The quality of hot-rolled steel strip is directly affected by the strip crown.Traditional machine learning models have shown limitations in accurately predicting the strip crown,particularly when dealing with imbalanc...The quality of hot-rolled steel strip is directly affected by the strip crown.Traditional machine learning models have shown limitations in accurately predicting the strip crown,particularly when dealing with imbalanced data.This limitation results in poor production quality and efficiency,leading to increased production costs.Thus,a novel strip crown prediction model that uses the Boruta and extremely randomized trees(Boruta-ERT)algorithms to address this issue was proposed.To improve the accuracy of our model,we utilized the synthetic minority over-sampling technique to balance the imbalance data sets.The Boruta-ERT prediction model was then used to select features and predict the strip crown.With the 2160 mm hot rolling production lines of a steel plant serving as the research object,the experimental results showed that 97.01% of prediction data have an absolute error of less than 8 lm.This level of accuracy met the control requirements for strip crown and demonstrated significant benefits for the improvement in production quality of steel strip.展开更多
针对邮轮推舱序列自动规划问题,采用投影法建立推舱路径规划模型,并提出一种基于改进双向快速搜索随机树(Bidirectional Rapidly-Exploring Random Tree,Bi-RRT)算法嵌入的贪心算法进行邮轮推舱序列规划的方法。以大型邮轮H1508船甲板...针对邮轮推舱序列自动规划问题,采用投影法建立推舱路径规划模型,并提出一种基于改进双向快速搜索随机树(Bidirectional Rapidly-Exploring Random Tree,Bi-RRT)算法嵌入的贪心算法进行邮轮推舱序列规划的方法。以大型邮轮H1508船甲板中段区域为例,在Unity3D软件中对预制模块化舱室单元(Pre-fabricated Modular Cabin Unit,PMCU)的推舱序列规划进行仿真试验。试验结果表明,该方法可兼顾避障验证与序列规划,比传统蛇形推舱序列规划具有更高的效率。展开更多
针对六自由度工业机器人在复杂的分拣环境中分拣速度慢、避障效果差等问题,提出了一种融合人工势场(Artificial Potential Field,APF)算法的快速扩展随机树(Rapidly-exploring Random Tree,RRT)改进算法。传统RRT算法路径规划随机性强...针对六自由度工业机器人在复杂的分拣环境中分拣速度慢、避障效果差等问题,提出了一种融合人工势场(Artificial Potential Field,APF)算法的快速扩展随机树(Rapidly-exploring Random Tree,RRT)改进算法。传统RRT算法路径规划随机性强、收敛速度慢,在该算法中引入APF机制引导其向目标点进行有效扩展,减少路径搜索过程中的无效分支,提高搜索效率;优化对父系节点的选择策略,对原路径局部节点进行优化重连,提高路径质量及平滑性。根据实际分拣中可能出现的状况,在MATLAB软件中建立了3个不同的仿真场景,并将所提出的改进APF-RRT算法与传统RRT算法、APF-RRT算法进行对比仿真实验。结果表明,改进APF-RRT算法于不同分拣环境中,在路径长度、搜索时间、节点个数和迭代次数4个指标上均有一定提升,能以更高的效率搜索到更高质量的路径。展开更多
针对液压重载机械臂的动态倾覆稳定性问题,提出了一种基于改进快速扩展随机树(Rapidly-exploring Random Tree,RRT)算法的路径规划方法。与只对危险工况的静态稳定性校核不同,该算法以机械臂运动过程中的动态倾覆稳定性最优为目标,在机...针对液压重载机械臂的动态倾覆稳定性问题,提出了一种基于改进快速扩展随机树(Rapidly-exploring Random Tree,RRT)算法的路径规划方法。与只对危险工况的静态稳定性校核不同,该算法以机械臂运动过程中的动态倾覆稳定性最优为目标,在机械臂的关节空间内进行路径规划。以7个关节变量组成的七维数组作为采样点,结合正运动学与力矩法建立机械臂的动态倾覆稳定性计算模型,利用双采样点择优原则,选择其在对应位姿下抗倾覆稳定力矩最优的随机点作为采样点,以增强算法的启发性。在Matlab平台进行的仿真实验表明,改进RRT算法规划路径的倾覆裕度在3种典型工况下分别提升了37%、28%和38%,有效地改善了液压重载机械臂作业平台的抗倾覆稳定性。展开更多
RRT(rapidly exploring random tree)算法是一种基于采样的路径规划算法,可以在高维环境中搜索出一条路径。传统的RRT算法存在节点利用率低、计算量偏大的问题。针对这些问题,基于快速RRT*(Quick-RRT*)算法,通过优化重选父节点与剪枝范...RRT(rapidly exploring random tree)算法是一种基于采样的路径规划算法,可以在高维环境中搜索出一条路径。传统的RRT算法存在节点利用率低、计算量偏大的问题。针对这些问题,基于快速RRT*(Quick-RRT*)算法,通过优化重选父节点与剪枝范围策略、改进采样方式、引入自适应步长,对快速RRT*算法进行改进,使得算法耗时和路径长度更短。同时,加入节点连接筛选策略,消除路径中过大的转弯角。实验结果表明,改进后的算法在三维环境下能快速找到一条距离最短的无碰撞路径,且运行时间也大幅降低。展开更多
针对标准快速扩展随机树(RRT)算法采用伪随机序列导致采样点分布不均、不合理,且移动机器人从起始点到目标点路径有冗余路段及冗余节点的问题,提出HDRRT(halton&dijkstra&rapidly exploring random tree)算法,该算法采用采样点...针对标准快速扩展随机树(RRT)算法采用伪随机序列导致采样点分布不均、不合理,且移动机器人从起始点到目标点路径有冗余路段及冗余节点的问题,提出HDRRT(halton&dijkstra&rapidly exploring random tree)算法,该算法采用采样点分布均匀性好的Halton序列进行采样,并利用候选点集策略对节点进行筛选,以剔除冗余节点;同时该算法采用改进的Dijkstra算法提取原始路径关键节点,以减少路径冗余路段;在此基础上采用3次B样条曲线对路径作平滑处理.经Matlab联合ROS系统仿真结果表明,HDRRT算法相对于Bias-RRT和标准RRT算法具有快速性,稳定规划出最短以及平滑路径等优点.展开更多
针对传统的快速扩展随机树(rapidly-exploring random tree,RRT)算法收敛速度较慢、规划航迹曲折的缺点,提出基于启发式引导策略、动态步长策略、双层平滑度优化策略的综合改进RRT算法。利用概率对随机树的生长方向进行引导;采用动态步...针对传统的快速扩展随机树(rapidly-exploring random tree,RRT)算法收敛速度较慢、规划航迹曲折的缺点,提出基于启发式引导策略、动态步长策略、双层平滑度优化策略的综合改进RRT算法。利用概率对随机树的生长方向进行引导;采用动态步长进行未知空间的搜索;通过双层平滑度优化策略进行规划航迹的平滑,规划出适合四旋翼无人机飞行的可行航迹。与其它改进方法进行仿真比较,实验结果表明,综合改进RRT算法规划的航迹更短且平滑度更好,已将其应用于四旋翼无人机两种类型的突发障碍的航迹规划中。展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.52074085,U21A20117 and U21A20475)the Fundamental Research Funds for the Central Universities(Grant No.N2004010)the Liaoning Revitalization Talents Program(XLYC1907065).
文摘The quality of hot-rolled steel strip is directly affected by the strip crown.Traditional machine learning models have shown limitations in accurately predicting the strip crown,particularly when dealing with imbalanced data.This limitation results in poor production quality and efficiency,leading to increased production costs.Thus,a novel strip crown prediction model that uses the Boruta and extremely randomized trees(Boruta-ERT)algorithms to address this issue was proposed.To improve the accuracy of our model,we utilized the synthetic minority over-sampling technique to balance the imbalance data sets.The Boruta-ERT prediction model was then used to select features and predict the strip crown.With the 2160 mm hot rolling production lines of a steel plant serving as the research object,the experimental results showed that 97.01% of prediction data have an absolute error of less than 8 lm.This level of accuracy met the control requirements for strip crown and demonstrated significant benefits for the improvement in production quality of steel strip.
文摘针对六自由度工业机器人在复杂的分拣环境中分拣速度慢、避障效果差等问题,提出了一种融合人工势场(Artificial Potential Field,APF)算法的快速扩展随机树(Rapidly-exploring Random Tree,RRT)改进算法。传统RRT算法路径规划随机性强、收敛速度慢,在该算法中引入APF机制引导其向目标点进行有效扩展,减少路径搜索过程中的无效分支,提高搜索效率;优化对父系节点的选择策略,对原路径局部节点进行优化重连,提高路径质量及平滑性。根据实际分拣中可能出现的状况,在MATLAB软件中建立了3个不同的仿真场景,并将所提出的改进APF-RRT算法与传统RRT算法、APF-RRT算法进行对比仿真实验。结果表明,改进APF-RRT算法于不同分拣环境中,在路径长度、搜索时间、节点个数和迭代次数4个指标上均有一定提升,能以更高的效率搜索到更高质量的路径。
文摘针对液压重载机械臂的动态倾覆稳定性问题,提出了一种基于改进快速扩展随机树(Rapidly-exploring Random Tree,RRT)算法的路径规划方法。与只对危险工况的静态稳定性校核不同,该算法以机械臂运动过程中的动态倾覆稳定性最优为目标,在机械臂的关节空间内进行路径规划。以7个关节变量组成的七维数组作为采样点,结合正运动学与力矩法建立机械臂的动态倾覆稳定性计算模型,利用双采样点择优原则,选择其在对应位姿下抗倾覆稳定力矩最优的随机点作为采样点,以增强算法的启发性。在Matlab平台进行的仿真实验表明,改进RRT算法规划路径的倾覆裕度在3种典型工况下分别提升了37%、28%和38%,有效地改善了液压重载机械臂作业平台的抗倾覆稳定性。
文摘RRT(rapidly exploring random tree)算法是一种基于采样的路径规划算法,可以在高维环境中搜索出一条路径。传统的RRT算法存在节点利用率低、计算量偏大的问题。针对这些问题,基于快速RRT*(Quick-RRT*)算法,通过优化重选父节点与剪枝范围策略、改进采样方式、引入自适应步长,对快速RRT*算法进行改进,使得算法耗时和路径长度更短。同时,加入节点连接筛选策略,消除路径中过大的转弯角。实验结果表明,改进后的算法在三维环境下能快速找到一条距离最短的无碰撞路径,且运行时间也大幅降低。
文摘针对标准快速扩展随机树(RRT)算法采用伪随机序列导致采样点分布不均、不合理,且移动机器人从起始点到目标点路径有冗余路段及冗余节点的问题,提出HDRRT(halton&dijkstra&rapidly exploring random tree)算法,该算法采用采样点分布均匀性好的Halton序列进行采样,并利用候选点集策略对节点进行筛选,以剔除冗余节点;同时该算法采用改进的Dijkstra算法提取原始路径关键节点,以减少路径冗余路段;在此基础上采用3次B样条曲线对路径作平滑处理.经Matlab联合ROS系统仿真结果表明,HDRRT算法相对于Bias-RRT和标准RRT算法具有快速性,稳定规划出最短以及平滑路径等优点.
文摘针对传统的快速扩展随机树(rapidly-exploring random tree,RRT)算法收敛速度较慢、规划航迹曲折的缺点,提出基于启发式引导策略、动态步长策略、双层平滑度优化策略的综合改进RRT算法。利用概率对随机树的生长方向进行引导;采用动态步长进行未知空间的搜索;通过双层平滑度优化策略进行规划航迹的平滑,规划出适合四旋翼无人机飞行的可行航迹。与其它改进方法进行仿真比较,实验结果表明,综合改进RRT算法规划的航迹更短且平滑度更好,已将其应用于四旋翼无人机两种类型的突发障碍的航迹规划中。