Multi-source information can be obtained through the fusion of infrared images and visible light images,which have the characteristics of complementary information.However,the existing acquisition methods of fusion im...Multi-source information can be obtained through the fusion of infrared images and visible light images,which have the characteristics of complementary information.However,the existing acquisition methods of fusion images have disadvantages such as blurred edges,low contrast,and loss of details.Based on convolution sparse representation and improved pulse-coupled neural network this paper proposes an image fusion algorithm that decompose the source images into high-frequency and low-frequency subbands by non-subsampled Shearlet Transform(NSST).Furthermore,the low-frequency subbands were fused by convolutional sparse representation(CSR),and the high-frequency subbands were fused by an improved pulse coupled neural network(IPCNN)algorithm,which can effectively solve the problem of difficulty in setting parameters of the traditional PCNN algorithm,improving the performance of sparse representation with details injection.The result reveals that the proposed method in this paper has more advantages than the existing mainstream fusion algorithms in terms of visual effects and objective indicators.展开更多
Power-line interference is one of the most common noises in magnetotelluric(MT)data.It usually causes distortion at the fundamental frequency and its odd harmonics,and may also affect other frequency bands.Although tr...Power-line interference is one of the most common noises in magnetotelluric(MT)data.It usually causes distortion at the fundamental frequency and its odd harmonics,and may also affect other frequency bands.Although trap circuits are designed to suppress such noise in most of the modern acquisition devices,strong interferences are still found in MT data,and the power-line interference will fluctuate with the changing of load current.The fixed trap circuits often fail to deal with it.This paper proposes an alternative scheme for power-line interference removal based on frequency-domain sparse decomposition.Firstly,the fast Fourier transform of the acquired MT signal is performed.Subsequently,a redundant dictionary is designed to match with the power-line interference which is insensitive to the useful signal.Power-line interference is separated by using the dictionary and a signal reconstruction algorithm of compressive sensing called improved orthogonal matching pursuit(IOMP).Finally,the frequency domain data are switched back to the time domain by the inverse fast Fourier transform.Simulation experiments and real data examples from Lu-Zong ore district illustrate that this scheme can effectively suppress the power-line interference and significantly improve data quality.Compared with time domain sparse decomposition,this scheme takes less time consumption and acquires better results.展开更多
With the rapid development in the service,medical,logistics and other industries,and the increasing demand for unmanned mobile devices,mobile robots with the ability of independent mapping,localization and navigation ...With the rapid development in the service,medical,logistics and other industries,and the increasing demand for unmanned mobile devices,mobile robots with the ability of independent mapping,localization and navigation capabilities have become one of the research hotspots.An accurate map construction is a prerequisite for a mobile robot to achieve autonomous localization and navigation.However,the problems of blurring and missing the borders of obstacles and map boundaries are often faced in the Gmapping algorithm when constructing maps in complex indoor environments.In this pursuit,the present work proposes the development of an improved Gmapping algorithm based on the sparse pose adjustment(SPA)optimizations.The improved Gmapping algorithm is then applied to construct the map of a mobile robot based on single-line Lidar.Experiments show that the improved algorithm could build a more accurate and complete map,reduce the number of particles required for Gmapping,and lower the hardware requirements of the platform,thereby saving and minimizing the computing resources.展开更多
Image fusion technology is the basis of computer vision task,but information is easily affected by noise during transmission.In this paper,an Improved Pigeon-Inspired Optimization(IPIO)is proposed,and used for multi-f...Image fusion technology is the basis of computer vision task,but information is easily affected by noise during transmission.In this paper,an Improved Pigeon-Inspired Optimization(IPIO)is proposed,and used for multi-focus noisy image fusion by combining with the boundary handling of the convolutional sparse representation.By two-scale image decomposition,the input image is decomposed into base layer and detail layer.For the base layer,IPIO algorithm is used to obtain the optimized weights for fusion,whose value range is gained by fusing the edge information.Besides,the global information entropy is used as the fitness index of the IPIO,which has high efficiency especially for discrete optimization problems.For the detail layer,the fusion of its coefficients is completed by performing boundary processing when solving the convolution sparse representation in the frequency domain.The sum of the above base and detail layers is as the final fused image.Experimental results show that the proposed algorithm has a better fusion effect compared with the recent algorithms.展开更多
The nodes number of the hidden layer in a deep learning network is quite difficult to determine with traditional methods. To solve this problem, an improved Kullback-Leibler divergence sparse autoencoder (KL-SAE) is...The nodes number of the hidden layer in a deep learning network is quite difficult to determine with traditional methods. To solve this problem, an improved Kullback-Leibler divergence sparse autoencoder (KL-SAE) is proposed in this paper, which can be applied to battle damage assessment (BDA). This method can select automatically the hidden layer feature which contributes most to data reconstruction, and abandon the hidden layer feature which contributes least. Therefore, the structure of the network can be modified. In addition, the method can select automatically hidden layer feature without loss of the network prediction accuracy and increase the computation speed. Experiments on University ofCalifomia-Irvine (UCI) data sets and BDA for battle damage data demonstrate that the method outperforms other reference data-driven methods. The following results can be found from this paper. First, the improved KL-SAE regression network can guarantee the prediction accuracy and increase the speed of training networks and prediction. Second, the proposed network can select automatically hidden layer effective feature and modify the structure of the network by optimizing the nodes number of the hidden layer.展开更多
The performance of linear prediction analysis of speech deteriorates rapidly under noisy environments. To tackle this issue, an improved noise-robust sparse linear prediction algorithm is proposed. First, the linear p...The performance of linear prediction analysis of speech deteriorates rapidly under noisy environments. To tackle this issue, an improved noise-robust sparse linear prediction algorithm is proposed. First, the linear prediction residual of speech is modeled as Student-t distribution, and the additive noise is incorporated explicitly to increase the robustness, thus a probabilistic model for sparse linear prediction of speech is built, Furthermore, variational Bayesian inference is utilized to approximate the intractable posterior distributions of the model parameters, and then the optimal linear prediction parameters are estimated robustly. The experimental results demonstrate the advantage of the developed algorithm in terms of several different metrics compared with the traditional algorithm and the l1 norm minimization based sparse linear prediction algorithm proposed in recent years. Finally it draws to a conclusion that the proposed algorithm is more robust to noise and is able to increase the speech quality in applications.展开更多
In this paper, the problem of inter symbol interference (ISI) sparse channel estimation in wireless communication with the application of compressed sensing is investigated. However, smoothed L0 norm algorithm (SL0...In this paper, the problem of inter symbol interference (ISI) sparse channel estimation in wireless communication with the application of compressed sensing is investigated. However, smoothed L0 norm algorithm (SL0) has 'notched effect' due to the negative iterative gradient direction. Moreover, the property of continuous function in SL0 is not steep enough, which results in inaccurate estimations and low convergence. Afterwards, we propose the Lagrange multipliers as well as Newton method to optimize SL0 algorithm in order to obtain a more rapid and efficient signal reconstruction algorithm, improved smoothed L0 (ISL0). ISI channel estimation will have a direct effect on the performance of ISI equalizer at the receiver. So, we design a pre-filter model which with no considerable loss of optimality and do analyses of the equalization methods of the sparse multi-path channel. Real-time simulation results clearly show that the ISL0 algorithm can estimate the ISI sparse channel much better in both signal noise ratio (SNR) and compression levels. In the same channel conditions, ISL0 algorithm has been greatly improved when compared with the SL0 algorithm and other compressed-sensing algorithms.展开更多
基金supported in part by the National Natural Science Foundation of China under Grant 41505017.
文摘Multi-source information can be obtained through the fusion of infrared images and visible light images,which have the characteristics of complementary information.However,the existing acquisition methods of fusion images have disadvantages such as blurred edges,low contrast,and loss of details.Based on convolution sparse representation and improved pulse-coupled neural network this paper proposes an image fusion algorithm that decompose the source images into high-frequency and low-frequency subbands by non-subsampled Shearlet Transform(NSST).Furthermore,the low-frequency subbands were fused by convolutional sparse representation(CSR),and the high-frequency subbands were fused by an improved pulse coupled neural network(IPCNN)algorithm,which can effectively solve the problem of difficulty in setting parameters of the traditional PCNN algorithm,improving the performance of sparse representation with details injection.The result reveals that the proposed method in this paper has more advantages than the existing mainstream fusion algorithms in terms of visual effects and objective indicators.
基金Project(2014AA06A602)supported by the National High-Tech Research and Development Program of ChinaProjects(41404111,41304098)supported by the National Natural Science Foundation of ChinaProject(2015JJ3088)supported by the Natural Science Foundation of Hunan Province,China
文摘Power-line interference is one of the most common noises in magnetotelluric(MT)data.It usually causes distortion at the fundamental frequency and its odd harmonics,and may also affect other frequency bands.Although trap circuits are designed to suppress such noise in most of the modern acquisition devices,strong interferences are still found in MT data,and the power-line interference will fluctuate with the changing of load current.The fixed trap circuits often fail to deal with it.This paper proposes an alternative scheme for power-line interference removal based on frequency-domain sparse decomposition.Firstly,the fast Fourier transform of the acquired MT signal is performed.Subsequently,a redundant dictionary is designed to match with the power-line interference which is insensitive to the useful signal.Power-line interference is separated by using the dictionary and a signal reconstruction algorithm of compressive sensing called improved orthogonal matching pursuit(IOMP).Finally,the frequency domain data are switched back to the time domain by the inverse fast Fourier transform.Simulation experiments and real data examples from Lu-Zong ore district illustrate that this scheme can effectively suppress the power-line interference and significantly improve data quality.Compared with time domain sparse decomposition,this scheme takes less time consumption and acquires better results.
基金National Key Research and Development of China(No.2019YFB1600700)Sichuan Science and Technology Planning Project(No.2021YFSY0003)。
文摘With the rapid development in the service,medical,logistics and other industries,and the increasing demand for unmanned mobile devices,mobile robots with the ability of independent mapping,localization and navigation capabilities have become one of the research hotspots.An accurate map construction is a prerequisite for a mobile robot to achieve autonomous localization and navigation.However,the problems of blurring and missing the borders of obstacles and map boundaries are often faced in the Gmapping algorithm when constructing maps in complex indoor environments.In this pursuit,the present work proposes the development of an improved Gmapping algorithm based on the sparse pose adjustment(SPA)optimizations.The improved Gmapping algorithm is then applied to construct the map of a mobile robot based on single-line Lidar.Experiments show that the improved algorithm could build a more accurate and complete map,reduce the number of particles required for Gmapping,and lower the hardware requirements of the platform,thereby saving and minimizing the computing resources.
基金supported in part by National Key Research and Development Program of China(2018YFB0804202,2018YFB0804203)Regional Joint Fund of NSFC(U19A2057)+1 种基金National Natural Science Foundation of China(61876070)Jilin Province Science and Technology Development Plan Project(20190303134SF).
文摘Image fusion technology is the basis of computer vision task,but information is easily affected by noise during transmission.In this paper,an Improved Pigeon-Inspired Optimization(IPIO)is proposed,and used for multi-focus noisy image fusion by combining with the boundary handling of the convolutional sparse representation.By two-scale image decomposition,the input image is decomposed into base layer and detail layer.For the base layer,IPIO algorithm is used to obtain the optimized weights for fusion,whose value range is gained by fusing the edge information.Besides,the global information entropy is used as the fitness index of the IPIO,which has high efficiency especially for discrete optimization problems.For the detail layer,the fusion of its coefficients is completed by performing boundary processing when solving the convolution sparse representation in the frequency domain.The sum of the above base and detail layers is as the final fused image.Experimental results show that the proposed algorithm has a better fusion effect compared with the recent algorithms.
基金Project supported by the National Basic Research Program (973) of China (No. 61331903) and the National Natural Science Foundation of China (Nos. 61175008 and 61673265)
文摘The nodes number of the hidden layer in a deep learning network is quite difficult to determine with traditional methods. To solve this problem, an improved Kullback-Leibler divergence sparse autoencoder (KL-SAE) is proposed in this paper, which can be applied to battle damage assessment (BDA). This method can select automatically the hidden layer feature which contributes most to data reconstruction, and abandon the hidden layer feature which contributes least. Therefore, the structure of the network can be modified. In addition, the method can select automatically hidden layer feature without loss of the network prediction accuracy and increase the computation speed. Experiments on University ofCalifomia-Irvine (UCI) data sets and BDA for battle damage data demonstrate that the method outperforms other reference data-driven methods. The following results can be found from this paper. First, the improved KL-SAE regression network can guarantee the prediction accuracy and increase the speed of training networks and prediction. Second, the proposed network can select automatically hidden layer effective feature and modify the structure of the network by optimizing the nodes number of the hidden layer.
基金supported by the Natural Science Foundation of Jiangsu Province(BK2012510,BK20140074)the National Postdoctoral Foundation of China(20090461424)
文摘The performance of linear prediction analysis of speech deteriorates rapidly under noisy environments. To tackle this issue, an improved noise-robust sparse linear prediction algorithm is proposed. First, the linear prediction residual of speech is modeled as Student-t distribution, and the additive noise is incorporated explicitly to increase the robustness, thus a probabilistic model for sparse linear prediction of speech is built, Furthermore, variational Bayesian inference is utilized to approximate the intractable posterior distributions of the model parameters, and then the optimal linear prediction parameters are estimated robustly. The experimental results demonstrate the advantage of the developed algorithm in terms of several different metrics compared with the traditional algorithm and the l1 norm minimization based sparse linear prediction algorithm proposed in recent years. Finally it draws to a conclusion that the proposed algorithm is more robust to noise and is able to increase the speech quality in applications.
基金supported by the National Nature Science Foundation of China(61372128)the Scientific&Technological Support Project(Industry)of Jiangsu Province(BE2011195)
文摘In this paper, the problem of inter symbol interference (ISI) sparse channel estimation in wireless communication with the application of compressed sensing is investigated. However, smoothed L0 norm algorithm (SL0) has 'notched effect' due to the negative iterative gradient direction. Moreover, the property of continuous function in SL0 is not steep enough, which results in inaccurate estimations and low convergence. Afterwards, we propose the Lagrange multipliers as well as Newton method to optimize SL0 algorithm in order to obtain a more rapid and efficient signal reconstruction algorithm, improved smoothed L0 (ISL0). ISI channel estimation will have a direct effect on the performance of ISI equalizer at the receiver. So, we design a pre-filter model which with no considerable loss of optimality and do analyses of the equalization methods of the sparse multi-path channel. Real-time simulation results clearly show that the ISL0 algorithm can estimate the ISI sparse channel much better in both signal noise ratio (SNR) and compression levels. In the same channel conditions, ISL0 algorithm has been greatly improved when compared with the SL0 algorithm and other compressed-sensing algorithms.