In order to research the bond properties between corroded reinforcement bars and concrete,reinforcement bars with different diameters and different types and concrete with different strength levels were treated specia...In order to research the bond properties between corroded reinforcement bars and concrete,reinforcement bars with different diameters and different types and concrete with different strength levels were treated specially with all soaking and impressed current method,and the bond properties were measured with the pull-out test.The comparative analysis of the bond properties of corroded reinforcement bars was carried out.The results showed that the types of reinforcement bars and concrete had great influence on the bond strength.The corrosion and volume expansion of reinforcement bars made concrete in tensile condition,which tended to produce cracks in parallel reinforced direction.The typical bond failure of plain reinforcement bars was pull-out,while the typical bond failure of ribbed reinforcement bars was split.The bond strength between corroded reinforcement bars and concrete increased with the increase of concrete strength.The bond strength of plain and ribbed reinforcement bars showed a decreasing trend after the first increase with the increase of the extent of corrosion.Through the test,the coefficients of the bond strength of plain and ribbed reinforcement bars were given,respectively.展开更多
Monovalent anions,with relatively low charge density,exhibit weak bond energy with Zn^(2+)ions,which facilitates the solubility of Zn salts and the regulation of solvation structures.In this study,zinc bis(aminosulfat...Monovalent anions,with relatively low charge density,exhibit weak bond energy with Zn^(2+)ions,which facilitates the solubility of Zn salts and the regulation of solvation structures.In this study,zinc bis(aminosulfate)(Zn(NH_(2)SO_(3))_(2))with a monovalent anion,NH_(2)SO_(3)^(-),was synthesized and dissolved in different ratios of dimethyl sulfoxide(DMSO)and H_(2)O as electrolytes for Zn-ion batteries(ZIBs).From the perspective of game theory,the influences of DMSO and H_(2)O on the solvation structure and electrochemical performance of the Zn(NH_(2)SO_(3))_(2)based electrolytes has been meticulously discussed.Computations and spectra analysis indicate that DMSO molecules are reluctant to penetrate the primary solvation structure of Zn^(2+)ions.Indeed,increasing DMSO in electrolytes can induce a transition from solvent-separated ion pairs(SSIP)to contact ion pairs(CIP),resulting in an enrichment of anions in the primary solvation structure.This alteration can significantly suppress parasitic reactions,enhance nucleation density,and refine the deposition morphology during the Zn plating process,leading to superior cyclic stability and high coulombic efficiency(CE)of Zn//Cu and Zn//Zn cells.However,the enrichment of anions in the primary solvation structure also inhibits the activity of Zn^(2+)ions,amplifies the polarization effect,and engenders a sluggish ionization dynamics,resulting in the low energy conversion efficiency of the battery.These findings underscore the influence of the anion ratio within the primary solvation structure on electrochemical properties of electrolytes for ZIBs,which may be a pivotal determinant in the Zn deposition process.展开更多
基金Supported by National Science and Technology Support Program(No.2012BAJ16B05)Program for Liaoning Excellent Talents in University(No.LJQ2011061)
文摘In order to research the bond properties between corroded reinforcement bars and concrete,reinforcement bars with different diameters and different types and concrete with different strength levels were treated specially with all soaking and impressed current method,and the bond properties were measured with the pull-out test.The comparative analysis of the bond properties of corroded reinforcement bars was carried out.The results showed that the types of reinforcement bars and concrete had great influence on the bond strength.The corrosion and volume expansion of reinforcement bars made concrete in tensile condition,which tended to produce cracks in parallel reinforced direction.The typical bond failure of plain reinforcement bars was pull-out,while the typical bond failure of ribbed reinforcement bars was split.The bond strength between corroded reinforcement bars and concrete increased with the increase of concrete strength.The bond strength of plain and ribbed reinforcement bars showed a decreasing trend after the first increase with the increase of the extent of corrosion.Through the test,the coefficients of the bond strength of plain and ribbed reinforcement bars were given,respectively.
基金supported by the National Natural Science Foundation of China(51972187 and 22279068)the Natural Science Foundation of Shandong Province(ZR2023ME182)the Fundation of Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials(Anhui University of Technology)(GFST2024KF03)。
文摘Monovalent anions,with relatively low charge density,exhibit weak bond energy with Zn^(2+)ions,which facilitates the solubility of Zn salts and the regulation of solvation structures.In this study,zinc bis(aminosulfate)(Zn(NH_(2)SO_(3))_(2))with a monovalent anion,NH_(2)SO_(3)^(-),was synthesized and dissolved in different ratios of dimethyl sulfoxide(DMSO)and H_(2)O as electrolytes for Zn-ion batteries(ZIBs).From the perspective of game theory,the influences of DMSO and H_(2)O on the solvation structure and electrochemical performance of the Zn(NH_(2)SO_(3))_(2)based electrolytes has been meticulously discussed.Computations and spectra analysis indicate that DMSO molecules are reluctant to penetrate the primary solvation structure of Zn^(2+)ions.Indeed,increasing DMSO in electrolytes can induce a transition from solvent-separated ion pairs(SSIP)to contact ion pairs(CIP),resulting in an enrichment of anions in the primary solvation structure.This alteration can significantly suppress parasitic reactions,enhance nucleation density,and refine the deposition morphology during the Zn plating process,leading to superior cyclic stability and high coulombic efficiency(CE)of Zn//Cu and Zn//Zn cells.However,the enrichment of anions in the primary solvation structure also inhibits the activity of Zn^(2+)ions,amplifies the polarization effect,and engenders a sluggish ionization dynamics,resulting in the low energy conversion efficiency of the battery.These findings underscore the influence of the anion ratio within the primary solvation structure on electrochemical properties of electrolytes for ZIBs,which may be a pivotal determinant in the Zn deposition process.