This paper investiga tes a trajectory planning algorithm to reduce the manipulator’s working time.A t ime-optimal trajectory planning(TOTP)is conducted based on improved ad aptive genetic algorithm(IAGA)and combined ...This paper investiga tes a trajectory planning algorithm to reduce the manipulator’s working time.A t ime-optimal trajectory planning(TOTP)is conducted based on improved ad aptive genetic algorithm(IAGA)and combined with cubic triangular Bezier spline(CTBS).The CTBS based trajectory planning we did before can achieve continuous second and third derivation,hence it meets the stability requirements of the m anipulator.The working time can be greatly reduced by applying IAGA to the puma 560 trajectory planning when considering physical constraints such as angular ve locity,angular acceleration and jerk.Simulation experiments in both Matlab and ADAMS illustrate that TOTP based on IAGA can give a time optimal result with sm oothness and stability.展开更多
The performance and efficiency of a baler deteriorate as a result of gearbox failure.One way to overcome this challenge is to select appropriate fault feature parameters for fault diagnosis and monitoring gearboxes.Th...The performance and efficiency of a baler deteriorate as a result of gearbox failure.One way to overcome this challenge is to select appropriate fault feature parameters for fault diagnosis and monitoring gearboxes.This paper proposes a fault feature selection method using an improved adaptive genetic algorithm for a baler gearbox.This method directly obtains the minimum fault feature parameter set that is most sensitive to fault features through attribute reduction.The main benefit of the improved adaptive genetic algorithm is its excellent performance in terms of the efficiency of attribute reduction without requiring prior information.Therefore,this method should be capable of timely diagnosis and monitoring.Experimental validation was performed and promising findings highlighting the relationship between diagnosis results and faults were obtained.The results indicate that when using the improved genetic algorithm to reduce 12 fault characteristic parameters to three without a priori information,100%fault diagnosis accuracy can be achieved based on these fault characteristics and the time required for fault feature parameter selection using the improved genetic algorithm is reduced by half compared to traditional methods.The proposed method provides important insights into the instant fault diagnosis and fault monitoring of mechanical devices.展开更多
Web quality of service (QoS) awareness requires not only the selection of specific services to complete specific tasks, but also the comprehensive quality of service of the whole web service composition. How to select...Web quality of service (QoS) awareness requires not only the selection of specific services to complete specific tasks, but also the comprehensive quality of service of the whole web service composition. How to select the web service composition with the highest comprehensive QoS is a NP hard problem. In this paper, an improved multi population genetic algorithm is proposed. Cosine adaptive operator is added to the algorithm to avoid premature algorithm caused by improper genetic operator and the disadvantage of destroying excellent individuals in later period. Experimental results show that compared with the common genetic algorithm and multi population genetic algorithm, this algorithm has the advantages of shorter time consumption and higher accuracy, and effectively avoids the loss of effective genes in the population.展开更多
In order to solve the problem that the resource scheduling time of cloud data center is too long,this paper analyzes the two-stage resource scheduling mechanism of cloud data center.Aiming at the minimum task completi...In order to solve the problem that the resource scheduling time of cloud data center is too long,this paper analyzes the two-stage resource scheduling mechanism of cloud data center.Aiming at the minimum task completion time,a mathematical model of resource scheduling in cloud data center is established.The two-stage resource scheduling optimization simulation is realized by using the conventional genetic algorithm.On the technology of the conventional genetic algorithm,an adaptive transformation operator is designed to improve the crossover and mutation of the genetic algorithm.The experimental results show that the improved genetic algorithm can significantly reduce the total completion time of the task,and has good convergence and global optimization ability.展开更多
The level of genetic variation within a breeding population affects the effectiveness of selection strategies for genetic improvement.The relationship between genetic variation level within Pinus tabuliformis breeding...The level of genetic variation within a breeding population affects the effectiveness of selection strategies for genetic improvement.The relationship between genetic variation level within Pinus tabuliformis breeding populations and selection strategies or selection effectiveness is not fully investigated.Here,we compared the selection effectiveness of combined and individual direct selection strategies using half-and full-sib families produced from advanced-generation P.tabuliformis seed orchard as our test populations.Our results revealed that,within half-sib families,average diameter at breast height(DBH),tree height,and volume growth of superior individuals selected by the direct selection strategy were higher by 7.72%,18.56%,and 31.01%,respectively,than those selected by the combined selection strategy.Furthermore,significant differences(P<0.01)were observed between the two strategies in terms of the expected genetic gains for average tree height and volume.In contrast,within full-sib families,the differences in tree average DBH,height,and volume between the two selection strategies were relatively minor with increase of 0.17%,2.73%,and 2.21%,respectively,and no significant differences were found in the average expected genetic gains for the studied traits.Half-sib families exhibited greater phenotypic and genetic variation,resulting in improved selection efficiency with the direct selection strategy but also introduced a level of inbreeding risk.Based on genetic distance estimates using molecular markers,our comparative seed orchard design analysis showed that the Improved Adaptive Genetic Programming Algorithm(IAPGA)reduced the average inbreeding coefficient by 14.36% and 14.73% compared to sequential and random designs,respectively.In conclusion,the combination of the direct selection strategy with IAPGA seed orchard design aimed at minimizing inbreeding offered an efficient approach for establishing advanced-generation P.tabuliformis seed orchards.展开更多
基金Fund of Taishan Scholar in Shandong Province,Shandong University of Science and Technology Research Fund(No.2010KYTD101)
文摘This paper investiga tes a trajectory planning algorithm to reduce the manipulator’s working time.A t ime-optimal trajectory planning(TOTP)is conducted based on improved ad aptive genetic algorithm(IAGA)and combined with cubic triangular Bezier spline(CTBS).The CTBS based trajectory planning we did before can achieve continuous second and third derivation,hence it meets the stability requirements of the m anipulator.The working time can be greatly reduced by applying IAGA to the puma 560 trajectory planning when considering physical constraints such as angular ve locity,angular acceleration and jerk.Simulation experiments in both Matlab and ADAMS illustrate that TOTP based on IAGA can give a time optimal result with sm oothness and stability.
基金National Key R&D Program of China(2016YFd01304)Postgraduate Innovation Support Project of Shijiazhuang Tiedao University(YC20035).
文摘The performance and efficiency of a baler deteriorate as a result of gearbox failure.One way to overcome this challenge is to select appropriate fault feature parameters for fault diagnosis and monitoring gearboxes.This paper proposes a fault feature selection method using an improved adaptive genetic algorithm for a baler gearbox.This method directly obtains the minimum fault feature parameter set that is most sensitive to fault features through attribute reduction.The main benefit of the improved adaptive genetic algorithm is its excellent performance in terms of the efficiency of attribute reduction without requiring prior information.Therefore,this method should be capable of timely diagnosis and monitoring.Experimental validation was performed and promising findings highlighting the relationship between diagnosis results and faults were obtained.The results indicate that when using the improved genetic algorithm to reduce 12 fault characteristic parameters to three without a priori information,100%fault diagnosis accuracy can be achieved based on these fault characteristics and the time required for fault feature parameter selection using the improved genetic algorithm is reduced by half compared to traditional methods.The proposed method provides important insights into the instant fault diagnosis and fault monitoring of mechanical devices.
文摘Web quality of service (QoS) awareness requires not only the selection of specific services to complete specific tasks, but also the comprehensive quality of service of the whole web service composition. How to select the web service composition with the highest comprehensive QoS is a NP hard problem. In this paper, an improved multi population genetic algorithm is proposed. Cosine adaptive operator is added to the algorithm to avoid premature algorithm caused by improper genetic operator and the disadvantage of destroying excellent individuals in later period. Experimental results show that compared with the common genetic algorithm and multi population genetic algorithm, this algorithm has the advantages of shorter time consumption and higher accuracy, and effectively avoids the loss of effective genes in the population.
基金National Natural Science Foundation of China(61473216)Shaanxi Provincial Fund(2015JM6337)。
文摘In order to solve the problem that the resource scheduling time of cloud data center is too long,this paper analyzes the two-stage resource scheduling mechanism of cloud data center.Aiming at the minimum task completion time,a mathematical model of resource scheduling in cloud data center is established.The two-stage resource scheduling optimization simulation is realized by using the conventional genetic algorithm.On the technology of the conventional genetic algorithm,an adaptive transformation operator is designed to improve the crossover and mutation of the genetic algorithm.The experimental results show that the improved genetic algorithm can significantly reduce the total completion time of the task,and has good convergence and global optimization ability.
基金financially supported by the Biological BreedingNational Science and Technology Major Project(2023ZD0405806)the National Key R&D Program for the 14th Five-Year Plan in China(2022YFD2200304).
文摘The level of genetic variation within a breeding population affects the effectiveness of selection strategies for genetic improvement.The relationship between genetic variation level within Pinus tabuliformis breeding populations and selection strategies or selection effectiveness is not fully investigated.Here,we compared the selection effectiveness of combined and individual direct selection strategies using half-and full-sib families produced from advanced-generation P.tabuliformis seed orchard as our test populations.Our results revealed that,within half-sib families,average diameter at breast height(DBH),tree height,and volume growth of superior individuals selected by the direct selection strategy were higher by 7.72%,18.56%,and 31.01%,respectively,than those selected by the combined selection strategy.Furthermore,significant differences(P<0.01)were observed between the two strategies in terms of the expected genetic gains for average tree height and volume.In contrast,within full-sib families,the differences in tree average DBH,height,and volume between the two selection strategies were relatively minor with increase of 0.17%,2.73%,and 2.21%,respectively,and no significant differences were found in the average expected genetic gains for the studied traits.Half-sib families exhibited greater phenotypic and genetic variation,resulting in improved selection efficiency with the direct selection strategy but also introduced a level of inbreeding risk.Based on genetic distance estimates using molecular markers,our comparative seed orchard design analysis showed that the Improved Adaptive Genetic Programming Algorithm(IAPGA)reduced the average inbreeding coefficient by 14.36% and 14.73% compared to sequential and random designs,respectively.In conclusion,the combination of the direct selection strategy with IAPGA seed orchard design aimed at minimizing inbreeding offered an efficient approach for establishing advanced-generation P.tabuliformis seed orchards.