期刊文献+
共找到208篇文章
< 1 2 11 >
每页显示 20 50 100
Medical Image Segmentation using PCNN based on Multi-feature Grey Wolf Optimizer Bionic Algorithm 被引量:7
1
作者 Xue Wang Zhanshan Li +2 位作者 Heng Kang Yongping Huang Di Gai 《Journal of Bionic Engineering》 SCIE EI CSCD 2021年第3期711-720,共10页
Medical image segmentation is a challenging task especially in multimodality medical image analysis.In this paper,an improved pulse coupled neural network based on multiple hybrid features grey wolf optimizer(MFGWO-PC... Medical image segmentation is a challenging task especially in multimodality medical image analysis.In this paper,an improved pulse coupled neural network based on multiple hybrid features grey wolf optimizer(MFGWO-PCNN)is proposed for multimodality medical image segmentation.Specifically,a two-stage medical image segmentation method based on bionic algorithm is presented,including image fusion and image segmentation.The image fusion stage fuses rich information from different modalities by utilizing a multimodality medical image fusion model based on maximum energy region.In the stage of image segmentation,an improved PCNN model based on MFGWO is proposed,which can adaptively set the parameters of PCNN according to the features of the image.Two modalities of FLAIR and TIC brain MRIs are applied to verify the effectiveness of the proposed MFGWO-PCNN algorithm.The experimental results demonstrate that the proposed method outperforms the other seven algorithms in subjective vision and objective evaluation indicators. 展开更多
关键词 grey wolf optimizer pulse coupled neural network bionic algorithm medical image segmentation
在线阅读 下载PDF
Discrete Improved Grey Wolf Optimizer for Community Detection 被引量:2
2
作者 Mohammad H.Nadimi-Shahraki Ebrahim Moeini +1 位作者 Shokooh Taghian Seyedali Mirjalili 《Journal of Bionic Engineering》 SCIE EI CSCD 2023年第5期2331-2358,共28页
Detecting communities in real and complex networks is a highly contested topic in network analysis.Although many metaheuristic-based algorithms for community detection have been proposed,they still cannot effectively ... Detecting communities in real and complex networks is a highly contested topic in network analysis.Although many metaheuristic-based algorithms for community detection have been proposed,they still cannot effectively fulfill large-scale and real-world networks.Thus,this paper presents a new discrete version of the Improved Grey Wolf Optimizer(I-GWO)algorithm named DI-GWOCD for effectively detecting communities of different networks.In the proposed DI-GWOCD algorithm,I-GWO is first armed using a local search strategy to discover and improve nodes placed in improper communities and increase its ability to search for a better solution.Then a novel Binary Distance Vector(BDV)is introduced to calculate the wolves’distances and adapt I-GWO for solving the discrete community detection problem.The performance of the proposed DI-GWOCD was evaluated in terms of modularity,NMI,and the number of detected communities conducted by some well-known real-world network datasets.The experimental results were compared with the state-of-the-art algorithms and statistically analyzed using the Friedman and Wilcoxon tests.The comparison and the statistical analysis show that the proposed DI-GWOCD can detect the communities with higher quality than other comparative algorithms. 展开更多
关键词 Community detection Complex network OPTIMIZATION Metaheuristic algorithms Swarm intelligence algorithms grey wolf optimizer algorithm
在线阅读 下载PDF
Localization of Acoustic Emission Source in Rock Using SMIGWO Algorithm
3
作者 Jiong Wei Fuqiang Gao +2 位作者 Jinfu Lou Lei Yang Xiaoqing Wang 《International Journal of Coal Science & Technology》 2025年第2期42-51,共10页
The Grey Wolf Optimization(GWO)algorithm is acknowledged as an effective method for rock acoustic emission localization.However,the conventional GWO algorithm encounters challenges related to solution accuracy and con... The Grey Wolf Optimization(GWO)algorithm is acknowledged as an effective method for rock acoustic emission localization.However,the conventional GWO algorithm encounters challenges related to solution accuracy and convergence speed.To address these concerns,this paper develops a Simplex Improved Grey Wolf Optimizer(SMIGWO)algorithm.The randomly generating initial populations are replaced with the iterative chaotic sequences.The search process is optimized using the convergence factor optimization algorithm based on the inverse incompleteГfunction.The simplex method is utilized to address issues related to poorly positioned grey wolves.Experimental results demonstrate that,compared to the conventional GWO algorithm-based AE localization algorithm,the proposed algorithm achieves a higher solution accuracy and showcases a shorter search time.Additionally,the algorithm demonstrates fewer convergence steps,indicating superior convergence efficiency.These findings highlight that the proposed SMIGWO algorithm offers enhanced solution accuracy,stability,and optimization performance.The benefits of the SMIGWO algorithm extend universally across various materials,such as aluminum,granite,and sandstone,showcasing consistent effectiveness irrespective of material type.Consequently,this algorithm emerges as a highly effective tool for identifying acoustic emission signals and improving the precision of rock acoustic emission localization. 展开更多
关键词 Acoustic emission Source localization Iterative chaotic mapping Simplex method grey wolf optimizer algorithm
在线阅读 下载PDF
Application of interval type-2 TSK FLS method based on IGWO algorithm in short-term photovoltaic power forecasting
4
作者 LI Jun ZENG Yuxiang 《Journal of Measurement Science and Instrumentation》 2025年第2期258-271,共14页
For short-term PV power prediction,based on interval type-2 Takagi-Sugeno-Kang fuzzy logic systems(IT2 TSK FLS),combined with improved grey wolf optimizer(IGWO)algorithm,an IGWO-IT2 TSK FLS method was proposed.Compare... For short-term PV power prediction,based on interval type-2 Takagi-Sugeno-Kang fuzzy logic systems(IT2 TSK FLS),combined with improved grey wolf optimizer(IGWO)algorithm,an IGWO-IT2 TSK FLS method was proposed.Compared with the type-1 TSK fuzzy logic system method,interval type-2 fuzzy sets could simultaneously model both intra-personal uncertainty and inter-personal uncertainty based on the training of the existing error back propagation(BP)algorithm,and the IGWO algorithm was used for training the model premise and consequent parameters to further improve the predictive performance of the model.By improving the gray wolf optimization algorithm,the early convergence judgment mechanism,nonlinear cosine adjustment strategy,and Levy flight strategy were introduced to improve the convergence speed of the algorithm and avoid the problem of falling into local optimum.The interval type-2 TSK FLS method based on the IGWO algorithm was applied to the real-world photovoltaic power time series forecasting instance.Under the same conditions,it was also compared with different IT2 TSK FLS methods,such as type I TSK FLS method,BP algorithm,genetic algorithm,differential evolution,particle swarm optimization,biogeography optimization,gray wolf optimization,etc.Experimental results showed that the proposed method based on IGWO algorithm outperformed other methods in performance,showing its effectiveness and application potential. 展开更多
关键词 photovoltaic power interval type-2 fuzzy logic system grey wolf optimizer algorithm forecast performance of model
在线阅读 下载PDF
Grey Wolf Optimizer to Real Power Dispatch with Non-Linear Constraints
5
作者 G.R.Venkatakrishnan R.Rengaraj S.Salivahanan 《Computer Modeling in Engineering & Sciences》 SCIE EI 2018年第4期25-45,共21页
A new and efficient Grey Wolf Optimization(GWO)algorithm is implemented to solve real power economic dispatch(RPED)problems in this paper.The nonlinear RPED problem is one the most important and fundamental optimizati... A new and efficient Grey Wolf Optimization(GWO)algorithm is implemented to solve real power economic dispatch(RPED)problems in this paper.The nonlinear RPED problem is one the most important and fundamental optimization problem which reduces the total cost in generating real power without violating the constraints.Conventional methods can solve the ELD problem with good solution quality with assumptions assigned to fuel cost curves without which these methods lead to suboptimal or infeasible solutions.The behavior of grey wolves which is mimicked in the GWO algorithm are leadership hierarchy and hunting mechanism.The leadership hierarchy is simulated using four types of grey wolves.In addition,searching,encircling and attacking of prey are the social behaviors implemented in the hunting mechanism.The GWO algorithm has been applied to solve convex RPED problems considering the all possible constraints.The results obtained from GWO algorithm are compared with other state-ofthe-art algorithms available in the recent literatures.It is found that the GWO algorithm is able to provide better solution quality in terms of cost,convergence and robustness for the considered ELD problems. 展开更多
关键词 grey wolf optimization(GWO) constraints power generation DISPATCH EVOLUTIONARY computation computational COMPLEXITY algorithms
在线阅读 下载PDF
VGWO: Variant Grey Wolf Optimizer with High Accuracy and Low Time Complexity
6
作者 Junqiang Jiang Zhifang Sun +3 位作者 Xiong Jiang Shengjie Jin Yinli Jiang Bo Fan 《Computers, Materials & Continua》 SCIE EI 2023年第11期1617-1644,共28页
The grey wolf optimizer(GWO)is a swarm-based intelligence optimization algorithm by simulating the steps of searching,encircling,and attacking prey in the process of wolf hunting.Along with its advantages of simple pr... The grey wolf optimizer(GWO)is a swarm-based intelligence optimization algorithm by simulating the steps of searching,encircling,and attacking prey in the process of wolf hunting.Along with its advantages of simple principle and few parameters setting,GWO bears drawbacks such as low solution accuracy and slow convergence speed.A few recent advanced GWOs are proposed to try to overcome these disadvantages.However,they are either difficult to apply to large-scale problems due to high time complexity or easily lead to early convergence.To solve the abovementioned issues,a high-accuracy variable grey wolf optimizer(VGWO)with low time complexity is proposed in this study.VGWO first uses the symmetrical wolf strategy to generate an initial population of individuals to lay the foundation for the global seek of the algorithm,and then inspired by the simulated annealing algorithm and the differential evolution algorithm,a mutation operation for generating a new mutant individual is performed on three wolves which are randomly selected in the current wolf individuals while after each iteration.A vectorized Manhattan distance calculation method is specifically designed to evaluate the probability of selecting the mutant individual based on its status in the current wolf population for the purpose of dynamically balancing global search and fast convergence capability of VGWO.A series of experiments are conducted on 19 benchmark functions from CEC2014 and CEC2020 and three real-world engineering cases.For 19 benchmark functions,VGWO’s optimization results place first in 80%of comparisons to the state-of-art GWOs and the CEC2020 competition winner.A further evaluation based on the Friedman test,VGWO also outperforms all other algorithms statistically in terms of robustness with a better average ranking value. 展开更多
关键词 Intelligence optimization algorithm grey wolf optimizer(GWO) manhattan distance symmetric coordinates
在线阅读 下载PDF
基于WOA-IGWO-LSTM的作业车间实时调度
7
作者 郑华丽 魏光艳 +2 位作者 孙东 王明君 叶春明 《机床与液压》 北大核心 2025年第2期54-63,共10页
针对作业车间实时调度问题,基于长短期记忆(LSTM)神经网络,提出WOA-IGWO-LSTM算法。根据调度问题和算法设计三元样本数据结构,以性能指标和生产系统状态属性作为输入特征,输出当前决策点的最佳调度规则。利用鲸鱼优化算法(WOA)对输入特... 针对作业车间实时调度问题,基于长短期记忆(LSTM)神经网络,提出WOA-IGWO-LSTM算法。根据调度问题和算法设计三元样本数据结构,以性能指标和生产系统状态属性作为输入特征,输出当前决策点的最佳调度规则。利用鲸鱼优化算法(WOA)对输入特征进行降维,以提高模型泛化能力和准确性。引入非线性收敛因子设计一种改进灰狼算法(IGWO)用于调节LSTM参数,提高算法实用性。最后,通过对比试验验证了WOA、IGWO以及WOA-IGWO-LSTM的有效性,并利用工业案例数据验证了WOA-IGWO-LSTM对于解决作业车间实时调度问题的有效性和可行性。 展开更多
关键词 长短期记忆(LSTM)神经网络 鲸鱼优化算法(WOA) 改进灰狼算法 作业车间实时调度
在线阅读 下载PDF
Two-to-one differential game via improved MOGWO 被引量:1
8
作者 BAI Yu ZHOU Di +2 位作者 ZHANG Bolun HE Zhen HE Ping 《Journal of Systems Engineering and Electronics》 2025年第1期233-255,共23页
When the maneuverability of a pursuer is not significantly higher than that of an evader,it will be difficult to intercept the evader with only one pursuer.Therefore,this article adopts a two-to-one differential game ... When the maneuverability of a pursuer is not significantly higher than that of an evader,it will be difficult to intercept the evader with only one pursuer.Therefore,this article adopts a two-to-one differential game strategy,the game of kind is generally considered to be angle-optimized,which allows unlimited turns,but these practices do not take into account the effect of acceleration,which does not correspond to the actual situation,thus,based on the angle-optimized,the acceleration optimization and the acceleration upper bound constraint are added into the game for consideration.A two-to-one differential game problem is proposed in the three-dimensional space,and an improved multi-objective grey wolf optimization(IMOGWO)algorithm is proposed to solve the optimal game point of this problem.With the equations that describe the relative motions between the pursuers and the evader in the three-dimensional space,a multi-objective function with constraints is given as the performance index to design an optimal strategy for the differential game.Then the optimal game point is solved by using the IMOGWO algorithm.It is proved based on Markov chains that with the IMOGWO,the Pareto solution set is the solution of the differential game.Finally,it is verified through simulations that the pursuers can capture the escapee,and via comparative experiments,it is shown that the IMOGWO algorithm performs well in terms of running time and memory usage. 展开更多
关键词 differential game improved multi-objective grey wolf optimization(IMOGWO) cooperative pursuit optimal game point
在线阅读 下载PDF
Optimizing Grey Wolf Optimization: A Novel Agents’ Positions Updating Technique for Enhanced Efficiency and Performance
9
作者 Mahmoud Khatab Mohamed El-Gamel +2 位作者 Ahmed I. Saleh Asmaa H. Rabie Atallah El-Shenawy 《Open Journal of Optimization》 2024年第1期21-30,共10页
Grey Wolf Optimization (GWO) is a nature-inspired metaheuristic algorithm that has gained popularity for solving optimization problems. In GWO, the success of the algorithm heavily relies on the efficient updating of ... Grey Wolf Optimization (GWO) is a nature-inspired metaheuristic algorithm that has gained popularity for solving optimization problems. In GWO, the success of the algorithm heavily relies on the efficient updating of the agents’ positions relative to the leader wolves. In this paper, we provide a brief overview of the Grey Wolf Optimization technique and its significance in solving complex optimization problems. Building upon the foundation of GWO, we introduce a novel technique for updating agents’ positions, which aims to enhance the algorithm’s effectiveness and efficiency. To evaluate the performance of our proposed approach, we conduct comprehensive experiments and compare the results with the original Grey Wolf Optimization technique. Our comparative analysis demonstrates that the proposed technique achieves superior optimization outcomes. These findings underscore the potential of our approach in addressing optimization challenges effectively and efficiently, making it a valuable contribution to the field of optimization algorithms. 展开更多
关键词 grey wolf Optimization (GWO) Metaheuristic algorithm Optimization Problems Agents’ Positions Leader Wolves Optimal Fitness Values Optimization Challenges
在线阅读 下载PDF
基于IGWO的并网LCL逆变器控制参数整定方法 被引量:1
10
作者 蔡峰 黄东晓 +1 位作者 曾甲辰 汪凤翔 《电力电子技术》 2025年第7期62-67,共6页
针对并网逆变器控制器参数难以整定的问题,本文提出一种基于改进灰狼优化算法(IGWO)的PI控制参数优化方法,以提升LCL型并网逆变器的性能。首先通过建立LCL逆变器数学模型,采用阻抗稳定性判据法分析并网逆变器控制器参数的稳定范围。然... 针对并网逆变器控制器参数难以整定的问题,本文提出一种基于改进灰狼优化算法(IGWO)的PI控制参数优化方法,以提升LCL型并网逆变器的性能。首先通过建立LCL逆变器数学模型,采用阻抗稳定性判据法分析并网逆变器控制器参数的稳定范围。然后将灰狼算法(GWO)结合维度学习狩猎(DLH)方法,通过动态更新个体位置来增强全局搜索能力,从而避免陷入局部最优。利用IGWO对逆变器的电流谐波失真、电流误差等多个关键性能指标进行多目标优化设计出最优的控制器参数,使系统在保证稳定性的同时,还具有更低的总谐波畸变率(THD),减少了控制误差,增强了系统的鲁棒性。仿真和实验验证了该方法的有效性与可行性。 展开更多
关键词 并网逆变器 改进灰狼优化算法 参数整定
在线阅读 下载PDF
帷幕灌浆量区间预测的Bootstrap-IGWO-SVM模型研究 被引量:17
11
作者 李凯 任炳昱 +2 位作者 关涛 余佳 王佳俊 《水力发电学报》 CSCD 北大核心 2022年第10期18-29,共12页
由于帷幕灌浆注灰量预测过程中存在地质参数、预测模型和输入数据的不确定性,传统的点预测结果存在误差,并且难以对不确定性进行量化。针对上述问题,本研究提出基于Bootstrap方法和改进灰狼算法的支持向量机(Bootstrap-IGWO-SVM)的帷幕... 由于帷幕灌浆注灰量预测过程中存在地质参数、预测模型和输入数据的不确定性,传统的点预测结果存在误差,并且难以对不确定性进行量化。针对上述问题,本研究提出基于Bootstrap方法和改进灰狼算法的支持向量机(Bootstrap-IGWO-SVM)的帷幕灌浆量区间预测模型,量化了预测模型的不确定性。首先通过Bootstrap算法对初始训练集抽样生成样本数据集;其次,通过灰狼优化算法对惩罚因子C、RBF核函数方差g和损失因子p进行参数寻优,提高SVM算法的预测精度;再次,利用非线性收敛因子、动态权重因子、概率混沌图谱和Levy飞行对灰狼算法进行改进,解决灰狼算法局部搜索和全局搜索的平衡问题;最后,对构建的数据集分别使用IGWOSVM算法和随机森林方法分别预测得到系统误差和随机误差,并将两者累加得到总体误差,进而通过构建正态分布模型得到注灰量区间预测结果,实现了预测模型不确定性的量化。结果表明,改进的IGWO-SVM的预测精度为RMSE=85.32,R^(2)=0.53,MAE=45.64,相比GWO-SVM方法(RMSE=96.58,R^(2)=0.40,MAE=48.45)明显提升,相比BP神经网络算法(BPNN),极限学习机(ELM)存在明显精度优势;在置信度为99%下预测区间覆盖率(PICP)、预测区间宽度(MPIW)和宽度综合指标(CWC)分别为98.71%、363.59 kg/m、363.59 kg/m。 展开更多
关键词 灌浆量预测 改进的灰狼优化算法 支持向量机 区间预测 帷幕灌浆
在线阅读 下载PDF
基于CEEMDAN-IGWO-SVM的轴承故障诊断研究 被引量:5
12
作者 黄海松 范青松 +1 位作者 魏建安 黄东 《组合机床与自动化加工技术》 北大核心 2020年第3期22-25,31,共5页
为了提高支持向量机(SVM)在轴承故障诊断时的准确率和识别效率,提出了一种基于具有自适应白噪声的完整集成经验模态分解方法(CEEMDAN)、改进灰狼优化算法(IGWO)和支持向量机(SVM)相结合的故障诊断方法。首先用CEEMDAN与Shannon熵对振动... 为了提高支持向量机(SVM)在轴承故障诊断时的准确率和识别效率,提出了一种基于具有自适应白噪声的完整集成经验模态分解方法(CEEMDAN)、改进灰狼优化算法(IGWO)和支持向量机(SVM)相结合的故障诊断方法。首先用CEEMDAN与Shannon熵对振动信号消噪、分解,获得典型故障的敏感信号;其次,将粒子群算法(PSO)惯性权重w与粒子“飞行”速度v引入灰狼优化算法(GWO),得到IGWO,通过IGWO算法优化SVM得到诊断模型的最优参数,增强SVM的学习能力和泛化能力;最后,利用美国西储大学的轴承试验数据验证优化模型的有效性。结果表明,IGWO算法优化SVM的模型可以准确、高效地对轴承进行故障诊断;与GA、PSO、和GWO算法优化的SVM模型相比,该方法的故障诊断准确率和识别效率更高。 展开更多
关键词 支持向量机 参数优化 改进灰狼优化算法 故障诊断
在线阅读 下载PDF
基于EEMD-IGWO-SVM的电机轴承故障诊断 被引量:8
13
作者 张涛 杨旭 +3 位作者 李玉梅 郭鹤 石广远 陈学勇 《机床与液压》 北大核心 2024年第10期174-181,共8页
针对电机轴承易发生损坏、传统诊断方法耗时长且准确度低等问题,提出一种基于改进灰狼优化算法(IGWO)优化支持向量机(SVM)的电机轴承故障诊断方法。对电机振动数据进行集成经验模态分解(EEMD),提取出IMF能量矩作为特征向量,并结合IGWO-... 针对电机轴承易发生损坏、传统诊断方法耗时长且准确度低等问题,提出一种基于改进灰狼优化算法(IGWO)优化支持向量机(SVM)的电机轴承故障诊断方法。对电机振动数据进行集成经验模态分解(EEMD),提取出IMF能量矩作为特征向量,并结合IGWO-SVM分类器,构造电机轴承故障检测模型。在模型引入改进Tent混沌映射、非线性收敛因子、动态权重策略,得到改进的分类算法,该算法可以快速精准地寻找SVM的最优惩罚参数C和核参数γ。对电机轴承振动数据进行仿真实验,诊断结果表明该轴承故障方法平均准确率高达99.4%。最后通过实验验证提出的诊断方法具有良好的算法稳定性和抗噪性能,可有效提高故障诊断精度。 展开更多
关键词 电机 故障诊断 支持向量机 改进灰狼优化算法
在线阅读 下载PDF
基于IGWO与BP神经网络的海洋沉积物质量评价 被引量:2
14
作者 李海涛 邵泽东 《计算机仿真》 北大核心 2020年第8期344-347,共4页
针对单因子评价法在海洋沉积物质量评价中评价结果粗糙等问题,提出一种新的利用改进灰狼优化算法(IGWO)优化BP神经网络的海洋沉积物质量评价模型。该模型引入具有快速收敛、简单高效、全局优化能力较强特点的改进灰狼优化算法,在模拟灰... 针对单因子评价法在海洋沉积物质量评价中评价结果粗糙等问题,提出一种新的利用改进灰狼优化算法(IGWO)优化BP神经网络的海洋沉积物质量评价模型。该模型引入具有快速收敛、简单高效、全局优化能力较强特点的改进灰狼优化算法,在模拟灰狼捕猎的过程中得到了BP神经网络的各层权值、阈值的最优解。并以温州东部沿海海域的监测数据作为样本进行海洋沉积物的质量评价,实验结果表明该评价模型具有收敛速度快、准确性较高等特点,能够准确、合理地对海洋沉积物质量做出评价。 展开更多
关键词 改进灰狼优化算法 神经网络 海洋沉积物质量评价
在线阅读 下载PDF
一种基于IGWO-SNN的光伏出力短期预测方法 被引量:23
15
作者 董志强 郑凌蔚 +2 位作者 苏然 武浩 罗平 《电力系统保护与控制》 EI CSCD 北大核心 2023年第1期131-138,共8页
光伏出力短期预测对于电网或微电网的能量管理和优化调度具有重要意义。构建了一种基于改进灰狼学习算法(improved grey wolf optimization,IGWO)的脉冲神经网络(spiking neural network,SNN),并将其应用到光伏出力短期预测中。首先,利... 光伏出力短期预测对于电网或微电网的能量管理和优化调度具有重要意义。构建了一种基于改进灰狼学习算法(improved grey wolf optimization,IGWO)的脉冲神经网络(spiking neural network,SNN),并将其应用到光伏出力短期预测中。首先,利用灰色关联分析法选取相似日。然后,提出一种IGWO算法用于SNN模型训练,通过引入基于三角函数规律变化的非线性下降收敛因子和动态权重更新策略,提升SNN的编码和预测的性能。最后,利用实证系统对所提方法进行了评估,并与其他3种模型进行了对比研究。结果表明,所提方法预测性能提升明显。 展开更多
关键词 光伏出力短期预测 脉冲神经网络 改进灰狼优化算法 收敛因子 动态权重更新策略
在线阅读 下载PDF
基于IGWO的台车轮注油系统注油量控制方法研究 被引量:3
16
作者 李洪涛 库涛 +2 位作者 王二林 刘金鑫 林乐新 《机床与液压》 北大核心 2023年第22期67-71,共5页
传统烧结机台车轮自动注油系统注油量控制存在控制精度低和鲁棒性差等问题,已经无法满足精确注油的需求。为改善注油性能,提出一种基于改进灰狼(IGWO)算法的烧结机台车轮注油量智能控制方法。利用MATLAB软件辨识注油量控制系统数学模型... 传统烧结机台车轮自动注油系统注油量控制存在控制精度低和鲁棒性差等问题,已经无法满足精确注油的需求。为改善注油性能,提出一种基于改进灰狼(IGWO)算法的烧结机台车轮注油量智能控制方法。利用MATLAB软件辨识注油量控制系统数学模型;搭建BP神经网络PID注油量控制系统;为了提高灰狼算法的收敛速度,引入非线性收敛因子和动态权重,设计IGWO算法实现对BP神经网络的最优初始值及阈值的寻优,输出最优PID控制参数;最后,在仿真环境下,将用IGWO算法优化前后的控制效果进行对比。结果表明:所设计的PID控制器超调小、控制精度高,能够实现注油量的智能控制,满足精确注油的需求。 展开更多
关键词 烧结机台车轮 BP神经网络 改进灰狼算法 PID控制
在线阅读 下载PDF
基于IGWO算法优化的SVM模拟电路故障诊断 被引量:11
17
作者 熊魁 岳长喜 +1 位作者 刘冬梅 梅恒荣 《微电子学与计算机》 北大核心 2019年第1期16-21,共6页
为提高基于支持向量机(SVM)模拟电路故障诊断的准确率和优化效率,在灰狼优化(GWO)算法的基础上,通过引入非线性收敛因子、动态权重和边界变异策略,提出了一种改进灰狼优化(IGWO)算法优化SVM参数(IGWO-SVM)的改进型分类器.首先,在Sallen-... 为提高基于支持向量机(SVM)模拟电路故障诊断的准确率和优化效率,在灰狼优化(GWO)算法的基础上,通过引入非线性收敛因子、动态权重和边界变异策略,提出了一种改进灰狼优化(IGWO)算法优化SVM参数(IGWO-SVM)的改进型分类器.首先,在Sallen-Key带通滤波器和四运放双二次高通滤波器电路中采集故障样本,并对故障样本进行小波包特征提取;然后,将特征提取后的样本划分为训练样本和测试样本,利用IGWO算法来优化SVM中的惩罚参数C和核参数γ,得到最优的SVM分类器模型;最后,与其他算法优化的SVM分类器进行对比,结果表明IGWO-SVM分类器可以防止种群陷入局部最优,同时收敛速度有了较大提升. 展开更多
关键词 改进灰狼优化算法 支持向量机 模拟电路 故障诊断
在线阅读 下载PDF
基于IGWO-MKELM的锂离子电池剩余使用寿命预测 被引量:5
18
作者 宋健正 刘洋 +1 位作者 崔来熙 张梦迪 《电源学报》 CSCD 北大核心 2023年第1期168-176,共9页
随着锂离子电池在储能系统中比例迅速增大,为避免因电池性能退化导致的事故,如何准确预测锂离子电池剩余使用寿命就成为保障储能系统可靠运行的关键。针对锂离子电池剩余使用寿命预测的问题,提出一种改进灰狼优化多核极限学习机(IGWO-MK... 随着锂离子电池在储能系统中比例迅速增大,为避免因电池性能退化导致的事故,如何准确预测锂离子电池剩余使用寿命就成为保障储能系统可靠运行的关键。针对锂离子电池剩余使用寿命预测的问题,提出一种改进灰狼优化多核极限学习机(IGWO-MKELM)预测方法。首先从电池充放电过程中提取能够表征电池寿命退化的间接健康因子作为输入量,然后采用改进灰狼算法对多核极限学习机参数进行寻优,建立改进灰狼优化多核极限学习机预测方法,最后使用NASA电池数据集进行仿真实验。结果表明,IGWO-MKELM方法可以更加精确地预测锂离子电池剩余寿命。 展开更多
关键词 锂离子电池 剩余使用寿命 间接健康因子 改进灰狼优化算法 多核极限学习机
在线阅读 下载PDF
基于IGWO-RBF的LTE-R切换算法研究 被引量:4
19
作者 苏佳丽 伍忠东 +1 位作者 丁龙斌 刘菲菲 《计算机工程与应用》 CSCD 北大核心 2020年第8期74-80,共7页
针对高速铁路LTE-R越区切换中,A3事件下的越区切换算法容易出现乒乓效应(PPE)和无线链路连接失败(WLF)的问题,提出了粒子群优化(PSO)灰狼算法改进的RBF神经网络(IGWO-RBF)的越区切换优化算法。该算法采集大量列车以不同速度(0~100 m/s)... 针对高速铁路LTE-R越区切换中,A3事件下的越区切换算法容易出现乒乓效应(PPE)和无线链路连接失败(WLF)的问题,提出了粒子群优化(PSO)灰狼算法改进的RBF神经网络(IGWO-RBF)的越区切换优化算法。该算法采集大量列车以不同速度(0~100 m/s)运行在特定环境中时切换成功率高的切换迟滞门限(Hys)和触发延迟时间(TTT)参数集,送入改进的RBF神经网络,训练完成后得到不同速度下的Hys和TTT的拟合曲线。根据列车接收到的参考信号接收质量(RSRQ),加入自矫正项对Hys和TTT进行二次优化调整。在matlab上进行仿真实验,结果表明提出的算法减小了掉话率和乒乓切换率,提高了列车在高速环境下的切换成功率及鲁棒性。 展开更多
关键词 LTE技术 高速环境 越区切换 A3事件 改进灰狼优化的RBF神经网络(igwo-RBF) 切换成功率
在线阅读 下载PDF
Short-term wind power prediction using an improved grey wolf optimization algorithm with back-propagation neural network 被引量:3
20
作者 Liming Wei Shuo Xv Bin Li 《Clean Energy》 EI 2022年第2期288-296,共9页
A short-term wind power prediction method is proposed in this paper with experimental results obtained from a wind farm located in Northeast China.In order to improve the accuracy of the prediction method using a trad... A short-term wind power prediction method is proposed in this paper with experimental results obtained from a wind farm located in Northeast China.In order to improve the accuracy of the prediction method using a traditional back-propagation(BP)neural network algorithm,the improved grey wolf optimization(IGWO)algorithm has been adopted to optimize its parameters.The performance of the proposed method has been evaluated by experiments.First,the features of the wind farm are described to show the fundamental information of the experiments.A single turbine with rated power of 1500 kW and power generation coefficient of 2.74 in the wind farm was introduced to show the technical details of the turbines.Original wind power data of the whole farm were preprocessed by using the quartile method to remove the abnormal data points.Then,the retained wind power data were predicted and analysed by using the proposed IGWO-BP algorithm.Analysis of the results proves the practicability and efficiency of the prediction model.Results show that the average accuracy of prediction is~11%greater than the traditional BP method.In this way,the proposed wind power prediction method can be adopted to improve the accuracy of prediction and to ensure the effective utilization of wind energy. 展开更多
关键词 wind power prediction back-propagation neural network improved grey wolf optimization igwo
原文传递
上一页 1 2 11 下一页 到第
使用帮助 返回顶部