期刊文献+
共找到32篇文章
< 1 2 >
每页显示 20 50 100
Novel adaptive IMEX two-step Runge-Kutta temporal discretization methods for unsteady flows
1
作者 Xueyu QIN Jian YU +2 位作者 Xin ZHANG Zhenhua JIANG Chao YAN 《Chinese Journal of Aeronautics》 2025年第8期142-153,共12页
Efficient and accurate simulation of unsteady flow presents a significant challenge that needs to be overcome in computational fluid dynamics.Temporal discretization method plays a crucial role in the simulation of un... Efficient and accurate simulation of unsteady flow presents a significant challenge that needs to be overcome in computational fluid dynamics.Temporal discretization method plays a crucial role in the simulation of unsteady flows.To enhance computational efficiency,we propose the Implicit-Explicit Two-Step Runge-Kutta(IMEX-TSRK)time-stepping discretization methods for unsteady flows,and develop a novel adaptive algorithm that correctly partitions spatial regions to apply implicit or explicit methods.The novel adaptive IMEX-TSRK schemes effectively handle the numerical stiffness of the small grid size and improve computational efficiency.Compared to implicit and explicit Runge-Kutta(RK)schemes,the IMEX-TSRK methods achieve the same order of accuracy with fewer first derivative calculations.Numerical case tests demonstrate that the IMEX-TSRK methods maintain numerical stability while enhancing computational efficiency.Specifically,in high Reynolds number flows,the computational efficiency of the IMEX-TSRK methods surpasses that of explicit RK schemes by more than one order of magnitude,and that of implicit RK schemes several times over. 展开更多
关键词 implicit-explicit temporal methods Two-step Runge-Kutta methods Adaptive algorithm Unsteady flows Navier-Stokes equations
原文传递
北京文旅亮相IMEX——以中秋文化为媒,塑造首都国际会奖新名片
2
作者 裴超 《中国会展》 2025年第20期32-33,共2页
当地时间2025年10月7日至9日,全球会奖旅游业界盛会——2025拉斯维加斯国际会议及奖励旅游展(IMEX)在美国成功举办。北京市文化和旅游局组织博悦咨询(北京)有限公司、环亚风景国际旅行社、北京碧山国际旅行社、北京欣欣翼翔国际旅行社... 当地时间2025年10月7日至9日,全球会奖旅游业界盛会——2025拉斯维加斯国际会议及奖励旅游展(IMEX)在美国成功举办。北京市文化和旅游局组织博悦咨询(北京)有限公司、环亚风景国际旅行社、北京碧山国际旅行社、北京欣欣翼翔国际旅行社有限公司以及中国旅游集团旅行服务有限公司等五家北京会奖企业,精彩亮相文化和旅游部“你好!中国”主题展区,面向全球业界集中展示北京作为国际会奖旅游目的地的资源优势与文化魅力。 展开更多
关键词 imex 国际会奖旅游 中秋文化 北京文旅
在线阅读 下载PDF
Stability and Time-Step Constraints of Implicit-Explicit Runge-Kutta Methods for the Linearized Korteweg-de Vries Equation
3
作者 Joseph Hunter Zheng Sun Yulong Xing 《Communications on Applied Mathematics and Computation》 EI 2024年第1期658-687,共30页
This paper provides a study on the stability and time-step constraints of solving the linearized Korteweg-de Vries(KdV)equation,using implicit-explicit(IMEX)Runge-Kutta(RK)time integration methods combined with either... This paper provides a study on the stability and time-step constraints of solving the linearized Korteweg-de Vries(KdV)equation,using implicit-explicit(IMEX)Runge-Kutta(RK)time integration methods combined with either finite difference(FD)or local discontinuous Galerkin(DG)spatial discretization.We analyze the stability of the fully discrete scheme,on a uniform mesh with periodic boundary conditions,using the Fourier method.For the linearized KdV equation,the IMEX schemes are stable under the standard Courant-Friedrichs-Lewy(CFL)conditionτ≤λh.Here,λis the CFL number,τis the time-step size,and h is the spatial mesh size.We study several IMEX schemes and characterize their CFL number as a function ofθ=d/h^(2)with d being the dispersion coefficient,which leads to several interesting observations.We also investigate the asymptotic behaviors of the CFL number for sufficiently refined meshes and derive the necessary conditions for the asymptotic stability of the IMEX-RK methods.Some numerical experiments are provided in the paper to illustrate the performance of IMEX methods under different time-step constraints. 展开更多
关键词 Linearized Korteweg-de Vries(KdV)equation implicit-explicit(imex)Runge-Kutta(RK)method STABILITY Courant-Friedrichs-Lewy(CFL)condition Finite difference(FD)method Local discontinuous Galerkin(DG)method
在线阅读 下载PDF
会奖之星——法兰克福抒写会奖旅游多彩乐章
4
作者 裴超 《中国会展》 2025年第12期54-59,共6页
法兰克福是欧洲重要的会奖旅游目的地之一。法兰克福会议奖励旅游展览会(IMEX Frankfurt)是该地区最具影响力的会奖旅游展览会之一,每年吸引大量会奖旅游专业人士参加。2025年5月20日至22日,法兰克福展览中心举办IMEX Frankfurt 2025,... 法兰克福是欧洲重要的会奖旅游目的地之一。法兰克福会议奖励旅游展览会(IMEX Frankfurt)是该地区最具影响力的会奖旅游展览会之一,每年吸引大量会奖旅游专业人士参加。2025年5月20日至22日,法兰克福展览中心举办IMEX Frankfurt 2025,这是会奖旅游行业的年度盛事。因此,法兰克福在全球会奖旅游市场中占据重要地位,与伦敦、巴黎等城市竞争激烈。法兰克福的会展设施完善,服务优质,吸引了众多国际会议和展览在此举办。 展开更多
关键词 imex Frankfurt 法兰克福
在线阅读 下载PDF
IMEXθ法对延迟微分方程的GP稳定性
5
作者 张立霞 田帅生 刘建国 《佳木斯大学学报(自然科学版)》 CAS 2008年第4期559-560,共2页
先从标量测试方程u′(t)=λu(t)+μu(t-τ)出发,介绍了它的渐近稳定性,这里τ是正延迟,λ,μ是复数参数.然后将IMEXθ法应用于方程u′(t)=λu(t)+μu(t-τ),证明了IMEXθ法当且仅当θ=1时是GP稳定的.最后给出数值试验.
关键词 imexθ法 GP稳定性 渐近稳定性 延迟微分方程
在线阅读 下载PDF
The Direct Discontinuous Galerkin Methods with Implicit-Explicit Runge-Kutta Time Marching for Linear Convection-Diffusion Problems 被引量:2
6
作者 Haijin Wang Qiang Zhang 《Communications on Applied Mathematics and Computation》 2022年第1期271-292,共22页
In this paper,a fully discrete stability analysis is carried out for the direct discontinuous Galerkin(DDG)methods coupled with Runge-Kutta-type implicit-explicit time marching,for solving one-dimensional linear conve... In this paper,a fully discrete stability analysis is carried out for the direct discontinuous Galerkin(DDG)methods coupled with Runge-Kutta-type implicit-explicit time marching,for solving one-dimensional linear convection-diffusion problems.In the spatial discretization,both the original DDG methods and the refined DDG methods with interface corrections are considered.In the time discretization,the convection term is treated explicitly and the diffusion term implicitly.By the energy method,we show that the corresponding fully discrete schemes are unconditionally stable,in the sense that the time-stepis only required to be upper bounded by a constant which is independent of the mesh size h.Opti-mal error estimate is also obtained by the aid of a special global projection.Numerical experiments are given to verify the stability and accuracy of the proposed schemes. 展开更多
关键词 Direct discontinuous Galerkin method implicit-explicit scheme Stability analysis Energy method Convection-diffusion problem
在线阅读 下载PDF
Parallel Implicit-Explicit General Linear Methods
7
作者 Steven Roberts Arash Sarshar Adrian Sandu 《Communications on Applied Mathematics and Computation》 2021年第4期649-669,共21页
High-order discretizations of partial differential equations(PDEs)necessitate high-order time integration schemes capable of handling both stiff and nonstiff operators in an efficient manner.Implicit-explicit(IMEX)int... High-order discretizations of partial differential equations(PDEs)necessitate high-order time integration schemes capable of handling both stiff and nonstiff operators in an efficient manner.Implicit-explicit(IMEX)integration based on general linear methods(GLMs)offers an attractive solution due to their high stage and method order,as well as excellent stability properties.The IMEX characteristic allows stiff terms to be treated implicitly and nonstiff terms to be efficiently integrated explicitly.This work develops two systematic approaches for the development of IMEX GLMs of arbitrary order with stages that can be solved in parallel.The first approach is based on diagonally implicit multi-stage integration methods(DIMSIMs)of types 3 and 4.The second is a parallel generalization of IMEX Euler and has the interesting feature that the linear stability is independent of the order of accuracy.Numerical experiments confirm the theoretical rates of convergence and reveal that the new schemes are more efficient than serial IMEX GLMs and IMEX Runge-Kutta methods. 展开更多
关键词 PARALLEL Time integration imex methods General linear
在线阅读 下载PDF
A Low Mach Number IMEX Flux Splitting for the Level Set Ghost Fluid Method
8
作者 Jonas Zeifang Andrea Beck 《Communications on Applied Mathematics and Computation》 2023年第2期722-750,共29页
Considering droplet phenomena at low Mach numbers,large differences in the magnitude of the occurring characteristic waves are presented.As acoustic phenomena often play a minor role in such applications,classical exp... Considering droplet phenomena at low Mach numbers,large differences in the magnitude of the occurring characteristic waves are presented.As acoustic phenomena often play a minor role in such applications,classical explicit schemes which resolve these waves suffer from a very restrictive timestep restriction.In this work,a novel scheme based on a specific level set ghost fluid method and an implicit-explicit(IMEX)flux splitting is proposed to overcome this timestep restriction.A fully implicit narrow band around the sharp phase interface is combined with a splitting of the convective and acoustic phenomena away from the interface.In this part of the domain,the IMEX Runge-Kutta time discretization and the high order discontinuous Galerkin spectral element method are applied to achieve high accuracies in the bulk phases.It is shown that for low Mach numbers a significant gain in computational time can be achieved compared to a fully explicit method.Applica-tions to typical droplet dynamic phenomena validate the proposed method and illustrate its capabilities. 展开更多
关键词 imex flux splitting Level set method Ghost fluid method Low Mach number flows
在线阅读 下载PDF
An Implicit-Explicit Computational Method Based on Time Semi-Discretization for Pricing Financial Derivatives with Jumps
9
作者 Yang Wang 《Open Journal of Statistics》 2018年第2期334-344,共11页
This paper considers pricing European options under the well-known of SVJ model of Bates and related computational methods. According to the no-arbitrage principle, we first derive a partial differential equation that... This paper considers pricing European options under the well-known of SVJ model of Bates and related computational methods. According to the no-arbitrage principle, we first derive a partial differential equation that the value of any European contingent claim should satisfy, where the asset price obeys the SVJ model. This equation is numerically solved by using the implicit- explicit backward difference method and time semi-discretization. In order to explain the validity of our method, the stability of time semi-discretization scheme is also proved. Finally, we use a simulation example to illustrate the efficiency of the method. 展开更多
关键词 SVJ Model of Bates Time SEMI-DISCRETIZATION Stability NO-ARBITRAGE Principle implicit-explicit BACKWARD Difference Method
在线阅读 下载PDF
Strong Stability Preserving IMEX Methods for Partitioned Systems of Differential Equations
10
作者 Giuseppe Izzo Zdzislaw Jackiewicz 《Communications on Applied Mathematics and Computation》 2021年第4期719-758,共40页
We investigate strong stability preserving(SSP)implicit-explicit(IMEX)methods for partitioned systems of differential equations with stiff and nonstiff subsystems.Conditions for order p and stage order q=p are derived... We investigate strong stability preserving(SSP)implicit-explicit(IMEX)methods for partitioned systems of differential equations with stiff and nonstiff subsystems.Conditions for order p and stage order q=p are derived,and characterization of SSP IMEX methods is provided following the recent work by Spijker.Stability properties of these methods with respect to the decoupled linear system with a complex parameter,and a coupled linear system with real parameters are also investigated.Examples of methods up to the order p=4 and stage order q—p are provided.Numerical examples on six partitioned test systems confirm that the derived methods achieve the expected order of convergence for large range of stepsizes of integration,and they are also suitable for preserving the accuracy in the stiff limit or preserving the positivity of the numerical solution for large stepsizes. 展开更多
关键词 Partitioned systems of differential equations SSP property imex general linear methods Construction of highly stable methods
在线阅读 下载PDF
On the Stability of IMEX Upwind gSBP Schemes for 1D Linear Advection-Diffusion Equations
11
作者 Sigrun Ortleb 《Communications on Applied Mathematics and Computation》 2025年第4期1195-1224,共30页
A fully discrete energy stability analysis is carried out for linear advection-diffusion problems discretized by generalized upwind summation-by-parts(upwind gSBP)schemes in space and implicit-explicit Runge-Kutta(IME... A fully discrete energy stability analysis is carried out for linear advection-diffusion problems discretized by generalized upwind summation-by-parts(upwind gSBP)schemes in space and implicit-explicit Runge-Kutta(IMEX-RK)schemes in time.Hereby,advection terms are discretized explicitly,while diffusion terms are solved implicitly.In this context,specific combinations of space and time discretizations enjoy enhanced stability properties.In fact,if the first-and second-derivative upwind gSBP operators fulfill a compatibility condition,the allowable time step size is independent of grid refinement,although the advective terms are discretized explicitly.In one space dimension it is shown that upwind gSBP schemes represent a general framework including standard discontinuous Galerkin(DG)schemes on a global level.While previous work for DG schemes has demonstrated that the combination of upwind advection fluxes and the central-type first Bassi-Rebay(BR1)scheme for diffusion does not allow for grid-independent stable time steps,the current work shows that central advection fluxes are compatible with BR1 regarding enhanced stability of IMEX time stepping.Furthermore,unlike previous discrete energy stability investigations for DG schemes,the present analysis is based on the discrete energy provided by the corresponding SBP norm matrix and yields time step restrictions independent of the discretization order in space,since no finite-element-type inverse constants are involved.Numerical experiments are provided confirming these theoretical findings. 展开更多
关键词 Upwind SBP schemes implicit-explicit(imex) ADVECTION-DIFFUSION Energy stability
在线阅读 下载PDF
SHARP ERROR ESTIMATE OF VARIABLE TIME-STEP IMEX BDF2 SCHEME FOR PARABOLIC INTEGRO-DIFFERENTIAL EQUATIONS WITH INITIAL SINGULARITY ARISING IN FINANCE
12
作者 Chengchao Zhao Ruoyu Yang +1 位作者 Yana Di Jiwei Zhang 《Journal of Computational Mathematics》 2025年第5期1118-1140,共23页
The recently developed DOC kernels technique has been successful in the stability and convergence analysis for variable time-step BDF2 schemes.However,it may not be readily applicable to problems exhibiting an initial... The recently developed DOC kernels technique has been successful in the stability and convergence analysis for variable time-step BDF2 schemes.However,it may not be readily applicable to problems exhibiting an initial singularity.In the numerical simulations of solutions with initial singularity,variable time-step schemes like the graded mesh are always adopted to achieve the optimal convergence,whose first adjacent time-step ratio may become pretty large so that the acquired restriction is not satisfied.In this paper,we revisit the variable time-step implicit-explicit two-step backward differentiation formula(IMEX BDF2)scheme to solve the parabolic integro-differential equations(PIDEs)with initial singularity.We obtain the sharp error estimate under a mild restriction condition of adjacent time-step ratios r_(k):=T_(k)/T_(k-1)<r_(max)=4.8645(k≥3)and a much mild requirement on the first ratio,i.e.r_(2)>0.This leads to the validation of our analysis of the variable time-step IMEX BDF2 scheme when the initial singularity is dealt by a simple strategy,i.e.the graded mesh t_(k)=T(k/N)^(γ).In this situation,the convergence order of O(N^(-min(2,γα))is achieved,where N denotes the total number of mesh points andαindicates the regularity of the exact solution.This is,the optimal convergence will be achieved by taking%γ_(opt)=2/α.Numerical examples are provided to demonstrate our theoretical analysis. 展开更多
关键词 implicit-explicit method Two-step backward differentiation formula The discrete orthogonal convolution kernels The discrete complementary convolution kernels Error estimates Variable time-step
原文传递
微分方程数值解的隐显式Runge-Kutta方法 被引量:2
13
作者 张磊 王其波 《科技信息》 2012年第33期233-234,共2页
Runge-Kutta方法作为一种单步高阶方法在求解常微分方程和方程组中受到了广泛的关注,它具有单步方法较少的存储优点,也能根据Taylor展开来提高阶数并无需增加计算来求导。Runge-Kutta方法的各种改进在很多领域也得到应用。本文主要研究... Runge-Kutta方法作为一种单步高阶方法在求解常微分方程和方程组中受到了广泛的关注,它具有单步方法较少的存储优点,也能根据Taylor展开来提高阶数并无需增加计算来求导。Runge-Kutta方法的各种改进在很多领域也得到应用。本文主要研究在Runge-Kutta方法基础上改进的一种办法,即:隐显式Runge-Kutta方法。 展开更多
关键词 Runge—Kutta方法 常微分方程 隐显式 数值解
在线阅读 下载PDF
Benjamin方程的高精度紧致有限差分法 被引量:1
14
作者 李晓芳 谢树森 《中国海洋大学学报(自然科学版)》 CAS CSCD 北大核心 2018年第A02期193-197,共5页
本文提出一个解Benjamin方程的高精度显隐多步紧致有限差分格式,即在时间上对线性部分用三阶向后差分隐格式,非线性部分用显格式,空间上采用四阶精度紧致差分格式,最终在时间上和空间上分别达到三阶和四阶精度。证明了半离散紧致差分格... 本文提出一个解Benjamin方程的高精度显隐多步紧致有限差分格式,即在时间上对线性部分用三阶向后差分隐格式,非线性部分用显格式,空间上采用四阶精度紧致差分格式,最终在时间上和空间上分别达到三阶和四阶精度。证明了半离散紧致差分格式的四阶收敛性,给出了利用快速离散Fourier变换求解全离散格式的数值算法。最后数值算例验证了理论分析结果,并且数值解满足质量守恒定律。 展开更多
关键词 BENJAMIN方程 HILBERT变换 紧致差分法 显隐多步向后差分法
在线阅读 下载PDF
A relaxation scheme for a multi-class Lighthill-Whitham-Richards traffic flow model 被引量:6
15
作者 Jian-zhong CHEN Zhong-ke SHI Yan-mei HU 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2009年第12期1835-1844,共10页
We present a high-resolution relaxation scheme for a multi-class Lighthill-Whitham-Richards (MCLWR) traffic flow model. This scheme is based on high-order reconstruction for spatial discretization and an implicit-expl... We present a high-resolution relaxation scheme for a multi-class Lighthill-Whitham-Richards (MCLWR) traffic flow model. This scheme is based on high-order reconstruction for spatial discretization and an implicit-explicit Runge-Kutta method for time integration. The resulting method retains the simplicity of the relaxation schemes. There is no need to involve Riemann solvers and characteristic decomposition. Even the computation of the eigenvalues is not required. This makes the scheme particularly well suited for the MCLWR model in which the analytical expressions of the eigenvalues are difficult to obtain for more than four classes of road users. The numerical results illustrate the effectiveness of the presented method. 展开更多
关键词 Relaxation scheme Multi-class LWR model Traffic flow CWENO reconstruction implicit-explicit Runge-Kutta
原文传递
求解跳-扩散期权定价方程的隐显Runge-Kutta方法
16
作者 李子丰 王晚生 《上海师范大学学报(自然科学版)》 2022年第3期277-283,共7页
金融衍生話的定价研究一直是金融数学研究的难题之一.随着期权定价理论的不断发展和完善,跳-扩散期权定价模型的研究更是成为热点,该模型是一个无界区域上的偏积分微分方程.研究跳-扩散模型下欧式期权定价问题的外插变步长隐显(IMEX)Run... 金融衍生話的定价研究一直是金融数学研究的难题之一.随着期权定价理论的不断发展和完善,跳-扩散期权定价模型的研究更是成为热点,该模型是一个无界区域上的偏积分微分方程.研究跳-扩散模型下欧式期权定价问题的外插变步长隐显(IMEX)Runge-Kutta方法,结合有限差分空间离散,并通过数值实验验证该方法的有效性. 展开更多
关键词 期权定价 偏积分微分方程 外插 变步长隐显(imex)Runge-Kutta方法 有限差分法
在线阅读 下载PDF
High Order Semi-implicit Multistep Methods for Time-Dependent Partial Differential Equations
17
作者 Giacomo Albi Lorenzo Pareschi 《Communications on Applied Mathematics and Computation》 2021年第4期701-718,共18页
We consider the construction of semi-implicit linear multistep methods that can be applied to time-dependent PDEs where the separation of scales in additive form,typically used in implicit-explicit(IMEX)methods,is not... We consider the construction of semi-implicit linear multistep methods that can be applied to time-dependent PDEs where the separation of scales in additive form,typically used in implicit-explicit(IMEX)methods,is not possible.As shown in Boscarino et al.(J.Sci.Comput.68:975-1001,2016)for Runge-Kutta methods,these semi-implicit techniques give a great flexibility,and allow,in many cases,the construction of simple linearly implicit schemes with no need of iterative solvers.In this work,we develop a general setting for the construction of high order semi-implicit linear multistep methods and analyze their stability properties for a prototype lineal'advection-diffusion equation and in the setting of strong stability preserving(SSP)methods.Our findings are demonstrated on several examples,including nonlinear reaction-diffusion and convection-diffusion problems. 展开更多
关键词 Semi-implicit methods implicit-explicit methods Multistep methods Strong stability preserving High order accuracy
在线阅读 下载PDF
Kou跳扩散下欧式期权定价的隐-显BDF2方法
18
作者 张艳萍 《运城学院学报》 2021年第3期17-21,共5页
研究Kou跳扩散下欧式期权模型求解的隐-显BDF2方法。针对期权满足的偏积分微分方程,首先将无穷积分项截断到有限区间上进行数值积分,对空间导数项利用中心差分格式离散,然后在时间方向上运用隐-显BDF2方法离散,并采用Gauss-Seidel迭代... 研究Kou跳扩散下欧式期权模型求解的隐-显BDF2方法。针对期权满足的偏积分微分方程,首先将无穷积分项截断到有限区间上进行数值积分,对空间导数项利用中心差分格式离散,然后在时间方向上运用隐-显BDF2方法离散,并采用Gauss-Seidel迭代法求解离散后的线性系统。数值实验表明了方法的高效性和稳健性。 展开更多
关键词 期权定价 跳扩散模型 偏微分积分方程 隐-显BDF2方法
在线阅读 下载PDF
Local Discontinuous Galerkin Methods with Decoupled Implicit-Explicit Time Marching for the Growth-Mediated Autochemotactic Pattern Formation Model
19
作者 Hui Wang Hui Guo +1 位作者 Jiansong Zhang Lulu Tian 《Advances in Applied Mathematics and Mechanics》 SCIE 2024年第1期208-236,共29页
In this paper,two fully-discrete local discontinuous Galerkin(LDG)methods are applied to the growth-mediated autochemotactic pattern formation model in self-propelling bacteria.The numerical methods are linear and dec... In this paper,two fully-discrete local discontinuous Galerkin(LDG)methods are applied to the growth-mediated autochemotactic pattern formation model in self-propelling bacteria.The numerical methods are linear and decoupled,which greatly improve the computational efficiency.In order to resolve the time level mismatch of the discretization process,a special time marching method with high-order accuracy is constructed.Under the condition of slight time step constraints,the optimal error estimates of this method are given.Moreover,the theoretical results are verified by numerical experiments.Real simulations show the patterns of spots,rings,stripes as well as inverted spots because of the interplay of chemotactic drift and growth rate of the cells. 展开更多
关键词 Local discontinuous Galerkin methods implicit-explicit time-marching scheme error estimate growth-mediated autochemotactic pattern formation model
在线阅读 下载PDF
VARIABLE STEP-SIZE IMPLICIT-EXPLICIT LINEAR MULTISTEP METHODS FOR TIME-DEPENDENT PARTIAL DIFFERENTIAL EQUATIONS 被引量:2
20
作者 DongWang Steven J. Ruuth 《Journal of Computational Mathematics》 SCIE CSCD 2008年第6期838-855,共18页
Implicit-explicit (IMEX) linear multistep methods are popular techniques for solving partial differential equations (PDEs) with terms of different types. While fixed timestep versions of such schemes have been dev... Implicit-explicit (IMEX) linear multistep methods are popular techniques for solving partial differential equations (PDEs) with terms of different types. While fixed timestep versions of such schemes have been developed and studied, implicit-explicit schemes also naturally arise in general situations where the temporal smoothness of the solution changes. In this paper we consider easily implementable variable step-size implicit-explicit (VSIMEX) linear multistep methods for time-dependent PDEs. Families of order-p, pstep VSIMEX schemes are constructed and analyzed, where p ranges from 1 to 4. The corresponding schemes are simple to implement and have the property that they reduce to the classical IMEX schemes whenever constant time step-sizes are imposed. The methods are validated on the Burgers' equation. These results demonstrate that by varying the time step-size, VSIMEX methods can outperform their fixed time step counterparts while still maintaining good numerical behavior. 展开更多
关键词 implicit-explicit imex linear multistep methods Variable step-size Zero-stability Burgers' equation.
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部