期刊文献+
共找到16篇文章
< 1 >
每页显示 20 50 100
基于VMD多阶段优化的短时交通流预测研究 被引量:1
1
作者 陈以 齐兴宇 +1 位作者 胡水源 姚宇琛 《计算机仿真》 2025年第1期126-132,共7页
针对交通流数据存在的随机性与非线性等导致短时交通流预测精度不高的问题,给出一种多阶段优化策略和改进澳洲野狗算法(Improved Dingo Optimization Algorithm, IDOA)优化LSSVM、LSTM和XGBoost参数的组合预测模型(MO-IDOA-LLX)。使用... 针对交通流数据存在的随机性与非线性等导致短时交通流预测精度不高的问题,给出一种多阶段优化策略和改进澳洲野狗算法(Improved Dingo Optimization Algorithm, IDOA)优化LSSVM、LSTM和XGBoost参数的组合预测模型(MO-IDOA-LLX)。使用变分模态分解(Variational Modal Decomposition, VMD)将交通流分解,借助样本熵(Sample Entropy, SE)将子序列重组,得到趋势、细节和随机分量并采用相空间重构算法(Phase Space Reconstruction, PSR)对其进行处理。通过4个基准函数验证IDOA算法性能。对重构后的分量分别建立IDOA-LSSVM,IDOA-LSTM以及IDOA-XGBoost三个子模型,叠加各子模型的预测值得到预测结果。实验结果表明:其它预测模型相比,上述模型预测精度均有不同程度的提升,输出的预测结果更接近真实值。 展开更多
关键词 短时交通流预测 组合预测模型 改进澳洲野狗优化算法 变分模态分解 样本熵
在线阅读 下载PDF
改进MSE和BTSVM的往复压缩机轴承智能诊断研究
2
作者 闫旭辉 武文革 邓诗俊 《机械设计与制造》 北大核心 2025年第12期277-282,共6页
针对往复压缩机轴承故障诊断识别准确率不高,故障特征信息耦合等问题,提出了基于改进MSE和优化BTSVM的故障诊断新方法。鉴于多尺度样本熵算法在冗余计算与特征提取效率方面存在的局限性,本研究深入剖析其多尺度处理策略与样本熵计算流程... 针对往复压缩机轴承故障诊断识别准确率不高,故障特征信息耦合等问题,提出了基于改进MSE和优化BTSVM的故障诊断新方法。鉴于多尺度样本熵算法在冗余计算与特征提取效率方面存在的局限性,本研究深入剖析其多尺度处理策略与样本熵计算流程,针对性地实施了优化措施。由此,本文提出了改进多尺度样本熵算法(IMSE),旨在显著提升算法的计算效率与特征提取精度。其次,针对传统纠错码无法确定码长及最优排列顺序这两方面的不足,将Hadamard矩阵应用于纠错码,提出一种基于Hadamard纠错码结合二叉树支持向量机(BTSVM)的故障识别方法。最后,将两种改进方法进行混合应用于往复压缩机故障诊断中,结果表明,本方法不但提高了故障诊断的准确率,还极大地加快了故障诊断的计算速度。 展开更多
关键词 往复压缩机 改进多尺度样本熵算法 纠错码 二叉树支持向量机 故障诊断
在线阅读 下载PDF
基于组合模态分解与IGWO-BiLSTM的短期风电功率预测
3
作者 任爽 姚大学 +1 位作者 刘俊享 程天祥 《计算机测量与控制》 2025年第9期83-90,共8页
为了提高双向长短期记忆神经网络(BiLSTM)进行风电功率预测的精度,针对BiLSTM存在的参数优化问题,通过引入透镜成像反向学习进行种群初始化、改进收敛方式、并结合柯西变异算法,改进了传统的灰狼算法(GWO)来优化BiLSTM的超参数,并基于IC... 为了提高双向长短期记忆神经网络(BiLSTM)进行风电功率预测的精度,针对BiLSTM存在的参数优化问题,通过引入透镜成像反向学习进行种群初始化、改进收敛方式、并结合柯西变异算法,改进了传统的灰狼算法(GWO)来优化BiLSTM的超参数,并基于ICEEMDAN-VMD组合模态分解和改进后的GWO算法提出了一种ICEEMDAN-VMD-IGWO-BiLSTM组合预测模型;在我国西北地区某风场公开数据集上做了验证,实验结果表明:ICEEMDAN-VMD-IGWO-BiLSTM组合模型的MAE、MSE、RMSE分别为4.9189、32.3683、5.6893 MW;相较于CNN-LSTM、CNN-BiLSTM神经网络模型以及其他组合模型在预测精度上都有明显的提升,能很好地解决风电预测精度不高的问题。 展开更多
关键词 短期风电功率预测 改进灰狼算法 分解技术 样本熵 双向长短期记忆神经网络
在线阅读 下载PDF
基于ICEEMDAN和SSA-LSTM组合模型的电离层TEC预测 被引量:1
4
作者 张振国 孙希延 +1 位作者 纪元法 贾茜子 《全球定位系统》 2025年第1期48-59,共12页
针对电离层总电子含量(total electron content,TEC)具有非线性和非平稳性的特性及单一长短期记忆神经网络(long short-term memory,LSTM)模型在预测中存在精度不高且易陷入局部最优等问题,在改进的自适应噪声完备集合经验模态分解(impr... 针对电离层总电子含量(total electron content,TEC)具有非线性和非平稳性的特性及单一长短期记忆神经网络(long short-term memory,LSTM)模型在预测中存在精度不高且易陷入局部最优等问题,在改进的自适应噪声完备集合经验模态分解(improved complete ensemble EMD with adaptive noise,ICEEMDAN)和样本熵(sample entropy,SE)算法的基础上,结合麻雀搜索算法(sparrow search algorithm,SSA)和LSTM构建电离层TEC组合预测模型,并对太阳活动低年平静期和太阳活动高年扰动期电离层TEC连续5 d的预测精度分析.实验结果表明,本文组合模型相较于单一LSTM模型和SSA-LSTM模型在低太阳活动平静期和高太阳活动扰动期的不同经纬度下,均方根误差(root mean square error,RMSE)分别最大降低1.06 TECU和2.25 TECU,平均绝对误差(mean absolute error,MAE)分别最大降低了0.74 TECU和1.68 TECU,平均相对精度分别最大提升了7.63%和8.97%,组合模型的预测效果要明显优于单一LSTM模型和SSA-LSTM模型. 展开更多
关键词 电离层 总电子含量(TEC)预测 改进的自适应噪声完备集合经验模态分解(ICEEMDAN) 样本熵(SE) 麻雀搜索算法(SSA) 长短期记忆神经网络(LSTM)
在线阅读 下载PDF
基于改进Apriori的药物信息敏感数据挖掘算法
5
作者 马洁 周婷 +1 位作者 杨慧波 李如山 《吉林大学学报(信息科学版)》 2025年第4期822-829,共8页
针对药物信息数据具有类别不平衡的特点,敏感数据可解释性较差且较多、应用效果与挖掘准确率较低的问题,提出了一种基于改进Apriori的药物信息敏感数据挖掘算法。将药物数据分解成若干个带限固有模态函数,更新与去噪药物信息数据,根据... 针对药物信息数据具有类别不平衡的特点,敏感数据可解释性较差且较多、应用效果与挖掘准确率较低的问题,提出了一种基于改进Apriori的药物信息敏感数据挖掘算法。将药物数据分解成若干个带限固有模态函数,更新与去噪药物信息数据,根据药物敏感数据特征子集的信息增益以及蒙特卡洛采样策略提取敏感数据特征子集,分析隐层输出函数和特征子集之间的关系。引入极限学习机改进Apriori算法,筛选出具有显著关联性的药物组合,并对其求解,匹配候选特征子集对应的敏感数据特征,构建敏感数据挖掘函数。实验结果表明,该算法的数据信号波动幅度较小,能较为清楚地分辨出敏感数据,挖掘错误的数据数量不超过2个,提升敏感数据可解释性。 展开更多
关键词 改进Apriori算法 数据挖掘 样本熵 极限学习机
在线阅读 下载PDF
基于小样本数据驱动的滚齿工艺参数低碳优化决策方法 被引量:12
6
作者 易茜 柳淳 +2 位作者 李聪波 易树平 何爽 《中国机械工程》 EI CAS CSCD 北大核心 2022年第13期1604-1612,共9页
针对实际生产历史数据不足的情况,提出一种基于小样本数据驱动的碳排放预测和多目标优化模型。通过Box-Behnken实验设计收集加工数据后,采用反向传播神经网络建立面向碳排放和加工效率的预测模型,在保证预测精度的同时有效减少模型对数... 针对实际生产历史数据不足的情况,提出一种基于小样本数据驱动的碳排放预测和多目标优化模型。通过Box-Behnken实验设计收集加工数据后,采用反向传播神经网络建立面向碳排放和加工效率的预测模型,在保证预测精度的同时有效减少模型对数据量的需求。以总碳耗和总时长为优化目标,采用改进的多目标灰狼算法和熵权-逼近理想解排序综合评价法进行了最优工艺参数决策。加工实验验证了提出方法的有效性。 展开更多
关键词 低碳优化 小样本驱动 改进灰狼优化算法 熵权-逼近理想解排序综合评价法
在线阅读 下载PDF
基于LCD-SE-IWOA-KELM的短期风电功率区间预测 被引量:8
7
作者 赵辉 华海增 +1 位作者 王红君 岳有军 《电测与仪表》 北大核心 2020年第21期77-83,共7页
针对风电功率的不确定性、随机性以及已有的风电功率点预测无法反应其不确定性信息的问题,提出了基于局部特征尺度分解(LCD)-样本熵(SE)和改进鲸鱼优化算法(IWOA)优化核极限学习机(KELM)的短期风电功率区间预测模型。采用LCD分解来降低... 针对风电功率的不确定性、随机性以及已有的风电功率点预测无法反应其不确定性信息的问题,提出了基于局部特征尺度分解(LCD)-样本熵(SE)和改进鲸鱼优化算法(IWOA)优化核极限学习机(KELM)的短期风电功率区间预测模型。采用LCD分解来降低原始风电功率序列的非平稳性,通过测量各ISC分量的样本熵来重构新的序列以降低过多的分量对预测精度带来的影响,然后分别建立各新序列的区间预测模型,最后将各新序列的预测结果进行叠加获得最终预测结果。采用改进的WOA算法优化核极限学习机的参数。实验仿真表明,文中所提模型能够获得良好的区间预测结果,具有一定的实际意义和应用价值。 展开更多
关键词 风电功率区间预测 局部特征尺度分解 样本熵 改进鲸鱼优化算法 核极限学习机
在线阅读 下载PDF
基于样本熵和优化极限学习机的PM_(2.5)浓度预测 被引量:13
8
作者 蒋锋 乔雅倩 《统计与决策》 CSSCI 北大核心 2021年第3期166-171,共6页
PM2.5作为评估空气质量的重要指标,准确预测PM2.5浓度对大气污染的监测和控制有重要意义。文章提出了一种基于样本熵(sample entropy,SE)和改进的探路者算法(improved pathfinder algorithm,IPFA)优化极限学习机的集成学习方法。首先利... PM2.5作为评估空气质量的重要指标,准确预测PM2.5浓度对大气污染的监测和控制有重要意义。文章提出了一种基于样本熵(sample entropy,SE)和改进的探路者算法(improved pathfinder algorithm,IPFA)优化极限学习机的集成学习方法。首先利用变分模态分解(variational mode decomposition,VMD)算法将原始PM2.5浓度序列分解为不同频率的有限带宽本征模态函数(bandlimited intrinsic mode function,BIMF),并引入样本熵对相似的BIMF进行重构。然后改进探路者算法(pathfinder algorithm,PFA),在成员位置更新过程中融入交叉、变异和贪婪选择策略,提升PFA算法的全局搜索能力,再采用改进的探路者算法(IPFA)优化极限学习机(extreme learning machine,ELM),最后利用IPFA优化的极限学习机对每个重构子序列进行预测和集成。为了检验VMD-SE-IELM模型的有效性,以武汉市PM2.5浓度数据为研究对象进行了逐时预测,实证结果表明,提出的集成学习模型的预测精度和稳健性均显著优于其他基准模型。 展开更多
关键词 样本熵 PM2.5浓度 极限学习机 改进的探路者算法
在线阅读 下载PDF
基于EEMDSE-ILSTM的风电场超短期风速预测 被引量:6
9
作者 易灵芝 王仕通 +3 位作者 易芳 邓栋 易志敏 姜鹏 《计算机工程与应用》 CSCD 北大核心 2021年第22期288-294,共7页
不可再生资源的枯竭推动着新能源的发展,风电作为目前风能利用的主要形式得到了大面积推广。但风速非线性、非平稳性、时序性的特点对风机本身和电力系统都会产生不利的影响,因此精准的风速预测已经成为亟待解决的关键课题。基于组合预... 不可再生资源的枯竭推动着新能源的发展,风电作为目前风能利用的主要形式得到了大面积推广。但风速非线性、非平稳性、时序性的特点对风机本身和电力系统都会产生不利的影响,因此精准的风速预测已经成为亟待解决的关键课题。基于组合预测方法,提出了一种EEMDSE-ILSTM风速预测模型。该模型利用集合经验模态分解(Ensemble Empirical Mode Decomposition,EEMD)将风速数据分解为若干个分量数据集,并通过样本熵对各分量进行筛选以简化数据。将改进的鲸鱼算法与长短期记忆网络(Long Short-Term Memory,LSTM)结合,无监督生成合适的模型预测参数。在预测时依次对每个分量数据预测并将结果累加获得最终预测值。仿真结果表明,该模型与其他方法比较,显示出较好的预测精度和泛化性能。 展开更多
关键词 集合经验模态分解(EEMD) 样本熵 风速预测 改进的鲸鱼优化算法(IWOA) 长短期记忆网络(LSTM)
在线阅读 下载PDF
基于变分模态分解和FABP的短期电力负荷预测 被引量:41
10
作者 张淑清 宿新爽 +3 位作者 陈荣飞 刘婉 左一格 张赟 《仪器仪表学报》 EI CAS CSCD 北大核心 2018年第4期67-73,共7页
针对电力负荷序列非线性、随机性等特点引起的电力负荷预测精度下降等问题,提出了一种基于变分模态分解(VMD)和萤火虫算法优化BP神经网络(FABP)的短期负荷预测方法。利用VMD将原始电力负荷序列分解为若干个子序列,能够降低原始数据... 针对电力负荷序列非线性、随机性等特点引起的电力负荷预测精度下降等问题,提出了一种基于变分模态分解(VMD)和萤火虫算法优化BP神经网络(FABP)的短期负荷预测方法。利用VMD将原始电力负荷序列分解为若干个子序列,能够降低原始数据的复杂度和不稳定性同时克服模态混叠;萤火虫算法优化传统BP神经网络模型,能够克服其极易陷入局部最小的缺陷。最后通过样本熵(SE)对各子序列进行重组得到两个新分量,将其分别输入神经网络模型进行预测并叠加预测结果,实现短期负荷预测。应用于实例,结果表明,该方法能有效提高预测精度。 展开更多
关键词 短期负荷预测 变分模态分解 萤火虫优化神经网络算法 样本熵
原文传递
基于ICEEMDAN多尺度熵与NGO-HKELM的转子故障诊断 被引量:4
11
作者 陆水 李振鹏 +2 位作者 李军 颜东梅 黄福川 《组合机床与自动化加工技术》 北大核心 2024年第4期175-180,共6页
针对电机转子故障信号非平稳、敏感的故障特征不能有效提取,传统分类器参数智能优化算法存在优化速度慢、调整参数多、易陷入局部最优等问题提出基于ICEEMDAN-MSE-KPCA与NGO-HKELM优化的转子故障诊断方法。首先,采用改进的自适应噪声完... 针对电机转子故障信号非平稳、敏感的故障特征不能有效提取,传统分类器参数智能优化算法存在优化速度慢、调整参数多、易陷入局部最优等问题提出基于ICEEMDAN-MSE-KPCA与NGO-HKELM优化的转子故障诊断方法。首先,采用改进的自适应噪声完全集合经验模态分解(improved complete empirical mode decomposition with adaptive noise,ICEEMDAN)方法对转子振动信号进行分解和重构;计算重构信号的多尺度样本熵(multiscale sample entropy,MSE),形成特征向量,通过核主成分分析(kernel principal component analysis,KPCA)方法对高维的特征向量进行降维;最后,将降维后的特征向量输入北方苍鹰算法(northern goshawk optimization,NGO)优化的混合核极限学习机(hybrid extreme learning machine,HKELM)进行转子故障分类。研究结果表明,基于ICEEMDAN-MSE-KPCA与NGO-HKELM优化的转子故障诊断模型,平均识别准确率可达97.7273%,平均寻优时间为1.0681 s,收敛速度快、准确率高以及分类效果好。 展开更多
关键词 改进的ICEEMDAN 多尺度样本熵 北方苍鹰算法 混合核极限学习机 转子故障诊断
在线阅读 下载PDF
机械传动电机轴承故障信号诊断仿真研究 被引量:9
12
作者 路照坭 朱希安 《自动化仪表》 CAS 2019年第9期46-51,共6页
传统经验模态分解(EMD)存在模态混叠,难以充分提取故障特征,原始支持向量机(SVM)、相关向量机(RVM)诊断方法核函数存在选取不灵活、结构复杂导致识别效率低的问题,提出了一种结合变分模态分解(VMD)样本熵和混合布谷鸟改进M-RVM的机械传... 传统经验模态分解(EMD)存在模态混叠,难以充分提取故障特征,原始支持向量机(SVM)、相关向量机(RVM)诊断方法核函数存在选取不灵活、结构复杂导致识别效率低的问题,提出了一种结合变分模态分解(VMD)样本熵和混合布谷鸟改进M-RVM的机械传动电机轴承故障诊断新方法。首先,对故障信号进行VMD分解得到多个子序列;然后,筛选其中的有效分量提取样本熵组成故障特征向量;最后,将特征向量输入基于混合布谷鸟算法优化的M-RVM故障诊断模型,达到对电机运行状态准确识别的目的。仿真结果表明,所提方法实现了电机轴承故障状态的准确诊断。与传统分析诊断方法相比,该方法轴承故障识别诊断性能得到提高,对实际工程应用具有重大意义。 展开更多
关键词 轴承 故障信号诊断 变分模态分解 特征提取 样本熵 改进混合布谷鸟算法 多分类相关向量机 故障分类识别
在线阅读 下载PDF
基于ICEEMDAN分解与SE重构和DBO-LSTM的滑坡位移预测 被引量:4
13
作者 封青青 李丽敏 +2 位作者 陈飞阳 张碧涵 余兵 《电子测量技术》 北大核心 2024年第7期80-87,共8页
滑坡位移预测是防灾减灾的一项重要工作,针对位移分解后趋势项和周期项重构的合理性问题以及周期项位移预测精度不高的问题,提出了一种改进的自适应噪声完备集合经验模态分解(ICEEMDAN)、样本熵(SE)以及蜣螂算法(DBO)优化的长短期记忆网... 滑坡位移预测是防灾减灾的一项重要工作,针对位移分解后趋势项和周期项重构的合理性问题以及周期项位移预测精度不高的问题,提出了一种改进的自适应噪声完备集合经验模态分解(ICEEMDAN)、样本熵(SE)以及蜣螂算法(DBO)优化的长短期记忆网络(LSTM)组合模型进行位移预测。以八字门滑坡为研究对象,利用ICEEMDAN方法将滑坡累计位移进行分解,并用样本熵值表征分解得到的子序列,将其重构为趋势项和周期项位移。之后利用LSTM模型预测趋势项和周期项位移;通过灰色关联度的方法确定周期项位移的影响因素。考虑到LSTM网络中超参数的随机性会影响模型预测精度,引入蜣螂优化算法获取LSTM最优超参数,最终将预测得到的趋势项和周期项位移叠加得到累计位移。本文所提的ICEEMDAN-SE-DBO-LSTM模型预测周期项位移的RMSE、MAE、R23项指标分别为1.803 mm、1.584 mm、0.988,相较于DBO-BP,LSTM,GRU和BP模型预测效果更优,证明了模型的有效性。 展开更多
关键词 滑坡位移 改进的自适应噪声完备集合经验模态分解 样本熵 蜣螂优化算法
原文传递
基于ISSA-VMD的滚动轴承早期故障诊断方法 被引量:10
14
作者 刘玉明 刘自然 王鹏博 《机电工程》 CAS 北大核心 2023年第9期1426-1432,共7页
针对滚动轴承早期信号微弱导致故障特征难以提取和故障诊断准确率不高的问题,提出了一种基于改进麻雀搜索算法-变分模态分解(ISSA-VMD)和样本熵(SE)的滚动轴承早期故障特征提取方法。首先,在轴承早期故障诊断过程中,模态分解个数和惩罚... 针对滚动轴承早期信号微弱导致故障特征难以提取和故障诊断准确率不高的问题,提出了一种基于改进麻雀搜索算法-变分模态分解(ISSA-VMD)和样本熵(SE)的滚动轴承早期故障特征提取方法。首先,在轴承早期故障诊断过程中,模态分解个数和惩罚因子的选择对变分模态分解(VMD)的分解效果有着很大的影响,为消除人为选择参数的影响,将麻雀搜索算法(SSA)优化为改进麻雀搜索算法(ISSA),利用ISSA参数优化后的VMD方法对信号进行了分解;然后,计算了敏感固有模态函数(IMF)分量的样本熵,构成了特征向量;最后,将特征向量作为支持向量机(SVM)的输入,进行了滚动轴承早期故障类型的识别。研究结果表明:ISSA-VMD+样本熵特征提取模型的故障诊断准确率为98.3%,与SSA-VMD+样本熵、灰狼优化算法(GWO)-VMD+样本熵、鲸鱼优化算法(WOA)-VMD+样本熵、传统VMD+样本熵、经验模态分解(EMD)+样本熵等特征提取模型相比,故障诊断准确率分别提高了3.3%、6.6%、5%、3.3%、5%;该模型可以准确地提取故障特征,提高故障诊断准确率。 展开更多
关键词 轴承早期故障 故障特征提取 改进麻雀搜索算法-变分模态分解 样本熵 支持向量机 经验模态分解
在线阅读 下载PDF
改进两阶段分解的熵变混合短期风速预测研究 被引量:2
15
作者 杨奎 邱翔 +1 位作者 李家骅 刘宇陆 《计算机仿真》 北大核心 2022年第2期457-461,466,共6页
针对风速序列不平稳难以预测的问题,提出了一种混沌麻雀搜索算法(CSSA)优化最小二乘支持向量机(LSSVM)参数的短期风速预测混合模型。模型结合样本熵(SE)和具有自适应噪声改进的互补集成经验模态分解(ICEEMDAN)、变分模态分解(VMD)两阶... 针对风速序列不平稳难以预测的问题,提出了一种混沌麻雀搜索算法(CSSA)优化最小二乘支持向量机(LSSVM)参数的短期风速预测混合模型。模型结合样本熵(SE)和具有自适应噪声改进的互补集成经验模态分解(ICEEMDAN)、变分模态分解(VMD)两阶段分解的数据预处理方法。首先,利用ICEEMDAN分解原始风速序列,且依据SE评估子序列的复杂程度,重构熵值近似的序列,VMD二次分解熵值最大的序列。然后对所有子序列分别建立LSSVM预测模型,同时CSSA对该模型参数优化以提高预测效率。最后将预测的各子序列叠加得到最终风速预测值。通过与经典模态分解等混合模型比较表明,所提基于优化算法的模型预测精度和收敛速度有明显提高。 展开更多
关键词 具有自适应噪声改进的互补集成经验模态分解 混沌麻雀搜索算法 变分模态分解 样本熵 最小二乘支持向量机 短期风速预测
在线阅读 下载PDF
基于多层信号分解的混凝土拱坝变形监测模型 被引量:2
16
作者 王子轩 欧斌 +3 位作者 陈德辉 杨石勇 赵定柱 傅蜀燕 《三峡大学学报(自然科学版)》 CAS 北大核心 2024年第6期1-9,共9页
为了充分挖掘大坝变形监测数据的非线性和非平稳性特征,本文提出了一种大坝变形监测模型.首先,该模型通过自适应噪声完全集合经验模态分解(CEEMDAN)对变形监测数据进行分解处理.在分解过程中融入样本熵(SE)和K-均值聚类,以确保得到的模... 为了充分挖掘大坝变形监测数据的非线性和非平稳性特征,本文提出了一种大坝变形监测模型.首先,该模型通过自适应噪声完全集合经验模态分解(CEEMDAN)对变形监测数据进行分解处理.在分解过程中融入样本熵(SE)和K-均值聚类,以确保得到的模态分量(IMF)个数能够准确描述大坝变形.然后,对于高频IMF分量,采用变分模态分解(VMD)进行二次分解,并利用偏最小二乘法(PLS)分析变形序列影响因子,以提取最佳的IMF分量作为后续模型的输入因子.最后,利用改进的共生生物搜索算法(ISOS)结合长短期记忆神经网络(LSTM)进行大坝变形的准确预测.研究结果表明:相较于单层信号处理,本文通过二次信号处理可以显著提升模型的预测精度;对二次分解后的IMFs分量进行PLS筛选可以有效避免模型的冗余性,提高计算效率;相较于各对比模型,本文模型在各测点上均具有较好的预测精度和稳定性.本文提出的模型能够深入挖掘大坝监测数据中的拓扑关系,有效保留数据中的高频有用信息,从而提高预测的准确性和平滑性,展示出较好的预测精度和泛化能力. 展开更多
关键词 大坝变形 自适应噪声完全集合经验模态分解 样本熵 K-均值聚类算法 改进的共生生物搜索算法 变分模态分解
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部