to those in dry soil.The deformation displacement of the target plate is doubled.Increasing the height of SCW results in enhanced center peak deflection of the loaded target,accompanied by subsequent fall,due to the variation of deformation pattern of the loaded target from concentrated load to uniform load.Meanwhile,the presence of SCW increases the blast impulse transferred towards the target by three times.In addition,there exists a threshold value of the burial depth that maximizes the impact impulse.This threshold exhibits a strong sensitivity to SCW height,decreasing with increasing SCW height.An empirical formula for predicting threshold has been provided.Similar conclusions can be drawn for different explosive masses.The results provide technical guidance on blast loading intensity and its spatial distribution considering shallow buried explosives in coast-land battlefields,which can ultimately contribute to better protective designs.
基金financially supported by the National Natural Science Foundation of China(Nos.52272160,U2330112,and 52002254)Sichuan Science and Technology Foundation(Nos.2020YJ0262,2021YFH0127,2022YFH0083,2022YFSY0045,and 2023YFSY0002)+1 种基金the Chunhui Plan of Ministry of Education,Fundamental Research Funds for the Central Universities,China(No.YJ201893)the Foundation of Key Laboratory of Lidar and Device,Sichuan Province,China(No.LLD2023-006)。
文摘Nowadays,force sensors play an important role in industrial production,electronic information,medical health,and many other fields.Two-dimensional material-based filed effect transistor(2D-FET)sensors are competitive with nano-level size,lower power consumption,and accurate response.However,few of them has the capability of impulse detection which is a path function,expressing the cumulative effect of the force on the particle over a period of time.Herein we fabricated the flexible polymethyl methacrylate(PMMA)gate dielectric MoS_(2)-FET for force and impulse sensor application.We systematically investigated the responses of the sensor to constant force and varying forces,and achieved the conversion factors of the drain current signals(I_(ds))to the detected impulse(I).The applied force was detected and recorded by I_(ds)with a low power consumption of~30 nW.The sensitivity of the device can reach~8000%and the 4×1 sensor array is able to detect and locate the normal force applied on it.Moreover,there was almost no performance loss for the device as left in the air for two months.
基金Supported by NSFC(Nos.10671182,12061020)NSF of Guizhou Province(Nos.QKH[2019]1123,QKHKY[2021]088,QKHKY[2022]301,QKH-ZK[2021]331)the Ph.D.Project of Guizhou Education University(No.2021BS005)。
文摘A stochastic stage-structure predator-prey system with impulsive effect is investigated.First,we build the corresponding system without impulse in order to demonstrate the existence and uniqueness of the global positive solution.Second,by selecting an appropriate Lyapunov function,we provide the sufficient condition for the existence of a positive T-periodic solution.Finally,numerical simulations illustrate our theoretical results,which show that the impulse or the white noises can result in the extinction of the predator in a certain condition.
基金Supported by the National Natural Science Foundation of China(10671182)。
文摘The article studies the evolutionary dynamics of two-population two-strategy game models with and without impulses. First, the payment matrix is given and two evolutionary dynamics models are established by adding stochastic and impulse. For the stochastic model without impulses, the existence and uniqueness of solution, and the existence of positive periodic solutions are proved, and a sufficient condition for strategy extinction is given. For the stochastic model with impulses, the existence of positive periodic solutions is proved. Numerical results show that noise and impulses directly affect the model, but the periodicity of the model does not change.
基金supported by the National Natural Science Foundation of China(61833005)
文摘Dear Editor,This letter studies finite-time stability (FTS) of impulsive and switched hybrid systems with delay-dependent impulses. Some conditions, based on Lyapunov method, are proposed for ensuring FTS and estimating settling-time function (STF) of the hybrid systems.When switching dynamics are FTS and impulsive dynamics involve destabilizing delay-dependent impulses, the FTS is retained if the impulses occur infrequently.
基金supported by the National Science Foundation of China (Grant Nos.52279081,and 51839001).
文摘The behaviors of unsteady flow structures and corresponding hydrodynamics for a pitching hydrofoil are investigated numerically and theoretically in the present paper.The aims are to derive the total lift by finite-domain impulse theory for subcavitating flow(σ=8.0)and cavitating flow(σ=3.0),and to quantify the distinct impact of individual vortex structures on the transient lift to appreciate the interplay among cavitation,flow structures,and vortex dynamics.The motion of the hydrofoil is set to pitch up clockwise with an almost constant rate from 0°to 15°and then back to 0°,for the Reynolds number,7.5×105,and the frequency,0.2 Hz,respectively.The results reveal that the presence of cavities delays the migration of the laminar separation bubble(LSB)from the trailing edge(TE)to the leading edge(LE),consequently postponing the hysteresis in the inflection of lift coefficients.The eventual stall under the sub-cavitation regime is the result of LSB bursting.While the instabilities within the leading-edge LSB induce the convection of cavitation-dominated vortices under the cavitation regime instead.Having validated the lift coefficients on the hydrofoil through the finite-domain impulse theory using the standard force expression,the Lamb vector integral emerges as the main contribution to the generation of unsteady lift.Moreover,the typical vortices’contributions to the transient lift during dynamic stall are accurately quantified.The analysis indicates that the clockwise leading-edge vortex(−LEV)contributes positively,while the counterclockwise trailing-edge vortex(+TEV)contributes negatively.The negative influence becomes particularly pronounced after reaching the peak of total lift,as the shedding of the concentrated wake vortex precipitates a sharp decline due to a predominant negative lift contribution from the TEV region.Generally,the vortices’contribution is relatively modest in sub-cavitating flow,but it is notably more significant in the context of incipient cavitating flow.
基金supported by the National Natural Science Foundation of China(No.U23A2045)the China Three Gorges Corporation(YM(BHT)/(22)022).
文摘Economically and effectively managing the risk of landslide-generated impulse waves(LGIWs)presents a significant challenge following the impoundment of newly constructed reservoirs in western China.To address this issue,we selected the Wangjiashan(WJS)landslide in the Baihetan Reservoir area as a case study to evaluate LGIW hazards and develop corresponding mitigation strategies.Using 2D physical model tests and 3D numerical simulations,we established a 3D hazard assessment method for LGIWs based on 2D experimental results.This method confirmed the effectiveness of slope-cutting engineering in mitigating LGIW hazards.Based on this assessment framework,we proposed a novel approach for LGIW risk reduction.The results showed that the maximum wave amplitude reached 19.64 m in the Jinsha River channel,and the maximum run-up was 11.5 m in the XiangBiLing(XBL)community,indicating a substantial LGIW threat to the area.By reducing the rear edge of the sliding mass to 920 m above sea level(asl),the LGIW risk to the XBL community could be lowered to a tolerable level.Compared with traditional landslide prevention and control measures,the proposed mitigation scheme can reduce excavation costs by approximately 37 million CNY,making it a more scientifically sound and economically feasible solution.We explored the concept and the implementation of LGIW risk mitigation in depth,offering new insights for global LGIW risk management.This case study enhances our understanding of LGIW hazard prevention and provides valuable guidance for policymaking and engineering practices in similar geological settings worldwide.
基金supported by the National Natural Science Foundation of China(Nos.12372052,12125207)the Young Elite Scientists Sponsorship Program,China(No.2021JCJQ-QT-047)+1 种基金the Natural Science Foundation of Hunan Province,China(No.2023JJ20047)the Technology Innovation Team of Manned Space Engineering,China。
文摘The concept of the spacecraft Reachable Domain(RD)has garnered significant scholarly attention due to its crucial role in space situational awareness and on-orbit service applications.While the existing research has largely focused on single-impulse RD analysis,the challenge of Multi-Impulse RD(MIRD)remains a key area of interest.This study introduces a methodology for the precise calculation of spacecraft MIRD.The reachability constraints specific to MIRD are first formulated through coordinate transformations.Two restricted maneuvering strategies are examined.The derivation of two extremum conditions allows for determining the accessible orientation range and the nodes encompassing the MIRD.Subsequently,four nonlinear programming models are developed to address two types of MIRD by skillfully relaxing constraints using scale factors.Numerical results validate the robustness and effectiveness of the proposed approach,showing substantial agreement with Monte Carlo simulations and confirming its applicability to spacecraft on various elliptical orbits.
基金Supported by Shandong University of Finance and Economics 2023 International Collaborative Projectsthe National Natural Science Foundation of China(Grant No.62073190)。
文摘In this article,we study the approximate controllability of neutral partial differential equations with Hilfer fractional derivative and not instantaneous impulses effects.By using the Sadovskii's fixed point theorem,fractional calculus and resolvent operator functions,we prove the approximate controllability of the considered system.
基金co-supported by the Foundation of Shanghai Astronautics Science and Technology Innovation,China(No.SAST2022-114)the National Natural Science Foundation of China(No.62303378),the National Natural Science Foundation of China(Nos.124B2031,12202281)the Foundation of China National Key Laboratory of Science and Technology on Test Physics&Numerical Mathematics,China(No.08-YY-2023-R11)。
文摘The problem of collision avoidance for non-cooperative targets has received significant attention from researchers in recent years.Non-cooperative targets exhibit uncertain states and unpredictable behaviors,making collision avoidance significantly more challenging than that for space debris.Much existing research focuses on the continuous thrust model,whereas the impulsive maneuver model is more appropriate for long-duration and long-distance avoidance missions.Additionally,it is important to minimize the impact on the original mission while avoiding noncooperative targets.On the other hand,the existing avoidance algorithms are computationally complex and time-consuming especially with the limited computing capability of the on-board computer,posing challenges for practical engineering applications.To conquer these difficulties,this paper makes the following key contributions:(A)a turn-based(sequential decision-making)limited-area impulsive collision avoidance model considering the time delay of precision orbit determination is established for the first time;(B)a novel Selection Probability Learning Adaptive Search-depth Search Tree(SPL-ASST)algorithm is proposed for non-cooperative target avoidance,which improves the decision-making efficiency by introducing an adaptive-search-depth mechanism and a neural network into the traditional Monte Carlo Tree Search(MCTS).Numerical simulations confirm the effectiveness and efficiency of the proposed method.
基金funded by the National Natural Science Foundation of China(No.U21B6001)。
文摘This paper proposes a novel impulsive thrust strategy guided by optimal continuous thrust strategy to address two-player orbital pursuit-evasion game under impulsive thrust control.The strategy seeks to enhance the interpretability of impulsive thrust strategy by integrating it within the framework of differential game in traditional continuous systems.First,this paper introduces an impulse-like constraint,with periodical changes in thrust amplitude,to characterize the impulsive thrust control.Then,the game with the impulse-like constraint is converted into the two-point boundary value problem,which is solved by the combined shooting and deep learning method proposed in this paper.Deep learning and numerical optimization are employed to obtain the guesses for unknown terminal adjoint variables and the game terminal time.Subsequently,the accurate values are solved by the shooting method to yield the optimal continuous thrust strategy with the impulse-like constraint.Finally,the shooting method is iteratively employed at each impulse decision moment to derive the impulsive thrust strategy guided by the optimal continuous thrust strategy.Numerical examples demonstrate the convergence of the combined shooting and deep learning method,even if the strongly nonlinear impulse-like constraint is introduced.The effect of the impulsive thrust strategy guided by the optimal continuous thrust strategy is also discussed.
基金partially supported by Fund Scientific Research MU15FMIIT008,Plovdiv University
文摘Differential tigated. We study the properties of solutions sufficient conditions for equations with impulses at random moments are set up and invescase of Gamma distributed random moments of impulses. Several are studied based on properties of Gammma distributions. Some p-moment exponential stability of the solutions are given.
文摘Because muzzle impulse noise could cause damage to or have an intluence on the operator, tiae ettecnve protecnve measures should be taken. Therefore, correct analysis of impulse noise characteristics is very significant. Considering the shortcomings of fast Fourier transform method (FFT) in analysis of muzzle impulse noise frequency characteristics, wavelet energy spectrum method is put forward. Based on specific experiment data, the frequency characteristics and spectral energy dis tribution can be obtained. The experiment results show that wavelet energy spectrum method is applicable in muzzle impulse noise characteristic analysis.
文摘Isolationism and expansionism are two themes of American diplomacy. From the beginning of the state’s history, isolationism and expansionism have manifested themselves as two policy imperatives in American diplomacy. On the surface, isolationism and expansionism represent contradictory attitudes and assumptions about America’s proper relationship with the outside world: isolationism advocates diplomatic and military non-entanglement in world affairs; expansionism urges active involvement in external affairs. But in a deeper sense, both isolationism and expansionism are manifestations of American sense of mission, the belief that the US has a special role to perform for all nations in the world. Isolationism is a passive approach to accomplish that mission: it emphasizes the exemplary nature of their country. Expansionism stresses the need for active involvement to achieve that mission; thus, is an active approach to American mission.