期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Wake field prediction of a wind farm based on a physics-informed neural network with different spatiotemporal prediction performance improvement strategies
1
作者 Junyong Song Lei Wang +1 位作者 Zhiqiang Xin Hao Wang 《Theoretical & Applied Mechanics Letters》 2025年第2期141-153,共13页
Dynamic wake field information is vital for the optimized design and control of wind farms.Combined with sparse measurement data from light detection and ranging(LiDAR),the physics-informed neural network(PINN)framewo... Dynamic wake field information is vital for the optimized design and control of wind farms.Combined with sparse measurement data from light detection and ranging(LiDAR),the physics-informed neural network(PINN)frameworks have recently been employed for forecasting freestream wind and wake fields.However,these PINN frameworks face challenges of low prediction accuracy and long training times.Therefore,this paper constructed a PINN framework for dynamic wake field prediction by integrating two accuracy improvement strategies and a step-by-step training time saving strategy.The results showed that the different performance improvement routes significantly improved the overall performance of the PINN.The accuracy and efficiency of the PINN with spatiotemporal improvement strategies were validated via LiDAR-measured data from a wind farm in Shandong province,China.This paper sheds light on load reduction,efficiency improvement,intelligent operation and maintenance of wind farms. 展开更多
关键词 Dynamic wake prediction LiDAR measurements physics-informed neural network Accuracy improvement strategy Step-by-step time saving strategy
在线阅读 下载PDF
A Novel Method for Solving Nonlinear Schrödinger Equation with a Potential by Deep Learning
2
作者 Chaojun Zhang Yuexing Bai 《Journal of Applied Mathematics and Physics》 2022年第10期3175-3190,共16页
The improved physical information neural network algorithm has been proven to be used to study integrable systems. In this paper, the improved physical information neural network algorithm is used to study the defocus... The improved physical information neural network algorithm has been proven to be used to study integrable systems. In this paper, the improved physical information neural network algorithm is used to study the defocusing nonlinear Schr&#246;dinger (NLS) equation with time-varying potential, and the rogue wave solution of the equation is obtained. At the same time, the influence of the number of network layers, neurons and the number of sampling points on the network performance is studied. Experiments show that the number of hidden layers and the number of neurons in each hidden layer affect the relative L<sub>2</sub>-norm error. With fixed configuration points, the relative norm error does not decrease with the increase in the number of boundary data points, which indicates that in this case, the number of boundary data points has no obvious influence on the error. Through the experiment, the rogue wave solution of the defocusing NLS equation is successfully captured by IPINN method for the first time. The experimental results of this paper are also compared with the results obtained by the physical information neural network method and show that the improved algorithm has higher accuracy. The results of this paper will be contributed to the generalization of deep learning algorithms for solving defocusing NLS equations with time-varying potential. 展开更多
关键词 physics-informed neural Networks improved physics-informed neural net-works Defocusing NLS Equation Rogue Wave Solution
在线阅读 下载PDF
Deep Learning Applied to Computational Mechanics:A Comprehensive Review,State of the Art,and the Classics 被引量:1
3
作者 Loc Vu-Quoc Alexander Humer 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第11期1069-1343,共275页
Three recent breakthroughs due to AI in arts and science serve as motivation:An award winning digital image,protein folding,fast matrix multiplication.Many recent developments in artificial neural networks,particularl... Three recent breakthroughs due to AI in arts and science serve as motivation:An award winning digital image,protein folding,fast matrix multiplication.Many recent developments in artificial neural networks,particularly deep learning(DL),applied and relevant to computational mechanics(solid,fluids,finite-element technology)are reviewed in detail.Both hybrid and pure machine learning(ML)methods are discussed.Hybrid methods combine traditional PDE discretizations with ML methods either(1)to help model complex nonlinear constitutive relations,(2)to nonlinearly reduce the model order for efficient simulation(turbulence),or(3)to accelerate the simulation by predicting certain components in the traditional integration methods.Here,methods(1)and(2)relied on Long-Short-Term Memory(LSTM)architecture,with method(3)relying on convolutional neural networks.Pure ML methods to solve(nonlinear)PDEs are represented by Physics-Informed Neural network(PINN)methods,which could be combined with attention mechanism to address discontinuous solutions.Both LSTM and attention architectures,together with modern and generalized classic optimizers to include stochasticity for DL networks,are extensively reviewed.Kernel machines,including Gaussian processes,are provided to sufficient depth for more advanced works such as shallow networks with infinite width.Not only addressing experts,readers are assumed familiar with computational mechanics,but not with DL,whose concepts and applications are built up from the basics,aiming at bringing first-time learners quickly to the forefront of research.History and limitations of AI are recounted and discussed,with particular attention at pointing out misstatements or misconceptions of the classics,even in well-known references.Positioning and pointing control of a large-deformable beam is given as an example. 展开更多
关键词 Deep learning breakthroughs network architectures backpropagation stochastic optimization methods from classic to modern recurrent neural networks long short-term memory gated recurrent unit attention transformer kernel machines Gaussian processes libraries physics-informed neural Networks state-of-the-art history limitations challenges Applications to computational mechanics Finite-element matrix integration improved Gauss quadrature Multiscale geomechanics fluid-filled porous media Fluid mechanics turbulence proper orthogonal decomposition Nonlinear-manifold model-order reduction autoencoder hyper-reduction using gappy data control of large deformable beam
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部