期刊文献+
共找到993篇文章
< 1 2 50 >
每页显示 20 50 100
Optimization design of launch window for large-scale constellation using improved genetic algorithm
1
作者 LIU Yue HOU Xiangzhen +3 位作者 CAI Xi LI Minghu CHANG Xinya WANG Miao 《先进小卫星技术(中英文)》 2025年第4期23-32,共10页
The research on optimization methods for constellation launch deployment strategies focused on the consideration of mission interval time constraints at the launch site.Firstly,a dynamic modeling of the constellation ... The research on optimization methods for constellation launch deployment strategies focused on the consideration of mission interval time constraints at the launch site.Firstly,a dynamic modeling of the constellation deployment process was established,and the relationship between the deployment window and the phase difference of the orbit insertion point,as well as the cost of phase adjustment after orbit insertion,was derived.Then,the combination of the constellation deployment position sequence was treated as a parameter,together with the sequence of satellite deployment intervals,as optimization variables,simplifying a highdimensional search problem within a wide range of dates to a finite-dimensional integer programming problem.An improved genetic algorithm with local search on deployment dates was introduced to optimize the launch deployment strategy.With the new description of the optimization variables,the total number of elements in the solution space was reduced by N orders of magnitude.Numerical simulation confirms that the proposed optimization method accelerates the convergence speed from hours to minutes. 展开更多
关键词 deployment strategy optimization launching schedule constraints improved genetic algorithm large-scale constellation
在线阅读 下载PDF
An Improved Genetic Algorithm for Allocation Optimization of Distribution Centers 被引量:7
2
作者 钱晶 庞小红 吴智铭 《Journal of Shanghai Jiaotong university(Science)》 EI 2004年第4期73-76,共4页
This paper introduced an integrated allocation model for distribution centers (DCs). The facility cost, inventory cost, transportation cost and service quality were considered in the model. An improved genetic algorit... This paper introduced an integrated allocation model for distribution centers (DCs). The facility cost, inventory cost, transportation cost and service quality were considered in the model. An improved genetic algorithm (IGA) was proposed to solve the problem. The improvement of IGA is based on the idea of adjusting crossover probability and mutation probability. The IGA is supplied by heuristic rules too. The simulation results show that the IGA is better than the standard GA(SGA) in search efficiency and equality. 展开更多
关键词 distribution center allocation optimization improved genetic algorithm
在线阅读 下载PDF
Improved Genetic Optimization Algorithm with Subdomain Model for Multi-objective Optimal Design of SPMSM 被引量:8
3
作者 Jian Gao Litao Dai Wenjuan Zhang 《CES Transactions on Electrical Machines and Systems》 2018年第1期160-165,共6页
For an optimal design of a surface-mounted permanent magnet synchronous motor(SPMSM),many objective functions should be considered.The classical optimization methods,which have been habitually designed based on magnet... For an optimal design of a surface-mounted permanent magnet synchronous motor(SPMSM),many objective functions should be considered.The classical optimization methods,which have been habitually designed based on magnetic circuit law or finite element analysis(FEA),have inaccuracy or calculation time problems when solving the multi-objective problems.To address these problems,the multi-independent-population genetic algorithm(MGA)combined with subdomain(SD)model are proposed to improve the performance of SPMSM such as magnetic field distribution,cost and efficiency.In order to analyze the flux density harmonics accurately,the accurate SD model is first established.Then,the MGA with time-saving SD model are employed to search for solutions which belong to the Pareto optimal set.Finally,for the purpose of validation,the electromagnetic performance of the new design motor are investigated by FEA,comparing with the initial design and conventional GA optimal design to demonstrate the advantage of MGA optimization method. 展开更多
关键词 improved genetic algorithm reduction of flux density spatial distortion sub-domain model multi-objective optimal design
在线阅读 下载PDF
Study on Optimization of Urban Rail Train Operation Control Curve Based on Improved Multi-Objective Genetic Algorithm
4
作者 Xiaokan Wang Qiong Wang 《Journal on Internet of Things》 2021年第1期1-9,共9页
A multi-objective improved genetic algorithm is constructed to solve the train operation simulation model of urban rail train and find the optimal operation curve.In the train control system,the conversion point of op... A multi-objective improved genetic algorithm is constructed to solve the train operation simulation model of urban rail train and find the optimal operation curve.In the train control system,the conversion point of operating mode is the basic of gene encoding and the chromosome composed of multiple genes represents a control scheme,and the initial population can be formed by the way.The fitness function can be designed by the design requirements of the train control stop error,time error and energy consumption.the effectiveness of new individual can be ensured by checking the validity of the original individual when its in the process of selection,crossover and mutation,and the optimal algorithm will be joined all the operators to make the new group not eliminate on the best individual of the last generation.The simulation result shows that the proposed genetic algorithm comparing with the optimized multi-particle simulation model can reduce more than 10%energy consumption,it can provide a large amount of sub-optimal solution and has obvious optimization effect. 展开更多
关键词 Multi-objective improved genetic algorithm urban rail train train operation simulation multi particle optimization model
在线阅读 下载PDF
Optimization of Blade Geometry of Savonius Hydrokinetic Turbine Based onGenetic Algorithm 被引量:1
5
作者 Jiahao Lu Fangfang Zhang +4 位作者 Weilong Guang Yanzhao Wu Ran Tao Xiaoqin Li Ruofu Xiao 《Energy Engineering》 EI 2023年第12期2819-2837,共19页
Savonius hydrokinetic turbine is a kind of turbine set which is suitable for low-velocity conditions.Unlike conventional turbines,Savonius turbines employ S-shaped blades and have simple internal structures.Therefore,... Savonius hydrokinetic turbine is a kind of turbine set which is suitable for low-velocity conditions.Unlike conventional turbines,Savonius turbines employ S-shaped blades and have simple internal structures.Therefore,there is a large space for optimizing the blade geometry.In this study,computational fluid dynamics(CFD)numerical simulation and genetic algorithm(GA)were used for the optimal design.The optimization strategies and methods were determined by comparing the results calculated by CFD with the experimental results.The weighted objective function was constructed with the maximum power coefficient Cp and the high-power coefficient range R under multiple working conditions.GA helps to find the optimal individual of the objective function.Compared the optimal scheme with the initial scheme,the overlap ratioβincreased from 0.2 to 0.202,and the clearance ratioεincreased from 0 to 0.179,the blade circumferential angleγincreased from 0°to 27°,the blade shape extended more towards the spindle.The overall power of Savonius turbines was maintained at a high level over 22%,R also increased from 0.73 to 1.02.In comparison with the initial scheme,the energy loss of the optimal scheme at high blade tip speed is greatly reduced,and this reduction is closely related to the optimization of blade geometry.As R becomes larger,Savonius turbines can adapt to the overall working conditions and meet the needs of its work in low flow rate conditions.The results of this paper can be used as a reference for the hydrodynamic optimization of Savonius turbine runners. 展开更多
关键词 Hydrokinetic turbine savonius runner multiple target optimization genetic algorithm performance improvement
在线阅读 下载PDF
Two-stage optimization of route,speed,and energy management for hybrid energy ship under sea conditions
6
作者 Xiaoyuan Luo Jiaxuan Wang +1 位作者 Xinyu Wang Xinping Guan 《iEnergy》 2025年第3期174-192,共19页
As future ship system,hybrid energy ship system has a wide range of application prospects for solving the serious energy crisis.However,current optimization scheduling works lack the consideration of sea conditions an... As future ship system,hybrid energy ship system has a wide range of application prospects for solving the serious energy crisis.However,current optimization scheduling works lack the consideration of sea conditions and navigational circumstances.There-fore,this paper aims at establishing a two-stage optimization framework for hybrid energy ship power system.The proposed framework considers multiple optimizations of route,speed planning,and energy management under the constraints of sea conditions during navigation.First,a complex hybrid ship power model consisting of diesel generation system,propulsion system,energy storage system,photovoltaic power generation system,and electric boiler system is established,where sea state information and ship resistance model are considered.With objective optimization functions of cost and greenhouse gas(GHG)emissions,a two-stage optimization framework consisting of route planning,speed scheduling,and energy management is constructed.Wherein the improved A-star algorithm and grey wolf optimization algorithm are introduced to obtain the optimal solutions for route,speed,and energy optimization scheduling.Finally,simulation cases are employed to verify that the proposed two-stage optimization scheduling model can reduce load energy consumption,operating costs,and carbon emissions by 17.8%,17.39%,and 13.04%,respectively,compared with the non-optimal control group. 展开更多
关键词 Hybrid ship power system two-stage optimization dispatch speed scheduling sea conditions modified A-star algorithm improved grey wolf optimization algorithm
在线阅读 下载PDF
Time-optimal trajectory planning based on improved adaptive genetic algorithm
7
作者 孙农亮 王艳君 《Journal of Measurement Science and Instrumentation》 CAS 2012年第2期103-108,共6页
This paper investiga tes a trajectory planning algorithm to reduce the manipulator’s working time.A t ime-optimal trajectory planning(TOTP)is conducted based on improved ad aptive genetic algorithm(IAGA)and combined ... This paper investiga tes a trajectory planning algorithm to reduce the manipulator’s working time.A t ime-optimal trajectory planning(TOTP)is conducted based on improved ad aptive genetic algorithm(IAGA)and combined with cubic triangular Bezier spline(CTBS).The CTBS based trajectory planning we did before can achieve continuous second and third derivation,hence it meets the stability requirements of the m anipulator.The working time can be greatly reduced by applying IAGA to the puma 560 trajectory planning when considering physical constraints such as angular ve locity,angular acceleration and jerk.Simulation experiments in both Matlab and ADAMS illustrate that TOTP based on IAGA can give a time optimal result with sm oothness and stability. 展开更多
关键词 time-optimal trajectory planning(TOTP) improved adaptive genetic algorithm(IAGA) cubic triangular Bezier spline(CTBS)
在线阅读 下载PDF
Improved ant colony optimization for multi-depot heterogeneous vehicle routing problem with soft time windows 被引量:10
8
作者 汤雅连 蔡延光 杨期江 《Journal of Southeast University(English Edition)》 EI CAS 2015年第1期94-99,共6页
Considering that the vehicle routing problem (VRP) with many extended features is widely used in actual life, such as multi-depot, heterogeneous types of vehicles, customer service priority and time windows etc., a ... Considering that the vehicle routing problem (VRP) with many extended features is widely used in actual life, such as multi-depot, heterogeneous types of vehicles, customer service priority and time windows etc., a mathematical model for multi-depot heterogeneous vehicle routing problem with soft time windows (MDHVRPSTW) is established. An improved ant colony optimization (IACO) is proposed for solving this model. First, MDHVRPSTW is transferred into different groups according to the nearest principle, and then the initial route is constructed by the scanning algorithm (SA). Secondly, genetic operators are introduced, and crossover probability and mutation probability are adaptively adjusted in order to improve the global search ability of the algorithm. Moreover, the smooth mechanism is used to improve the performance of the ant colony optimization (ACO). Finally, the 3-opt strategy is used to improve the local search ability. The proposed IACO was tested on three new instances that were generated randomly. The experimental results show that IACO is superior to the other three existing algorithms in terms of convergence speed and solution quality. Thus, the proposed method is effective and feasible, and the proposed model is meaningful. 展开更多
关键词 vehicle routing problem soft time window improved ant colony optimization customer service priority genetic algorithm
在线阅读 下载PDF
Improved algorithms to plan missions for agile earth observation satellites 被引量:3
9
作者 Huicheng Hao Wei Jiang Yijun Li 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2014年第5期811-821,共11页
This study concentrates of the new generation of the agile (AEOS). AEOS is a key study object on management problems earth observation satellite in many countries because of its many advantages over non-agile satell... This study concentrates of the new generation of the agile (AEOS). AEOS is a key study object on management problems earth observation satellite in many countries because of its many advantages over non-agile satellites. Hence, the mission planning and scheduling of AEOS is a popular research problem. This research investigates AEOS characteristics and establishes a mission planning model based on the working principle and constraints of AEOS as per analysis. To solve the scheduling issue of AEOS, several improved algorithms are developed. Simulation results suggest that these algorithms are effective. 展开更多
关键词 mission planning immune clone algorithm hybrid genetic algorithm (EA) improved ant colony algorithm general particle swarm optimization (PSO) agile earth observation satellite (AEOS).
在线阅读 下载PDF
Research on Grid-Connected Control Strategy of Distributed Generator Based on Improved Linear Active Disturbance Rejection Control 被引量:1
10
作者 Xin Mao Hongsheng Su Jingxiu Li 《Energy Engineering》 EI 2024年第12期3929-3951,共23页
The virtual synchronous generator(VSG)technology has been proposed to address the problem of system frequency and active power oscillation caused by grid-connected new energy power sources.However,the traditional volt... The virtual synchronous generator(VSG)technology has been proposed to address the problem of system frequency and active power oscillation caused by grid-connected new energy power sources.However,the traditional voltage-current double-closed-loop control used in VSG has the disadvantages of poor disturbance immunity and insufficient dynamic response.In light of the issues above,a virtual synchronous generator voltage outer-loop control strategy based on improved linear autonomous disturbance rejection control(ILADRC)is put forth for consideration.Firstly,an improved first-order linear self-immunity control structure is established for the characteristics of the voltage outer loop;then,the effects of two key control parameters-observer bandwidthω_(0)and controller bandwidthω_(c)on the control system are analyzed,and the key parameters of ILADRC are optimally tuned online using improved gray wolf optimizer-radial basis function(IGWO-RBF)neural network.A simulationmodel is developed using MATLAB to simulate,analyze,and compare the method introduced in this paper.Simulations are performed with the traditional control strategy for comparison,and the results demonstrate that the proposed control method offers superior anti-interference performance.It effectively addresses power and frequency oscillation issues and enhances the stability of the VSG during grid-connected operation. 展开更多
关键词 Virtual synchronous generator(VSG) active power improved linear active disturbance rejection control(ILADRC) radial basis function(RBF)neural networks improved gray wolf optimizer(IGWO)
在线阅读 下载PDF
采用改进遗传算法的无线电能传输系统参数优化设计 被引量:4
11
作者 杨阳 章治 +2 位作者 吴雪钰 曹嘉亿 郑晅 《西安交通大学学报》 北大核心 2025年第4期93-104,共12页
针对高阶补偿拓扑的无线电能传输(WPT)系统的谐振参数较多且相互关联,从而导致系统设计时各个元件具体参数难以确定的问题,提出了一种适用于一次侧LCC、二次侧LC串联拓扑(LCC-S)的WPT系统参数优化设计方法。利用MATLAB/Simulink搭建WPT... 针对高阶补偿拓扑的无线电能传输(WPT)系统的谐振参数较多且相互关联,从而导致系统设计时各个元件具体参数难以确定的问题,提出了一种适用于一次侧LCC、二次侧LC串联拓扑(LCC-S)的WPT系统参数优化设计方法。利用MATLAB/Simulink搭建WPT系统仿真平台并进行理论分析,评估了谐振参数、耦合系数和等效负载对该系统输出特性的影响,选择影响程度最复杂的变量作为决策变量,构建系统非线性优化模型;以提高WPT系统的传输效率为目标,在遗传算法基础上加入非线性优化策略,并设计新的突变函数,利用改进后的遗传算法(IGA)给出了系统参数的优化设计方案。仿真结果表明:IGA使系统传输效率达到98.34%,相较遗传算法提高了2.52%,且收敛速度显著提高。搭建WPT系统实验平台并进行测试,结果表明:该系统能够以97.98%的传输效率保持300 W的功率输出;当负载电阻处于6~46Ω时,系统传输效率能够维持在90%以上。研究结果可为LCC-S型WPT系统参数设计提供参考。 展开更多
关键词 无线电能传输 LCC-S型 拓扑结构 改进遗传算法 谐振参数优化
在线阅读 下载PDF
不确定环境下多无人机察打一体任务规划方法 被引量:3
12
作者 张栋 李林 +3 位作者 王孟阳 李超越 郑元世 李智军 《北京理工大学学报》 北大核心 2025年第2期111-125,共15页
针对动态不确定战场环境下多无人机对多区域、多目标的协同察打任务规划过程中存在的信息不确定、任务多约束及航迹强耦合的多目标优化与决策问题,结合Dubins航迹规划算法,提出了一种融合多种改进策略的灰狼优化算法(grey wolf optimiza... 针对动态不确定战场环境下多无人机对多区域、多目标的协同察打任务规划过程中存在的信息不确定、任务多约束及航迹强耦合的多目标优化与决策问题,结合Dubins航迹规划算法,提出了一种融合多种改进策略的灰狼优化算法(grey wolf optimization algorithm incorporating multiple improvement strategies,IMISGWO).首先,针对动态环境带来的无人机巡航速度及察打任务消失时间的不确定性,基于可信性理论建立了以最大化任务收益为指标的任务规划数学模型;其次,为实现该问题的快速求解,设计了初始解均匀分布、个体通信机制调整、动态权重更新和跳出局部最优等策略,提升算法解搜索能力;最后,构建了多无人机察打一体典型任务仿真场景,通过数字仿真以及虚实结合半实物仿真试验验证了算法的可行性和有效性.仿真结果表明:算法在求解不确定环境下耦合航迹的多无人机察打一体任务规划问题时,能够生成多机高效的任务执行序列和满足无人机飞行性能约束的飞行轨迹,且能够适用于无人机数量增加导致问题复杂度增加情形下此类问题的求解. 展开更多
关键词 多无人机 不确定环境 察打一体任务 任务规划 改进灰狼优化算法
在线阅读 下载PDF
基于多目标粒子群-遗传混合算法的高速球轴承优化设计方法 被引量:2
13
作者 杨文 叶帅 +2 位作者 姚齐水 余江鸿 胡美娟 《机电工程》 北大核心 2025年第2期226-236,共11页
目前以新能源汽车电驱系统等为代表的超高转速运行场景越来越多,对轴承类关键零部件的性能要求也不断提高,对轴承的承载性能和温升控制也提出了更高的要求。为了优化轴承的结构,提升其服役性能,以新能源汽车电驱系统6206轴承为例,提出... 目前以新能源汽车电驱系统等为代表的超高转速运行场景越来越多,对轴承类关键零部件的性能要求也不断提高,对轴承的承载性能和温升控制也提出了更高的要求。为了优化轴承的结构,提升其服役性能,以新能源汽车电驱系统6206轴承为例,提出了一种基于多目标粒子群-遗传混合算法的球轴承结构优化设计方法。首先,建立了以轴承最大额定动载荷、最大额定静载荷和最小摩擦生热率为目标函数的优化数学模型;然后,利用多目标粒子群算法(MOPSO)的全局搜索能力和改进非支配排序遗传算法(NSGA-II)的进化操作,引入粒子寻优速度控制策略、交叉变异策略和罚函数机制,解决了带约束优化问题求解和局部最优问题,增强了算法的收敛速度和解集探索能力;最后,在特定工况下对轴承结构进行了优化,采用层次分析法,从Pareto前沿中优选了内外圈沟曲率半径系数、滚动体数量、滚动体直径和节圆直径的最优值。研究结果表明:在16 kN径向载荷、15 000 r/min的高转速工况下,以新能源汽车电驱系统6206型深沟球轴承为例进行了分析,结果显示,优化后的轴承接触应力下降了21.2%,应变下降了25.6%,摩擦生热下降了16.7%,体现了该方法在收敛性能、寻优速度等方面的优势。该优化设计方法可为球轴承的工程应用提供有价值的参考。 展开更多
关键词 高速球轴承结构设计 多目标粒子群-遗传混合算法 改进非支配排序遗传算法 优化设计目标函数 层次分析法 6206型深沟球轴承
在线阅读 下载PDF
需求不确定下基于不同碳税机制的双目标多式联运路径优化 被引量:1
14
作者 张旭 张海燕 +1 位作者 袁旭梅 秦怡华 《公路交通科技》 北大核心 2025年第2期41-51,共11页
【目标】针对不同碳税机制下的多式联运路径优化问题,考虑了突发性补货或季节性变化等意外因素带来的需求不确定性。【方法】分别在统一碳税机制和分段累进碳税机制下,以总成本和总碳排放量最小为目标,构建随机需求下的双目标0-1路径优... 【目标】针对不同碳税机制下的多式联运路径优化问题,考虑了突发性补货或季节性变化等意外因素带来的需求不确定性。【方法】分别在统一碳税机制和分段累进碳税机制下,以总成本和总碳排放量最小为目标,构建随机需求下的双目标0-1路径优化模型,并基于Monte Carlo模拟和大数定律极大化不确定目标的期望值对模型进行转换。设计改进的非支配排序遗传算法对模型求解以获得满足目标要求的相对较优解。该算法能够在避免“早熟”缺陷的基础上扩大搜索空间与范围以期获得更加优秀的个体与方案。通过具体算例分析模型与算法对于双碳背景下运输问题的适用性,同时探讨不同碳税机制对总成本和总碳排放量的影响及其在需求波动条件下的适用范围和有效性。【结果】双目标策略下企业仅需略微提高成本即可取得一定的减排效果,更适合双碳背景下的运输场景。【结论】企业的碳排放控制效果在固定碳税机制或分段累进碳税机制下均会受到碳税率的影响,但相比统一碳税机制,分段累进碳税机制在高需求不确定时具有更加明显的减排效果与优势,应考虑企业现有能力与减排技术水平,确定合适的碳税率与排放阈值,以调动企业减排积极性。 展开更多
关键词 运输经济 双目标路径优化 改进的非支配排序遗传算法 多式联运 需求不确定 碳税机制
原文传递
基于改进MOGWO算法的并联机器人轨迹优化 被引量:2
15
作者 郭彤颖 叶相涛 陈宇 《组合机床与自动化加工技术》 北大核心 2025年第6期20-25,共6页
针对并联机器人运行过程中短时间、低能耗、弱冲击等需求,提出了一种基于改进多目标灰狼算法(IMOGWO)的轨迹优化方法。首先,对并联机器人进行逆运动学求解,在笛卡尔空间选取关键点并映射至关节空间,采用4-3-3-4次多项式插值方法对其运... 针对并联机器人运行过程中短时间、低能耗、弱冲击等需求,提出了一种基于改进多目标灰狼算法(IMOGWO)的轨迹优化方法。首先,对并联机器人进行逆运动学求解,在笛卡尔空间选取关键点并映射至关节空间,采用4-3-3-4次多项式插值方法对其运动轨迹进行规划;其次,对多目标灰狼算法在收敛因子、围猎机制、头狼更新3个方面进行改进优化,优化后的算法具有搜索能力强、收敛速度快等优势;最终,利用改进的多目标灰狼算法对多项式轨迹进行时间-能耗-冲击多目标优化,仿真实验表明优化方法不仅缩短了机器人的运行时间,在降低能耗和减小冲击方面也取得了显著成效,使机器人总体性能得到了有效地提升。 展开更多
关键词 并联机器人 轨迹规划 改进多目标灰狼算法 多目标优化
在线阅读 下载PDF
基于改进遗传算法的水库防洪优化调度应用研究 被引量:1
16
作者 苑希民 刘广 +5 位作者 王秀杰 彭芳 李匡 刘战友 张民升 刘业森 《中国防汛抗旱》 2025年第2期13-18,共6页
针对水库常规调度方法存在的非动态性、灵活性不足及对复杂环境变化适应性差等问题,考虑水库防洪调度任务的多目标需求和传统遗传算法在复杂约束条件下的局限性,提出基于改进遗传算法的水库多目标防洪优化调度方法。即以最大削峰和最高... 针对水库常规调度方法存在的非动态性、灵活性不足及对复杂环境变化适应性差等问题,考虑水库防洪调度任务的多目标需求和传统遗传算法在复杂约束条件下的局限性,提出基于改进遗传算法的水库多目标防洪优化调度方法。即以最大削峰和最高库水位最低为优化目标函数,引入动态变化的交叉和变异策略,将水库常规操作规则和水库泄流一般操作原则概化为启发式信息融入传统遗传算法中并求解。以海河流域杨庄水库为研究对象分别构建基于改进遗传算法、调度规则及传统遗传算法的水库防洪调度模型,并进行对比分析。结果表明,改进遗传算法能够显著提高水库的调度效率和防洪能力,为汛期水库的管理提供了可靠技术。 展开更多
关键词 水库防洪调度 多目标 优化算法 改进遗传算法 启发式信息 海河流域 杨庄水库
在线阅读 下载PDF
改进灰狼优化算法优化CNN-LSTM的PEMFC性能衰退预测 被引量:1
17
作者 高锋阳 刘庆寅 +2 位作者 赵丽丽 齐丰旭 刘嘉 《电力系统保护与控制》 北大核心 2025年第13期175-187,共13页
为进一步提高车用质子交换膜燃料电池(proton exchange membrane fuel cell, PEMFC)电堆性能衰退预测与剩余使用寿命预测精度,提出一种改进灰狼优化算法优化卷积神经网络-长短期记忆(convolutional neural network-long short-term memo... 为进一步提高车用质子交换膜燃料电池(proton exchange membrane fuel cell, PEMFC)电堆性能衰退预测与剩余使用寿命预测精度,提出一种改进灰狼优化算法优化卷积神经网络-长短期记忆(convolutional neural network-long short-term memory, CNN-LSTM)的车用PEMFC性能衰退预测方法。首先,通过稳定小波变换对数据集去噪重构,使用改进灰狼算法对实测PEMFC电堆衰退数据进行分析,获得CNN-LSTM最优超参数。其次,利用最优超参数训练CNN-LSTM网络模型进行PEMFC性能衰退预测,并计算PEMFC电堆剩余使用寿命。最后,在电堆静态和动态工况下,将所提方法与传统长短期记忆循环网络、门控循环单元循环网络和未经优化的CNN-LSTM等模型预测进行比较。结果表明:在静态工况中,当训练集占比为60%时,所提方法相比传统CNN-LSTM预测结果均方根误差缩小59.02%,当训练集占比为70%时,PEMFC剩余使用寿命预测与实际相差1.16 h;在动态工况中,当训练集占比为40%时,平均绝对误差缩小18.78%。 展开更多
关键词 质子交换膜燃料电池 改进灰狼优化算法 卷积神经网络-长短期记忆 衰退预测 剩余使用寿命
在线阅读 下载PDF
基于改进遗传算法的冷鲜肉配送路径优化研究 被引量:4
18
作者 王胜源 王珍 《物流科技》 2025年第7期15-19,共5页
文章致力于优化冷鲜肉路径,通过建立目标函数模型,综合考虑固定成本、运输成本、制冷成本、碳排放成本、货损成本和时间窗惩罚成本等因素,利用改进的遗传算法进行小生境改进和交叉改进,以提高算法的收敛速度和搜索能力。MATLAB软件仿真... 文章致力于优化冷鲜肉路径,通过建立目标函数模型,综合考虑固定成本、运输成本、制冷成本、碳排放成本、货损成本和时间窗惩罚成本等因素,利用改进的遗传算法进行小生境改进和交叉改进,以提高算法的收敛速度和搜索能力。MATLAB软件仿真结果表明,改进的遗传算法在有效性和降低配送成本方面均显著优于传统遗传算法。文章不仅提出了冷鲜肉物流规划优化方法,也为相关领域研究和实践提供了有价值的参考和指导。 展开更多
关键词 冷链物流 冷鲜肉 路径优化 改进遗传算法
在线阅读 下载PDF
基于改进灰狼算法优化极限学习机的光伏阵列故障诊断方法研究 被引量:3
19
作者 杨琛 牛锋杰 +2 位作者 韩茂林 周宁 周定璇 《发电技术》 2025年第1期72-82,共11页
【目的】光伏阵列在复杂室外工作条件下,发生的故障类型多样且程度不同,为了判断光伏阵列的工作状态,提出一种基于改进灰狼算法优化极限学习机(improved grey wolf optimized extreme learning machine,IGWO-ELM)的故障诊断方法。【方... 【目的】光伏阵列在复杂室外工作条件下,发生的故障类型多样且程度不同,为了判断光伏阵列的工作状态,提出一种基于改进灰狼算法优化极限学习机(improved grey wolf optimized extreme learning machine,IGWO-ELM)的故障诊断方法。【方法】首先,针对9种故障仿真输出特性进行分析,建立了由短路电流、开路电压、最大功率点电流、最大功率点电压、填充因子组成的5维故障特征向量。其次,针对灰狼算法初始位置分布不均匀、全局搜索和局部开发过程不均衡的缺点,引入Circle映射和非线性收敛因子,提出一种改进的灰狼优化算法,优化极限学习机的输入层权重和隐含层节点偏置,以提高算法性能。最后,搭建仿真模型和实验平台并获取故障数据,基于K折交叉验证对数据集进行划分,代入IGWO-ELM模型进行正确率验证,并与其他算法模型进行对比。【结果】IGWO-ELM模型对光伏阵列不同故障具有较高的识别率,对仿真数据和实验数据的分类正确率分别达到98.32%和95.48%。【结论】基于IGWO-ELM的故障诊断方法识别率高,迭代次数少,收敛速度快,可有效判断光伏阵列的工作状态。 展开更多
关键词 太阳能发电 光伏阵列 故障诊断 改进灰狼优化(IGWO)算法 极限学习机(ELM) K折交叉验证 特征提取 仿真
在线阅读 下载PDF
基于强化学习混合算法求解液压缸热冷加工车间调度问题
20
作者 王前莉 李颖 樊海超 《机床与液压》 北大核心 2025年第22期151-160,共10页
针对液压缸热冷加工车间调度问题的复杂性和多目标优化需求,构建多目标调度模型,旨在最小化总完工时间和机器总能耗。液压缸生产过程中涉及并行加工、批处理和单件加工等多种工序,传统调度方法难以兼顾生产效率和能耗控制。为此,提出一... 针对液压缸热冷加工车间调度问题的复杂性和多目标优化需求,构建多目标调度模型,旨在最小化总完工时间和机器总能耗。液压缸生产过程中涉及并行加工、批处理和单件加工等多种工序,传统调度方法难以兼顾生产效率和能耗控制。为此,提出一种基于强化学习的混合灰狼优化算法(IGWO)。采用双层编码结构,设计混合解码策略,分别针对并行工序、热处理工序和单件加工工序进行解码。在灰狼优化算法的基础上,引入基于Q-learning的自适应参数控制策略,通过强化学习动态调整收敛因子和步长因子,提升算法的全局和局部搜索能力。此外,设计渐进式头狼选择机制和基于关键路径的变邻域搜索策略,有效避免算法陷入局部最优。试验结果表明:所提算法在24个测试算例中显著优于NSGA-II、GWO和ABC算法,尤其在较大规模问题上表现出更强的收敛性和多样性。通过工程案例分析进一步验证了该算法在实际生产中的有效性,能够为液压缸热冷加工车间提供高效、节能的调度方案。 展开更多
关键词 热冷加工 强化学习混合算法 多目标优化 混合灰狼优化算法
在线阅读 下载PDF
上一页 1 2 50 下一页 到第
使用帮助 返回顶部