期刊文献+
共找到420篇文章
< 1 2 21 >
每页显示 20 50 100
Novel Adaptive Memory Event-Triggered-Based Fuzzy Robust Control for Nonlinear Networked Systems via the Differential Evolution Algorithm
1
作者 Wei Qian Yanmin Wu Bo Shen 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第8期1836-1848,共13页
This article mainly investigates the fuzzy optimization robust control issue for nonlinear networked systems characterized by the interval type-2(IT2)fuzzy technique under a differential evolution algorithm.To provide... This article mainly investigates the fuzzy optimization robust control issue for nonlinear networked systems characterized by the interval type-2(IT2)fuzzy technique under a differential evolution algorithm.To provide a more reasonable utilization of the constrained communication channel,a novel adaptive memory event-triggered(AMET)mechanism is developed,where two event-triggered thresholds can be dynamically adjusted in the light of the current system information and the transmitted historical data.Sufficient conditions with less conservative design of the fuzzy imperfect premise matching(IPM)controller are presented by introducing the Wirtinger-based integral inequality,the information of membership functions(MFs)and slack matrices.Subsequently,under the IPM policy,a new MFs intelligent optimization technique that takes advantage of the differential evolution algorithm is first provided for IT2 TakagiSugeno(T-S)fuzzy systems to update the fuzzy controller MFs in real-time and achieve a better system control effect.Finally,simulation results demonstrate that the proposed control scheme can obtain better system performance in the case of using fewer communication resources. 展开更多
关键词 adaptive memory event-triggered(AMET) differential evolution algorithm fuzzy optimization robust control interval type-2(IT2)fuzzy technique.
在线阅读 下载PDF
Improved Adaptive Differential Evolution Algorithm for the Un-Capacitated Facility Location Problem
2
作者 Nan Jiang Huizhen Zhang 《Open Journal of Applied Sciences》 CAS 2023年第5期685-695,共11页
The differential evolution algorithm is an evolutionary algorithm for global optimization and the un-capacitated facility location problem (UFL) is one of the classic NP-Hard problems. In this paper, combined with the... The differential evolution algorithm is an evolutionary algorithm for global optimization and the un-capacitated facility location problem (UFL) is one of the classic NP-Hard problems. In this paper, combined with the specific characteristics of the UFL problem, we introduce the activation function to the algorithm for solving UFL problem and name it improved adaptive differential evolution algorithm (IADEA). Next, to improve the efficiency of the algorithm and to alleviate the problem of being stuck in a local optimum, an adaptive operator was added. To test the improvement of our algorithm, we compare the IADEA with the basic differential evolution algorithm by solving typical instances of UFL problem respectively. Moreover, to compare with other heuristic algorithm, we use the hybrid ant colony algorithm to solve the same instances. The computational results show that IADEA improves the performance of the basic DE and it outperforms the hybrid ant colony algorithm. 展开更多
关键词 Un-Capacitated Facility Location Problem differential evolution algorithm adaptive Operator
在线阅读 下载PDF
Multi-robot mapping based on the adaptive differential evolution
3
作者 刘利枚 CaiZixing 《High Technology Letters》 EI CAS 2013年第1期7-11,共5页
Map building by multi-robot is very important to accomplish autonomous navigation,and one of the basic problems and research hotspots is how to merge the maps into a single one in the field of multi-robot map building... Map building by multi-robot is very important to accomplish autonomous navigation,and one of the basic problems and research hotspots is how to merge the maps into a single one in the field of multi-robot map building.A novel approach is put forward based on adaptive differential evolution to map building for the multi-robot system.The multi-robot mapping-building system adopts the methods of decentralized exploration and concentrated mapping.The adaptive differential evolution algorithm is used to search in the space of possible transformation,and the iterative search is performed with the goal of maximizing overlapping regions.The map is translated and rotated so that the two maps can be overlapped and merged into a single global one successfully.This approach for map building can be realized without any knowledge of their relative positions.Experimental results show that the approach is effective and feasibile. 展开更多
关键词 differential evolution algorithm cooperative simultaneous localization and mapping map building MULTI-ROBOT grid maps adaptive
在线阅读 下载PDF
Robot path planning based on a two-stage DE algorithm and applications
4
作者 SUN Zhe CHENG Jiajia +2 位作者 BI Yunrui ZHANG Xu SUN Zhixin 《Journal of Southeast University(English Edition)》 2025年第2期244-251,共8页
To tackle the path planning problem,this study introduced a novel algorithm called two-stage parameter adjustment-based differential evolution(TPADE).This algorithm draws inspiration from group behavior to implement a... To tackle the path planning problem,this study introduced a novel algorithm called two-stage parameter adjustment-based differential evolution(TPADE).This algorithm draws inspiration from group behavior to implement a two-stage scaling factor variation strategy.In the initial phase,it adapts according to environmental complexity.In the following phase,it combines individual and global experiences to fine-tune the orientation factor,effectively improving its global search capability.Furthermore,this study developed a new population update method,ensuring that well-adapted individuals are retained,which enhances population diversity.In benchmark function tests across different dimensions,the proposed algorithm consistently demonstrates superior convergence accuracy and speed.This study also tested the TPADE algorithm in path planning simulations.The experimental results reveal that the TPADE algorithm outperforms existing algorithms by achieving path lengths of 28.527138 and 31.963990 in simple and complex map environments,respectively.These findings indicate that the proposed algorithm is more adaptive and efficient in path planning. 展开更多
关键词 path planning differential evolution algorithm grid method parameter adaptive adjustment
在线阅读 下载PDF
A Hybrid Differential Evolution Algorithm Integrated with Particle Swarm Optimization
5
作者 范勤勤 颜学峰 《Journal of Donghua University(English Edition)》 EI CAS 2014年第2期197-200,共4页
To implement self-adaptive control parameters, a hybrid differential evolution algorithm integrated with particle swarm optimization (PSODE) is proposed. In the PSODE, control parameters are encoded to be a symbioti... To implement self-adaptive control parameters, a hybrid differential evolution algorithm integrated with particle swarm optimization (PSODE) is proposed. In the PSODE, control parameters are encoded to be a symbiotic individual of original individual, and each original individual has its own symbiotic individual. Differential evolution ( DE) operators are used to evolve the original population. And, particle swarm optimization (PSO) is applied to co-evolving the symbiotic population. Thus, with the evolution of the original population in PSODE, the symbiotic population is dynamically and self-adaptively adjusted and the realtime optimum control parameters are obtained. The proposed algorithm is compared with some DE variants on nine functious. The results show that the average performance of PSODE is the best. 展开更多
关键词 differential evolution algorithm particle swann optimization SELF-adaptive CO-evolution
在线阅读 下载PDF
Covariance Matrix Learning Differential Evolution Algorithm Based on Correlation
6
作者 Sainan Yuan Quanxi Feng 《International Journal of Intelligence Science》 2021年第1期17-30,共14页
Differential evolution algorithm based on the covariance matrix learning can adjust the coordinate system according to the characteristics of the population, which make<span style="font-family:Verdana;"&g... Differential evolution algorithm based on the covariance matrix learning can adjust the coordinate system according to the characteristics of the population, which make<span style="font-family:Verdana;">s</span><span style="font-family:Verdana;"> the search move in a more favorable direction. In order to obtain more accurate information about the function shape, this paper propose</span><span style="font-family:Verdana;">s</span><span style="font-family:;" "=""> <span style="font-family:Verdana;">covariance</span><span style="font-family:Verdana;"> matrix learning differential evolution algorithm based on correlation (denoted as RCLDE)</span></span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">to improve the search efficiency of the algorithm. First, a hybrid mutation strategy is designed to balance the diversity and convergence of the population;secondly, the covariance learning matrix is constructed by selecting the individual with the less correlation;then, a comprehensive learning mechanism is comprehensively designed by two covariance matrix learning mechanisms based on the principle of probability. Finally,</span><span style="font-family:;" "=""> </span><span style="font-family:;" "=""><span style="font-family:Verdana;">the algorithm is tested on the CEC2005, and the experimental results are compared with other effective differential evolution algorithms. The experimental results show that the algorithm proposed in this paper is </span><span style="font-family:Verdana;">an effective algorithm</span><span style="font-family:Verdana;">.</span></span> 展开更多
关键词 differential evolution algorithm CORRELATION Covariance Matrix Parameter Self-adaptive Technique
在线阅读 下载PDF
An Improved DV-Hop Localization Algorithm Based on Hop Distances Correction 被引量:9
7
作者 Guiqi Liu Zhihong Qian Xue Wang 《China Communications》 SCIE CSCD 2019年第6期200-214,共15页
DV-Hop localization algorithm has greater localization error which estimates distance from an unknown node to the different anchor nodes by using estimated average size of a hop to achieve the location of the unknown ... DV-Hop localization algorithm has greater localization error which estimates distance from an unknown node to the different anchor nodes by using estimated average size of a hop to achieve the location of the unknown node.So an improved DV-Hop localization algorithm based on correctional average size of a hop,HDCDV-Hop algorithm,is proposed.The improved algorithm corrects the estimated distance between the unknown node and different anchor nodes based on fractional hop count information and relatively accurate coordinates of the anchor nodes information,and it uses the improved Differential Evolution algorithm to get the estimate location of unknown nodes so as to further reduce the localization error.Simulation results show that our proposed algorithm have lower localization error and higher localization accuracy compared with the original DV-Hop algorithm and other classical improved algorithms. 展开更多
关键词 WSN DV-HOP localization algorithm HOP Distance CORRECTION improved differential evolution algorithm
在线阅读 下载PDF
基于AMCDE优化RBF神经网络的PID参数整定研究
8
作者 刘悦婷 孔繁庭 +1 位作者 李西素 王园红 《贵州大学学报(自然科学版)》 2025年第1期42-49,90,共9页
针对工业过程中PID(proportional integral derivative)参数整定难的问题,提出一种带有存储机制的自适应变异交叉策略差分进化算法(adaptive mutation crossover strategy differential evolution algorithm with storage mechanism,AMC... 针对工业过程中PID(proportional integral derivative)参数整定难的问题,提出一种带有存储机制的自适应变异交叉策略差分进化算法(adaptive mutation crossover strategy differential evolution algorithm with storage mechanism,AMCDE)的神经网络算法RBF(radial basis function)整定PID控制器参数。首先,在差分进化算法(differential evolution algorithm,DE)中引入带有存储机制的策略,对种群的个体进行实时排序,充分利用当前种群的方向信息和搜索状态;其次,通过引入自适应变异交叉策略,实现自适应调整变异交叉概率因子,有效地避免种群在迭代后期陷入局部最优解;再次,采用AMCDE算法优化RBF的初始参数,接着由RBF在线辨识得到梯度信息;最后,根据梯度信息对PID的3个参数进行在线调整。仿真实验和某乳制品公司的加热炉温度控制实验表明:与IDE-RBF-PID、GODE-RBF-PID和MCOBDE-RBF-PID相比,AMCDE-RBF-PID控制器的调节时间分别降低了62.6%、55.3%、53.6%,超调量分别降低了79.3%、66.4%、64.7%,抗干扰性能分别提高了42.5%、15.3%、14.8%,控制精度分别提高了35.6%、12.3%、11.2%。由上述结果可知:AMCDE-RBF-PID控制器的动态性能更好,抗干扰性能更强,控制精度更高。 展开更多
关键词 自适应变异交叉策略 差分进化算法 RBF神经网络 PID参数整定
在线阅读 下载PDF
面向空中战斗管理的协同任务进程管理方法 被引量:1
9
作者 宋祺 左家亮 +3 位作者 吴傲 杨任农 王瑛 李乐言 《航空学报》 北大核心 2025年第15期211-239,共29页
针对大规模空中作战易出现“枪炮一响,计划泡汤”的难题,提出了一种协同任务进程管理方法。首先,引入管理学WBS工作分解结构,将作战整体任务分解为编队行为;其次,围绕计划制定,提出了一种带时间线的双代号群体网络的进程计划表征模型,... 针对大规模空中作战易出现“枪炮一响,计划泡汤”的难题,提出了一种协同任务进程管理方法。首先,引入管理学WBS工作分解结构,将作战整体任务分解为编队行为;其次,围绕计划制定,提出了一种带时间线的双代号群体网络的进程计划表征模型,给出了计划的机器求解算法和人工计划的冲突检测与消解算法;在此基础上,瞄准任务结果与执行过程,建立多目标优化模型,使用NSGA-Ⅱ算法求解帕累托最优计划;然后,基于闭环反馈思想建立了计划实时控制系统,运用带约束的自适应差分进化算法求解控制策略;最后,利用“墨子”推演系统的公开作战想定进行实验验证,共设置无扰动、有扰动无控制、有扰动有控制、扰动超出最大控制范围4个实验。实验结果表明,提出的任务进程管理方法,能够生成无冲突、满足约束的任务进程计划,并且能在最大抗扰动范围内对任务进程进行精确控制,确保任务的顺利完成。 展开更多
关键词 空中战斗管理 协同任务进程管理 双代号群体网络 多目标优化 自适应差分进化算法 抗扰动控制
原文传递
基于改进鲸鱼优化算法的动态无人机路径规划 被引量:3
10
作者 王兴旺 张清杨 +1 位作者 姜守勇 董永权 《计算机应用》 北大核心 2025年第3期928-936,共9页
针对复杂地形环境下的无人机(UAV)路径规划问题,提出一种基于改进鲸鱼优化算法(MWOA)的动态UAV路径规划方法。首先,通过解析山体地形、动态目标和威胁区,建立三维动态环境与UAV航路模型;其次,提出一种自适应步长高斯游走策略,并将该策... 针对复杂地形环境下的无人机(UAV)路径规划问题,提出一种基于改进鲸鱼优化算法(MWOA)的动态UAV路径规划方法。首先,通过解析山体地形、动态目标和威胁区,建立三维动态环境与UAV航路模型;其次,提出一种自适应步长高斯游走策略,并将该策略用于平衡算法的全局探索与局部发掘的能力;最后,提出一种辅助修正策略对种群最优个体进行修正,并结合差分进化策略,在避免种群陷入局部最优的同时提高算法的收敛精度。为验证MWOA的有效性,使用MWOA与鲸鱼优化算法(WOA)、人工蜂鸟算法(AHA)等智能算法求解CEC2022测试函数,并在设计的UAV动态环境模型中进行验证。仿真结果对比分析表明,与WOA相比,MWOA的收敛精度提高了6.1%,标准差减小了44.7%。可见,所提MWOA收敛更快且精度更高,能有效处理UAV路径规划问题。 展开更多
关键词 鲸鱼优化算法 自适应步长高斯游走 辅助修正策略 差分进化 无人机 动态路径规划
在线阅读 下载PDF
基于改进黑翅鸢优化算法的动态无人机路径规划 被引量:2
11
作者 王兴旺 张清杨 +1 位作者 姜守勇 董永权 《计算机应用研究》 北大核心 2025年第5期1401-1408,共8页
针对复杂山体地形和障碍物威胁区域环境下的无人机(UAV)路径规划问题,提出改进黑翅鸢优化算法的动态无人机路径规划方法,旨在提升无人机在动态复杂环境下的路径规划性能及安全性。首先,通过设计山体地形、障碍物、动态威胁区域和动态目... 针对复杂山体地形和障碍物威胁区域环境下的无人机(UAV)路径规划问题,提出改进黑翅鸢优化算法的动态无人机路径规划方法,旨在提升无人机在动态复杂环境下的路径规划性能及安全性。首先,通过设计山体地形、障碍物、动态威胁区域和动态目标,建立山体动态环境模型;其次,提出一种自适应攻击策略,加快算法前期收敛速度,平衡算法全局搜索和局部挖掘的能力,设计线性锁优策略,获取优质个体,加速种群收敛;最后,通过设计可变缩放因子改进差分进化策略,并将其融入黑翅鸢算法中,以提高算法避免陷入局部最优的能力,同时提出了动态响应机制以应对环境动态变化。为了验证所提算法的性能,与一些现存的智能算法在CEC2022测试函数中和不同规模的环境模型中进行实验对比。结果显示,与标准黑翅鸢算法相比,所提算法的收敛精度提高了6.25%,标准差减少了54.6%。实验结果表明,所提改进黑翅鸢优化算法在收敛速度和收敛精度方面具有显著优势,能够有效处理动态无人机路径规划问题,提高无人机在复杂环境中的路径规划性能。 展开更多
关键词 黑翅鸢优化算法 自适应攻击策略 线性锁优策略 差分进化 动态响应机制 动态无人机路径规划
在线阅读 下载PDF
一种改进的机器人动力学参数辨识方法 被引量:2
12
作者 张相胜 陈佳明 《江苏大学学报(自然科学版)》 CAS 北大核心 2025年第1期50-56,共7页
针对六轴机器人动力学参数辨识中激励轨迹设计问题,提出了一种将改进差分进化(IDE)算法用于优化激励轨迹参数的方法.首先,用牛顿-欧拉(Newton-Euler)迭代法建立了六轴机器人动力学模型,将机器人最小惯性参数观测矩阵的条件数作为优化目... 针对六轴机器人动力学参数辨识中激励轨迹设计问题,提出了一种将改进差分进化(IDE)算法用于优化激励轨迹参数的方法.首先,用牛顿-欧拉(Newton-Euler)迭代法建立了六轴机器人动力学模型,将机器人最小惯性参数观测矩阵的条件数作为优化目标函数;其次,通过对差分进化算法的改进,引入反向最优最差策略改善种群初始值,采用自适应算法改进变异因子和交叉因子;最后,利用改进差分进化算法优化设计了满足机器人各个约束条件的傅里叶级数作为激励轨迹,进行机器人的参数辨识.试验结果表明,采用所提出的优化方法设计的激励轨迹可以充分激发机器人动力学特性,提高了机器人动力学参数辨识试验的抗噪声能力,为建立精确的机器人动力学模型提供参考. 展开更多
关键词 机器人 动力学模型 参数辨识 激励轨迹 改进差分进化算法
在线阅读 下载PDF
融合自适应变异策略与差分进化算法的油藏自动历史拟合方法
13
作者 张金鼎 张凯 +2 位作者 张黎明 刘丕养 陈旭 《油气地质与采收率》 北大核心 2025年第2期152-162,共11页
差分进化算法作为一种经典的进化算法,具有全局搜索能力、便于实现、无需梯度等优势,在油藏自动历史拟合中广泛应用,但算法中参数的设置对历史拟合结果影响较大,在高维问题中存在着收敛停滞的问题。为解决上述难题,提出一种融合自适应... 差分进化算法作为一种经典的进化算法,具有全局搜索能力、便于实现、无需梯度等优势,在油藏自动历史拟合中广泛应用,但算法中参数的设置对历史拟合结果影响较大,在高维问题中存在着收敛停滞的问题。为解决上述难题,提出一种融合自适应变异策略与差分进化算法的油藏自动历史拟合方法。首先,基于主成分分析方法对油藏模型的高维参数进行降维,将降维后的参数作为差分进化算法中调整的参数,以压缩变量的搜索空间,提升算法搜索效率;其次,结合自适应变异策略与差分进化算法,借助于算法搜索过程中的历史经验指导当前种群的更新,当种群个体停止收敛时,则切换差分进化算法的变异策略,改变种群的迭代更新方式,以此避免油藏参数停止优化调整的情况;此外,为使更新后模型参数与先验分布特征保持一致,应用分位数变换策略转换更新后参数的分布情况,将非高斯分布的数据变换为高斯分布,使更新后的模型更加符合实际地质参数的约束条件。提出算法在三维油藏模型上进行测试验证,结果表明:相比传统的差分进化算法框架,改进的差分进化算法不仅能够提升历史拟合求解的收敛效果,而且反演的油藏模型参数更加符合实际地质特征,在相同的计算条件下,可获得更优的历史拟合模型,数据拟合效果更显著。 展开更多
关键词 油藏数值模拟 自动历史拟合 差分进化算法 自适应方法 分位数变换
在线阅读 下载PDF
基于改进差分进化算法的系统辨识方法
14
作者 吕证 陈博 +1 位作者 李章勇 秦对 《重庆邮电大学学报(自然科学版)》 北大核心 2025年第1期37-45,共9页
对于复杂控制系统,采用传统建模方法得到的被控对象模型,存在精度较低和收敛速度较慢等问题。针对该问题,提出了一种基于改进差分进化算法的系统辨识方法,通过采用变异率和交叉算子动态更新策略,并实时更新种群以及优化、进化终止条件,... 对于复杂控制系统,采用传统建模方法得到的被控对象模型,存在精度较低和收敛速度较慢等问题。针对该问题,提出了一种基于改进差分进化算法的系统辨识方法,通过采用变异率和交叉算子动态更新策略,并实时更新种群以及优化、进化终止条件,大幅度地提升了辨识模型的精度以及算法的收敛速度。与传统的最小二乘法、二阶加时滞模型法、差分进化算法以及遗传算法相比,提出的辨识方法在精度上分别提升了94.91%、40.11%、23.33%和8.48%。与传统遗传算法和差分进化算法相比,提出的方法在收敛速度上提升了近3.2倍。实验结果表明,提出的方法可以有效地克服干扰信号影响,得到精确的系统传递函数模型。 展开更多
关键词 系统辨识 改进差分进化算法 超声换能器 传递函数模型
在线阅读 下载PDF
一种基于生成对抗网络和改进差分进化算法的分布式电源优化方法
15
作者 龚伟 肖健梅 王锡淮 《电气工程学报》 北大核心 2025年第2期245-252,共8页
通过卷积生成对抗网络对分布式电源(Distribution generation,DG)出力的不确定性进行场景生成,刻画DG出力的上下限。建立多目标的DG优化配置模型,通过层次分析法确定各目标函数的权重,将多目标问题求解转化为单目标问题求解。针对差分... 通过卷积生成对抗网络对分布式电源(Distribution generation,DG)出力的不确定性进行场景生成,刻画DG出力的上下限。建立多目标的DG优化配置模型,通过层次分析法确定各目标函数的权重,将多目标问题求解转化为单目标问题求解。针对差分进化算法全局搜索能力较弱的缺点,提出了一种改进型差分进化算法,引入动态缩放因子及交叉概率,加入局部搜索策略,提高了算法的收敛速度和搜索精度。最后基于IEEE 33节点配电网进行仿真分析,验证了改进型差分进化算法能够有效改善配电网的电压分布及支路损耗。 展开更多
关键词 生成对抗网络 分布式电源 改进差分进化算法 多目标优化
在线阅读 下载PDF
基于邻域搜索JADE的二维Otsu多阈值图像分割 被引量:17
16
作者 罗钧 刘建强 庞亚男 《系统工程与电子技术》 EI CSCD 北大核心 2020年第10期2164-2171,共8页
为进一步提高分割精度并加快分割速度,提出了一种基于邻域搜索可选外部存档自适应差分进行算法(简称为JADE-GL)的二维Otsu多阈值图像分割方案。首先,针对原始JADE算法精英突变策略收敛速度慢、容易陷入局部最优等问题,提出了基于邻域半... 为进一步提高分割精度并加快分割速度,提出了一种基于邻域搜索可选外部存档自适应差分进行算法(简称为JADE-GL)的二维Otsu多阈值图像分割方案。首先,针对原始JADE算法精英突变策略收敛速度慢、容易陷入局部最优等问题,提出了基于邻域半径搜索的改进突变策略,以提升算法的全局探索和开发能力。然后,将所提算法与现有分割方法以及其他JADE变种算法进行二维Otsu多阈值分割对比实验。最后,通过函数收敛曲线、分割距离测度、峰值信噪比(peak signal to noise ratio,PSNR)等指标定量分析算法的性能。实验结果表明,随着阈值数增加,提出的算法无论在收敛速度、分割精度还是分割图像效果上都有显著提升。 展开更多
关键词 图像分割 二维OTSU 多阈值 邻域搜索 jade算法
在线阅读 下载PDF
基于主从博弈的含氢综合能源系统优化运行策略 被引量:1
17
作者 刘霁欧 魏业文 +1 位作者 李艺博 邱天一 《电子设计工程》 2025年第8期27-32,37,共7页
为合理分配综合能源系统中各主体利益,实现系统的低碳经济运行,提出了一种考虑氢能多元利用的综合能源系统主从博弈优化运行策略。在日前调度阶段,引入了两阶段电转气、氢燃料电池以及阶梯型碳交易机制,并构建了系统运营商与负荷聚合商... 为合理分配综合能源系统中各主体利益,实现系统的低碳经济运行,提出了一种考虑氢能多元利用的综合能源系统主从博弈优化运行策略。在日前调度阶段,引入了两阶段电转气、氢燃料电池以及阶梯型碳交易机制,并构建了系统运营商与负荷聚合商的主从博弈模型;通过采用自适应差分进化算法结合二次规划的方法求解验证,结果表明,所提策略在实现双方主体利益最大化的同时,系统碳排放量降低了10.15%,具有显著的低碳经济效益。 展开更多
关键词 自适应差分进化算法 综合能源系统 低碳优化运行 主从博弈
在线阅读 下载PDF
一种基于JADE改进的差分演化算法 被引量:2
18
作者 李康顺 王法杰 +2 位作者 张楚湖 杨磊 陈琰 《计算机工程与科学》 CSCD 北大核心 2015年第9期1698-1706,共9页
差分演化算法有局部搜索能力不足、容易跌入局部最优等缺点,其搜索性能主要依赖于对杂交概率和缩放因子的设置。为了改善上述缺陷,对带归档的自适应差分演化算法JADE进行深入的研究与分析,提出了改进的自适应差分演化算法ZJADE。该算法... 差分演化算法有局部搜索能力不足、容易跌入局部最优等缺点,其搜索性能主要依赖于对杂交概率和缩放因子的设置。为了改善上述缺陷,对带归档的自适应差分演化算法JADE进行深入的研究与分析,提出了改进的自适应差分演化算法ZJADE。该算法采用斜帐篷混沌映射函数初始化种群,在每次迭代中为每个个体分别产生满足正态分布、柯西分布的杂交概率和满足正态分布的缩放因子,并且记录成功变异个体的杂交概率和缩放因子,引入统计杂交概率,采用两种策略自适应地更新杂交概率。在13个经典测试函数上将ZJADE算法与多种经典自适应差分演化算法进行对比,实验结果表明,ZJADE算法在解的精度与收敛速度上更优,具有更好的搜索性能。 展开更多
关键词 自适应差分演化算法 混沌映射 统计杂交概率 柯西分布 正态分布
在线阅读 下载PDF
融合自适应特征与优化KELM的抽蓄机组振动预测
19
作者 付文龙 祝鑫锋 +4 位作者 熊浩伟 相莹 邵孟欣 孔泽昊 孙政 《水力发电学报》 北大核心 2025年第8期20-30,共11页
为了减小振动信号的非线性与非平稳特性对振动预测精度的影响,本文提出了一种融合自适应特征与优化核极限学习机(KELM)的抽蓄机组振动预测方法。首先,利用改进的自适应噪声完全集成经验模态分解(ICEEMDAN)对振动信号进行分解,获得不同... 为了减小振动信号的非线性与非平稳特性对振动预测精度的影响,本文提出了一种融合自适应特征与优化核极限学习机(KELM)的抽蓄机组振动预测方法。首先,利用改进的自适应噪声完全集成经验模态分解(ICEEMDAN)对振动信号进行分解,获得不同频率成分的本征模态分量;其次,采用自编码器(AE)对所得分量进行自适应特征提取,动态捕捉关键特征;然后,建立KELM预测模型分别对各分量进行预测,并提出差分进化—改进哈里斯鹰算法(DEIHHO)对KELM的正则化参数与核参数进行优化,进而叠加各分量预测结果得到机组振动的最终预测结果;最后,通过实例验证表明,所提方法具有较好的预测性能,能够有效提高抽水蓄能机组振动预测的准确性。 展开更多
关键词 振动预测 自适应特征 核极限学习机 改进的自适应噪声完全集成经验模态分解 自编码器 差分进化–改进哈里斯鹰算法
在线阅读 下载PDF
考虑不确定需求和混合车队的冷链物流联合配送路径优化
20
作者 林明秀 初良勇 +1 位作者 王嘉宁 黄先婷 《计算机工程与应用》 北大核心 2025年第22期353-363,共11页
针对不确定需求和混合车队下多中心冷链物流车辆路径问题,综合考虑客户服务水平、时间窗、多中心和电动车及燃油车联合配送等实际因素,构建以车辆固定成本、充电成本、油耗成本、货损成本、制冷成本和惩罚成本之和最小为目标的路径优化... 针对不确定需求和混合车队下多中心冷链物流车辆路径问题,综合考虑客户服务水平、时间窗、多中心和电动车及燃油车联合配送等实际因素,构建以车辆固定成本、充电成本、油耗成本、货损成本、制冷成本和惩罚成本之和最小为目标的路径优化模型,通过机会约束规划模型进行确定性转化,采用标签法生成初始解,设计混合改进差分进化-自适应大邻域搜索算法求解模型,基于动态变异策略设计变异算子,并引入大邻域搜索算法的三种破坏算子和三种修复算子进行搜索优化。结合实际数据与算例验证模型和算法的有效性,分析了需求变异系数、配送中心数量和车辆最大载重对配送成本的影响,为企业合理调度运输资源和优化配送方案决策提供参考依据。 展开更多
关键词 不确定需求 混合车队 多中心联合配送 混合改进差分进化-自适应大邻域搜索
在线阅读 下载PDF
上一页 1 2 21 下一页 到第
使用帮助 返回顶部