Implicit and explicit analyses were examined with experimental work done by Razaqpur et al. In the experiment work, two 1000 × 1000 × 70 mm reinforced concrete slabs were constructed. The slabs were subjecte...Implicit and explicit analyses were examined with experimental work done by Razaqpur et al. In the experiment work, two 1000 × 1000 × 70 mm reinforced concrete slabs were constructed. The slabs were subjected to blast loads generated by the detonation of either 22.4 kg or 33.4 kg of ANFO located at a 3.0 m standoff. Blast wave characteristics, including incident and reflected pressures and reflected impulses were measured. The slabs were modeled by implicit and explicit analysis to study their behavior under blast load to compare their predicted and observed behavior. The post-blast damage and mode of failure of each slab were observed. It was concluded that explicit analysis provides better modeling than implicit analysis.展开更多
Background: Non-linear signal analysis has proven to be a technique that is capable of revealing qualitative and quan- titative differentiations between different dynamical systems (biological or otherwise). In the pr...Background: Non-linear signal analysis has proven to be a technique that is capable of revealing qualitative and quan- titative differentiations between different dynamical systems (biological or otherwise). In the present work it has been demonstrated that this capability reveals quantitative differences in the Magnetoencephalograms (MEG) received from patients with Idiopathic Generalized Epilepsy (IGE) and from healthy volunteers. Method: We present MEG record- ings of 10 epileptic patients with IGE and the corresponding ones from 10 healthy volunteers. A 122-channel SQUID biomagnetometer in an electromagnetically shielded room was used to record the MEG signals and the Grassber- ger-Procaccia method for the estimation of the correlation dimension was applied in the phase space reconstruction of the recorded signal from each patient. Results: The aforementioned analysis demonstrates the existence of spatially diffused low dimensionality in the MEG signals of patients with IGE. Conclusion: The obtained results provide support for the hypothesis that low dimensionality in MEG signals is linked to functional brain pathogeny.展开更多
A class of generalized parametric implicit quasi-variational inequalities is studied. Thereupon a new existence theorem of the solutions is proved and sensitivity of solutions for this kind of problems is analyzed.
Some problems encountered in applying Smith's technique to predict the PIO tendency for non-linear pilot-vehicle loop, are thoroughly analyzed. Subsequently, modified PIO predictable criteria are developed, in add...Some problems encountered in applying Smith's technique to predict the PIO tendency for non-linear pilot-vehicle loop, are thoroughly analyzed. Subsequently, modified PIO predictable criteria are developed, in addition, to make also a certain improvement on Smith's PIO definition and PIO types. These modified criteria are applied to predict PIO tendency of various different configurations on the variable stability aircraft NT-33 in case of supposed non-linearity, and predicted results are compared with the flight tests and analytical results in the case of linear hypothesis given in Ref. (4)展开更多
Voice conversion algorithm aims to provide high level of similarity to the target voice with an acceptable level of quality.The main object of this paper was to build a nonlinear relationship between the parameters fo...Voice conversion algorithm aims to provide high level of similarity to the target voice with an acceptable level of quality.The main object of this paper was to build a nonlinear relationship between the parameters for the acoustical features of source and target speaker using Non-Linear Canonical Correlation Analysis(NLCCA) based on jointed Gaussian mixture model.Speaker indi-viduality transformation was achieved mainly by altering vocal tract characteristics represented by Line Spectral Frequencies(LSF).To obtain the transformed speech which sounded more like the target voices,prosody modification is involved through residual prediction.Both objective and subjective evaluations were conducted.The experimental results demonstrated that our proposed algorithm was effective and outperformed the conventional conversion method utilized by the Minimum Mean Square Error(MMSE) estimation.展开更多
<p align="left"> <span style="font-family:Verdana;">The present study evaluates the effects of occlusal loading on an implant-supported dental implant with external hexagon dental impla...<p align="left"> <span style="font-family:Verdana;">The present study evaluates the effects of occlusal loading on an implant-supported dental implant with external hexagon dental implant-abutment systems, using the finite element method analysis. Tensile analyses were performed to simulate different axial and obliquous masticatory loads. The influence of the variations in the contouring conditions of the interfaces was analyzed to weigh the osseointegration with linear and non-linear cases, by means of a parametric design. The geometry selected to place the prostheses was a jaw section, considering the properties of the set of cortical and trabecular bones. The results show that for non-linear contour conditions, the stress presents smaller value distributions and signals a different place in the screw-implant interface as the factor of the greater weight in this study. The location indicated that von Mises stress concentrations are not exclusive to the contact regions studied, moving to an area that is not in direct contact with the non-linear contact interfaces. In addition, the direction of load with an angle of 15 degrees presented the highest values of von Mises stress.</span> </p>展开更多
This article describes a methodology for the non-linear analysis of existing masonry structures subjected to external yielding constraints, with particular attention to the historical and cultural heritage constructio...This article describes a methodology for the non-linear analysis of existing masonry structures subjected to external yielding constraints, with particular attention to the historical and cultural heritage constructions. It is well known, indeed, that most of the arch and wall damages are often due to settlement of abutments, in the former case, and to settlement of foundations, in the latter one. The ability to observe and correctly analyze the cracking failure pattern, visible on such structures, is the main “diagnostic tool” for identifying its origin: the modification of load conditions over time, foundation settlements and earthquakes. The objective of this work is to identify a numeric modelling of masonry structures (such as walls, arches, vaults, ruins) under any load condition and subjected to inelastic settlements impressed to some external constraints. The purpose of the numerical procedure is to interpret the behaviour of such structures in order to assess both the peak settlement value and their specific failure mode in correspondence to a geometry which is very often compromised. Therefore, this procedure allows one to estimate the degree of the structures’ vulnerability, in order to prevent any future damage, both local and global. The iterative algorithm proposed in this article, developed in a calculation software, processes the structure considering, not only the properties of constitutive material, non-homogeneous and anisotropic, but also the change of the structure’s shape during the settlements increase. In this way a non-linear analysis is performed both materically and geometrically. Through a direct comparison between numerical and experimental results, obtained by testing some simple structural models in a laboratory, it was ascertained, both from a qualitative and quantitative point of view, the correctness and the efficacy of the proposed procedure, which will be explained below. Therefore, this numerical procedure demonstrates to be a useful “diagnostic tool” by which, starting from the input of the masonry structure to be studied and simulating a presumable event, one can trace the source of the causes that have generated a certain failure, comparing the cracking pattern of real structure with that plotted by the software.展开更多
This paper presents a non-linear simulation of the impact on a structure with different energy absorption systems using finite element models. Literature review on bistable structure, aluminum foam and expandable poly...This paper presents a non-linear simulation of the impact on a structure with different energy absorption systems using finite element models. Literature review on bistable structure, aluminum foam and expandable polystyrene is presented and taken as basis to propose energy absorption systems. Using a base structure, these systems are implemented by means of finite element modeling. A comparison of the damage caused to the structure in case of impact without implementing energy absorption system, and implementing energy absorption systems based on bistable structures, polystyrene foam and aluminum foam are shown here in. The results demonstrate the advantages of using energy absorption systems on structures under impact loads.展开更多
The longitudinal structure function with shadowing correction according to the nonlinear effects of the gluon density behavior at low x is considered. The solution of the GLR-MQ evolution equation for the gluon densit...The longitudinal structure function with shadowing correction according to the nonlinear effects of the gluon density behavior at low x is considered. The solution of the GLR-MQ evolution equation for the gluon density shows that the FL^g(x, Q2) behavior can be tamed by the singularity at low x values. Comparing our results with H1 data at R=4 GeV-1 shows that at very low x this behavior is completely tamed by taking shadowing correction into account.展开更多
The objective of this study was to investigate the mechanical characteristics of implant-abutment interface design in a dental implant system, using nonlinear finite element analysis (FEA) method. This finite elemen...The objective of this study was to investigate the mechanical characteristics of implant-abutment interface design in a dental implant system, using nonlinear finite element analysis (FEA) method. This finite element simulation study was applied on three commonly used commercial dental implant systems: model I, the reduced-diameter 3i implant system (West Palm Beach, FL, USA) with a hex and a 12-point double internal hexagonal connection; model II, the Semados implant system (Bego, Bremen, Germany) with combination of a conical (45° taper) and internal hexagonal connection; and model III, the Br,~nemark implant system (Nobel Biocare, Gothenburg, Sweden) with external hexagonal connection. In simulation, a force of 170 N with 45°oblique to the longitudinal axis of the implant was loaded to the top surface of the abutment. It has been found from the strength and stiffness analysis that the 3i implant system has the lowest maximum yon Mises stress, prirlcipal stress and displacement, while the Br^nemark implant system has the highest. It was concluded from our preliminary study using nonlinear FEA that the reduced-diameter 3i implant system with a hex and a 12-point double internal hexagonal connection had a better stress distribution, and produced a smaller displacement than the other two implant systems.展开更多
The stability, accuracy, and dispersion of a semi implicit finite difference scheme for the numerical solution of external mode were carefully analyzed in this study. The stability analysis was implemented with the vo...The stability, accuracy, and dispersion of a semi implicit finite difference scheme for the numerical solution of external mode were carefully analyzed in this study. The stability analysis was implemented with the von Neumann method and proved that the scheme is unconditionally stable. Study of their accuracy showed that the finite difference equations were consistent with the differential equations with second order accuracy. The Eulerian Lagrangian discretization of the convective terms was also discussed. The existence of dispersion was proved to be unfavorable for the achievement of the real solution.展开更多
This paper demonstrates a novel formulation of structural analysis.A novel stress-based formulation of structural analysis for material nonlinear problems was proposed in earlier work.In this paper,this methodology is...This paper demonstrates a novel formulation of structural analysis.A novel stress-based formulation of structural analysis for material nonlinear problems was proposed in earlier work.In this paper,this methodology is further extended for 3 D finite element analysis.The approach avoids use of elastic moduli as the material input in the analysis procedure.It utilizes the whole stress-strain curve of the material.It can be shown that this analysis procedure solved the nonlinear or plasticity problem with relative ease.This paper solves a uniaxial bar,in which the results are compared with the solutions of Green-Lagrange strain and Piola-Kirchhoff stresses.The uniaxial bar is also solved by a regression model in the‘scikit-learn’module in Python.The second problem solved is of a beam in pure bending for which the energy release rate is measured.For the beam in pure bending,the bending moment carrying capacity of the beam section is evaluated by this methodology as the crack propagates through the depth of the beam.It can be shown that the methodology is very simple,accurate,and clear in its physical steps.展开更多
The dynamic response of offshore platforms is more serious in hostile sea environment than in shallow sea. In this paper, a hybrid solution combined with analytical and numerical method is proposed to compute the stoc...The dynamic response of offshore platforms is more serious in hostile sea environment than in shallow sea. In this paper, a hybrid solution combined with analytical and numerical method is proposed to compute the stochastic response of fixed offshore platforms to random waves, considering wave-structure interaction and non-linear drag force. The simulation program includes two steps: the first step is the eigenanalysis aspects associated the structure and the second step is response estimation based on spectral equations. The eigenanalysis could be done through conventional finite element method conveniently and its natural frequency and mode shapes obtained. In the second part of the process, the solution of the offshore structural response is obtained by iteration of a series of coupled spectral equations. Considering the third-order term in the drag force, the evaluation of the three-fold convolution should be demanded for nonlinear stochastic response analysis. To demonstrate this method, a numerical analysis is carried out for both linear and non-linear platform motions. The final response spectra have the typical two peaks in agreement with reality, indicating that the hybrid method is effective and can be applied to offshore engineering.展开更多
An efficient observability analysis method is proposed to enable online detection of performance degradation of an optimization-based sliding window visual-inertial state estimation framework.The proposed methodology ...An efficient observability analysis method is proposed to enable online detection of performance degradation of an optimization-based sliding window visual-inertial state estimation framework.The proposed methodology leverages numerical techniques in nonlinear observability analysis to enable online evaluation of the system observability and indication of the state estimation performance.Specifically,an empirical observability Gramian based approach is introduced to efficiently measure the observability condition of the windowed nonlinear system,and a scalar index is proposed to quantify the average system observability.The proposed approach is specialized to a challenging optimizationbased sliding window monocular visual-inertial state estimation formulation and evaluated through simulation and experiments to assess the efficacy of the methodology.The analysis result shows that the proposed approach can correctly indicate degradation of the state estimation accuracy with real-time performance.展开更多
For the application of the time-temperature superposition principle a suitable relation is needed to describe the time-temperature shift factor a. Therefore, the Arrhenius equation is widely used due to its simple for...For the application of the time-temperature superposition principle a suitable relation is needed to describe the time-temperature shift factor a. Therefore, the Arrhenius equation is widely used due to its simple form and often leads to suitable results. Where, the Arrhenius equation presents a linear relation for the temperature-dependent shift factor in logarithmic scale ln(α) with the absolute inverse temperature (1/θ). However, in cases with a large temperature range which eventually include more complex reaction processes, the functional relation between ln(α) and (1/θ) is nonlinear in the 'Arrhenius plot'. In those cases, the monotone change of the nonlinear range in the 'Arrhenius plot' can be interpreted as a transient range between two approximately linear or constant regions. An extended application of the modified Arrhenius equation from Nakamura (1989) is presented in this study for this transient range. The introduced method was applied to describe the time-temperature equivalence in the relaxation analysis of restoring seal force of metal seals, which are used in lid-systems of transport and interim storage casks for radioactive materials. But, the method is widely valid and can be used for different objectives which are characterized by thermorheologically simple behavior with nonlinear sensitivity to inverse temperature.展开更多
The ultimate strength analysis of offshore jacket platforms is a research project which has been developed in recent years. With the rapid development of marine oil industry, the departments of design and IMR (Inspect...The ultimate strength analysis of offshore jacket platforms is a research project which has been developed in recent years. With the rapid development of marine oil industry, the departments of design and IMR (Inspection, Maintenance and Repair) in the offshore engineering have attached great importance to this project. The research procedure applies to both the stress check of new design platforms and the whole safety assessment of existing platforms. In this paper, we combine the pseudo non-linear technique with the linear analysis program and successfully analyze the ultimate strength of the space frame structure subject to the concentrated load and a real jacket platform subject to the dead load and environmental load.展开更多
Soybean (Glycine max L. Merr.) adaptation to new environments has been hard to predict based on maturity group. The aim of this study was to evaluate the performance of 14 soybean genotypes, from the Soybean Breeding ...Soybean (Glycine max L. Merr.) adaptation to new environments has been hard to predict based on maturity group. The aim of this study was to evaluate the performance of 14 soybean genotypes, from the Soybean Breeding Program of the Federal University of Uberlandia, in their adaptive capacity and seed yield stability at 3 locations and 2 growing seasons. For the adaptability and stability analysis the Toler and Centroid methods were used;5 genotypic groups were identified in the first whereas 4 groups were identified in the latter. By the Toler method group A was composed by 4 genotypes, UFU-001, UFU-003, UFU-0010, and UFU-001. They showed a convex pattern of adaptability and stability. In contrast, the genotypes UFU-008 and UFU-0013 were classified in Group E with a concave pattern of adaptability and stability. Regarding results from the Centroid method, the Genotype UFU-002, with higher seed yield than average, was the only genotype in Ideotype VI with moderate adaptability to favorable environments. In contrast, 10 genotypes were included in the Ideotype V, of medium general adaptability. The genotypes UFU-001, UFU-002, UFU-006, UFU-0010, and UFU-0011 were recommended for use in the Brazilian Cerrado growing region. These genotypes had high seed yield potential in high quality environments.展开更多
On foe basis of the Kirchoff-Karman hypothses for the nonlinear bending of thin plates, the three kinds of boundary value problems of nonlinear analysis for perforated fhin plates are presented under the differenr in...On foe basis of the Kirchoff-Karman hypothses for the nonlinear bending of thin plates, the three kinds of boundary value problems of nonlinear analysis for perforated fhin plates are presented under the differenr in-plane boundary conditions and the corresponding generalized varialional principles are established. One can see that all mathematical models presented in this paper are completely new ones and differ from the ordinary von Karman theory. These mathematical models can be applied to the nonlinear analysis and the Stability analysis of perforaled thin plates in arbitraryplane boundary conditions.展开更多
Combined with the 3D FEM,end-anchored anchorage bolts were simulated by implicit anchorage bolt element.Implicit anchorage bolt elements hide in the elements of rock mass and extremely simplify the element subdivision...Combined with the 3D FEM,end-anchored anchorage bolts were simulated by implicit anchorage bolt element.Implicit anchorage bolt elements hide in the elements of rock mass and extremely simplify the element subdivision.The calculated value of an- chorage bolt stress is larger than the measured one for the most time.we further analyzed the reciprocity of anchorage bolt and rock mass,and then deduced the analytical equa- tions of anchorage bolt stress and rock mass deformation under elasto-plastic state.The results indicate that it is essential to revise the anchorage bolts stress by using the formu- las deduced when rock mass is softened or significantly deformed.Finally,a case study indicates that the calculated results agree with those measured.Some helpful methods are offerd for more accurate simulation of the support effect and anchorage bolts real stress state.展开更多
This study focuses on advanced finite element(FE)analyses on The Church of Nativity located in Bethlehem(Palestine),one of the most historic structures in the world.To ensure the model quality,a 3D FE model was create...This study focuses on advanced finite element(FE)analyses on The Church of Nativity located in Bethlehem(Palestine),one of the most historic structures in the world.To ensure the model quality,a 3D FE model was created using two types of typical commercial software,DIANA FEA and SAP2000.From analyses,one of the expected behaviors for this kind of masonry structure“low modal period”was found.The seismic behavior of the church was studied using pushover analyses,which were conducted using DIANA FEA.The first unidirectional mass proportional load pattern was created in both directions,X-direction as a longitudinal direction and Y-direction as the transversal direction.An incremental iterative procedure was used with monotonically increasing horizontal loads,using constant gravity loads.The results showed that the transversal direction is the most vulnerable and the damage concentrates at the main lateral(longitudinal)walls,mainly at the south and north alignment walls,and also at the vaults and at the connections of the vaults to the apse.Crack width was at the upper limit in the in-plane direction(X-direction).While,in Y-direction,it exceeded the limits of IBC code in width and length with a maximum width of 13.7 mm.A more accurate nonlinear dynamic analysis is recommended in the near future,which takes into account the material nonlinearity for more reasonable seismic behavior simulation.展开更多
文摘Implicit and explicit analyses were examined with experimental work done by Razaqpur et al. In the experiment work, two 1000 × 1000 × 70 mm reinforced concrete slabs were constructed. The slabs were subjected to blast loads generated by the detonation of either 22.4 kg or 33.4 kg of ANFO located at a 3.0 m standoff. Blast wave characteristics, including incident and reflected pressures and reflected impulses were measured. The slabs were modeled by implicit and explicit analysis to study their behavior under blast load to compare their predicted and observed behavior. The post-blast damage and mode of failure of each slab were observed. It was concluded that explicit analysis provides better modeling than implicit analysis.
文摘Background: Non-linear signal analysis has proven to be a technique that is capable of revealing qualitative and quan- titative differentiations between different dynamical systems (biological or otherwise). In the present work it has been demonstrated that this capability reveals quantitative differences in the Magnetoencephalograms (MEG) received from patients with Idiopathic Generalized Epilepsy (IGE) and from healthy volunteers. Method: We present MEG record- ings of 10 epileptic patients with IGE and the corresponding ones from 10 healthy volunteers. A 122-channel SQUID biomagnetometer in an electromagnetically shielded room was used to record the MEG signals and the Grassber- ger-Procaccia method for the estimation of the correlation dimension was applied in the phase space reconstruction of the recorded signal from each patient. Results: The aforementioned analysis demonstrates the existence of spatially diffused low dimensionality in the MEG signals of patients with IGE. Conclusion: The obtained results provide support for the hypothesis that low dimensionality in MEG signals is linked to functional brain pathogeny.
文摘A class of generalized parametric implicit quasi-variational inequalities is studied. Thereupon a new existence theorem of the solutions is proved and sensitivity of solutions for this kind of problems is analyzed.
文摘Some problems encountered in applying Smith's technique to predict the PIO tendency for non-linear pilot-vehicle loop, are thoroughly analyzed. Subsequently, modified PIO predictable criteria are developed, in addition, to make also a certain improvement on Smith's PIO definition and PIO types. These modified criteria are applied to predict PIO tendency of various different configurations on the variable stability aircraft NT-33 in case of supposed non-linearity, and predicted results are compared with the flight tests and analytical results in the case of linear hypothesis given in Ref. (4)
基金Supported by the National High Technology Research and Development Program of China (863 Program,No.2006AA010102)
文摘Voice conversion algorithm aims to provide high level of similarity to the target voice with an acceptable level of quality.The main object of this paper was to build a nonlinear relationship between the parameters for the acoustical features of source and target speaker using Non-Linear Canonical Correlation Analysis(NLCCA) based on jointed Gaussian mixture model.Speaker indi-viduality transformation was achieved mainly by altering vocal tract characteristics represented by Line Spectral Frequencies(LSF).To obtain the transformed speech which sounded more like the target voices,prosody modification is involved through residual prediction.Both objective and subjective evaluations were conducted.The experimental results demonstrated that our proposed algorithm was effective and outperformed the conventional conversion method utilized by the Minimum Mean Square Error(MMSE) estimation.
文摘<p align="left"> <span style="font-family:Verdana;">The present study evaluates the effects of occlusal loading on an implant-supported dental implant with external hexagon dental implant-abutment systems, using the finite element method analysis. Tensile analyses were performed to simulate different axial and obliquous masticatory loads. The influence of the variations in the contouring conditions of the interfaces was analyzed to weigh the osseointegration with linear and non-linear cases, by means of a parametric design. The geometry selected to place the prostheses was a jaw section, considering the properties of the set of cortical and trabecular bones. The results show that for non-linear contour conditions, the stress presents smaller value distributions and signals a different place in the screw-implant interface as the factor of the greater weight in this study. The location indicated that von Mises stress concentrations are not exclusive to the contact regions studied, moving to an area that is not in direct contact with the non-linear contact interfaces. In addition, the direction of load with an angle of 15 degrees presented the highest values of von Mises stress.</span> </p>
文摘This article describes a methodology for the non-linear analysis of existing masonry structures subjected to external yielding constraints, with particular attention to the historical and cultural heritage constructions. It is well known, indeed, that most of the arch and wall damages are often due to settlement of abutments, in the former case, and to settlement of foundations, in the latter one. The ability to observe and correctly analyze the cracking failure pattern, visible on such structures, is the main “diagnostic tool” for identifying its origin: the modification of load conditions over time, foundation settlements and earthquakes. The objective of this work is to identify a numeric modelling of masonry structures (such as walls, arches, vaults, ruins) under any load condition and subjected to inelastic settlements impressed to some external constraints. The purpose of the numerical procedure is to interpret the behaviour of such structures in order to assess both the peak settlement value and their specific failure mode in correspondence to a geometry which is very often compromised. Therefore, this procedure allows one to estimate the degree of the structures’ vulnerability, in order to prevent any future damage, both local and global. The iterative algorithm proposed in this article, developed in a calculation software, processes the structure considering, not only the properties of constitutive material, non-homogeneous and anisotropic, but also the change of the structure’s shape during the settlements increase. In this way a non-linear analysis is performed both materically and geometrically. Through a direct comparison between numerical and experimental results, obtained by testing some simple structural models in a laboratory, it was ascertained, both from a qualitative and quantitative point of view, the correctness and the efficacy of the proposed procedure, which will be explained below. Therefore, this numerical procedure demonstrates to be a useful “diagnostic tool” by which, starting from the input of the masonry structure to be studied and simulating a presumable event, one can trace the source of the causes that have generated a certain failure, comparing the cracking pattern of real structure with that plotted by the software.
文摘This paper presents a non-linear simulation of the impact on a structure with different energy absorption systems using finite element models. Literature review on bistable structure, aluminum foam and expandable polystyrene is presented and taken as basis to propose energy absorption systems. Using a base structure, these systems are implemented by means of finite element modeling. A comparison of the damage caused to the structure in case of impact without implementing energy absorption system, and implementing energy absorption systems based on bistable structures, polystyrene foam and aluminum foam are shown here in. The results demonstrate the advantages of using energy absorption systems on structures under impact loads.
文摘The longitudinal structure function with shadowing correction according to the nonlinear effects of the gluon density behavior at low x is considered. The solution of the GLR-MQ evolution equation for the gluon density shows that the FL^g(x, Q2) behavior can be tamed by the singularity at low x values. Comparing our results with H1 data at R=4 GeV-1 shows that at very low x this behavior is completely tamed by taking shadowing correction into account.
基金supported by Medical Science Foundation of Health Department (under contract No. H201034)Six Talent Summit Foundation of Jiangsu Province, China (under contract No. 2010-WS081)a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘The objective of this study was to investigate the mechanical characteristics of implant-abutment interface design in a dental implant system, using nonlinear finite element analysis (FEA) method. This finite element simulation study was applied on three commonly used commercial dental implant systems: model I, the reduced-diameter 3i implant system (West Palm Beach, FL, USA) with a hex and a 12-point double internal hexagonal connection; model II, the Semados implant system (Bego, Bremen, Germany) with combination of a conical (45° taper) and internal hexagonal connection; and model III, the Br,~nemark implant system (Nobel Biocare, Gothenburg, Sweden) with external hexagonal connection. In simulation, a force of 170 N with 45°oblique to the longitudinal axis of the implant was loaded to the top surface of the abutment. It has been found from the strength and stiffness analysis that the 3i implant system has the lowest maximum yon Mises stress, prirlcipal stress and displacement, while the Br^nemark implant system has the highest. It was concluded from our preliminary study using nonlinear FEA that the reduced-diameter 3i implant system with a hex and a 12-point double internal hexagonal connection had a better stress distribution, and produced a smaller displacement than the other two implant systems.
文摘The stability, accuracy, and dispersion of a semi implicit finite difference scheme for the numerical solution of external mode were carefully analyzed in this study. The stability analysis was implemented with the von Neumann method and proved that the scheme is unconditionally stable. Study of their accuracy showed that the finite difference equations were consistent with the differential equations with second order accuracy. The Eulerian Lagrangian discretization of the convective terms was also discussed. The existence of dispersion was proved to be unfavorable for the achievement of the real solution.
文摘This paper demonstrates a novel formulation of structural analysis.A novel stress-based formulation of structural analysis for material nonlinear problems was proposed in earlier work.In this paper,this methodology is further extended for 3 D finite element analysis.The approach avoids use of elastic moduli as the material input in the analysis procedure.It utilizes the whole stress-strain curve of the material.It can be shown that this analysis procedure solved the nonlinear or plasticity problem with relative ease.This paper solves a uniaxial bar,in which the results are compared with the solutions of Green-Lagrange strain and Piola-Kirchhoff stresses.The uniaxial bar is also solved by a regression model in the‘scikit-learn’module in Python.The second problem solved is of a beam in pure bending for which the energy release rate is measured.For the beam in pure bending,the bending moment carrying capacity of the beam section is evaluated by this methodology as the crack propagates through the depth of the beam.It can be shown that the methodology is very simple,accurate,and clear in its physical steps.
基金National Natural Science Foundation of China(Grant No.59895410,59779002)
文摘The dynamic response of offshore platforms is more serious in hostile sea environment than in shallow sea. In this paper, a hybrid solution combined with analytical and numerical method is proposed to compute the stochastic response of fixed offshore platforms to random waves, considering wave-structure interaction and non-linear drag force. The simulation program includes two steps: the first step is the eigenanalysis aspects associated the structure and the second step is response estimation based on spectral equations. The eigenanalysis could be done through conventional finite element method conveniently and its natural frequency and mode shapes obtained. In the second part of the process, the solution of the offshore structural response is obtained by iteration of a series of coupled spectral equations. Considering the third-order term in the drag force, the evaluation of the three-fold convolution should be demanded for nonlinear stochastic response analysis. To demonstrate this method, a numerical analysis is carried out for both linear and non-linear platform motions. The final response spectra have the typical two peaks in agreement with reality, indicating that the hybrid method is effective and can be applied to offshore engineering.
文摘An efficient observability analysis method is proposed to enable online detection of performance degradation of an optimization-based sliding window visual-inertial state estimation framework.The proposed methodology leverages numerical techniques in nonlinear observability analysis to enable online evaluation of the system observability and indication of the state estimation performance.Specifically,an empirical observability Gramian based approach is introduced to efficiently measure the observability condition of the windowed nonlinear system,and a scalar index is proposed to quantify the average system observability.The proposed approach is specialized to a challenging optimizationbased sliding window monocular visual-inertial state estimation formulation and evaluated through simulation and experiments to assess the efficacy of the methodology.The analysis result shows that the proposed approach can correctly indicate degradation of the state estimation accuracy with real-time performance.
文摘For the application of the time-temperature superposition principle a suitable relation is needed to describe the time-temperature shift factor a. Therefore, the Arrhenius equation is widely used due to its simple form and often leads to suitable results. Where, the Arrhenius equation presents a linear relation for the temperature-dependent shift factor in logarithmic scale ln(α) with the absolute inverse temperature (1/θ). However, in cases with a large temperature range which eventually include more complex reaction processes, the functional relation between ln(α) and (1/θ) is nonlinear in the 'Arrhenius plot'. In those cases, the monotone change of the nonlinear range in the 'Arrhenius plot' can be interpreted as a transient range between two approximately linear or constant regions. An extended application of the modified Arrhenius equation from Nakamura (1989) is presented in this study for this transient range. The introduced method was applied to describe the time-temperature equivalence in the relaxation analysis of restoring seal force of metal seals, which are used in lid-systems of transport and interim storage casks for radioactive materials. But, the method is widely valid and can be used for different objectives which are characterized by thermorheologically simple behavior with nonlinear sensitivity to inverse temperature.
文摘The ultimate strength analysis of offshore jacket platforms is a research project which has been developed in recent years. With the rapid development of marine oil industry, the departments of design and IMR (Inspection, Maintenance and Repair) in the offshore engineering have attached great importance to this project. The research procedure applies to both the stress check of new design platforms and the whole safety assessment of existing platforms. In this paper, we combine the pseudo non-linear technique with the linear analysis program and successfully analyze the ultimate strength of the space frame structure subject to the concentrated load and a real jacket platform subject to the dead load and environmental load.
文摘Soybean (Glycine max L. Merr.) adaptation to new environments has been hard to predict based on maturity group. The aim of this study was to evaluate the performance of 14 soybean genotypes, from the Soybean Breeding Program of the Federal University of Uberlandia, in their adaptive capacity and seed yield stability at 3 locations and 2 growing seasons. For the adaptability and stability analysis the Toler and Centroid methods were used;5 genotypic groups were identified in the first whereas 4 groups were identified in the latter. By the Toler method group A was composed by 4 genotypes, UFU-001, UFU-003, UFU-0010, and UFU-001. They showed a convex pattern of adaptability and stability. In contrast, the genotypes UFU-008 and UFU-0013 were classified in Group E with a concave pattern of adaptability and stability. Regarding results from the Centroid method, the Genotype UFU-002, with higher seed yield than average, was the only genotype in Ideotype VI with moderate adaptability to favorable environments. In contrast, 10 genotypes were included in the Ideotype V, of medium general adaptability. The genotypes UFU-001, UFU-002, UFU-006, UFU-0010, and UFU-0011 were recommended for use in the Brazilian Cerrado growing region. These genotypes had high seed yield potential in high quality environments.
文摘On foe basis of the Kirchoff-Karman hypothses for the nonlinear bending of thin plates, the three kinds of boundary value problems of nonlinear analysis for perforated fhin plates are presented under the differenr in-plane boundary conditions and the corresponding generalized varialional principles are established. One can see that all mathematical models presented in this paper are completely new ones and differ from the ordinary von Karman theory. These mathematical models can be applied to the nonlinear analysis and the Stability analysis of perforaled thin plates in arbitraryplane boundary conditions.
文摘Combined with the 3D FEM,end-anchored anchorage bolts were simulated by implicit anchorage bolt element.Implicit anchorage bolt elements hide in the elements of rock mass and extremely simplify the element subdivision.The calculated value of an- chorage bolt stress is larger than the measured one for the most time.we further analyzed the reciprocity of anchorage bolt and rock mass,and then deduced the analytical equa- tions of anchorage bolt stress and rock mass deformation under elasto-plastic state.The results indicate that it is essential to revise the anchorage bolts stress by using the formu- las deduced when rock mass is softened or significantly deformed.Finally,a case study indicates that the calculated results agree with those measured.Some helpful methods are offerd for more accurate simulation of the support effect and anchorage bolts real stress state.
文摘This study focuses on advanced finite element(FE)analyses on The Church of Nativity located in Bethlehem(Palestine),one of the most historic structures in the world.To ensure the model quality,a 3D FE model was created using two types of typical commercial software,DIANA FEA and SAP2000.From analyses,one of the expected behaviors for this kind of masonry structure“low modal period”was found.The seismic behavior of the church was studied using pushover analyses,which were conducted using DIANA FEA.The first unidirectional mass proportional load pattern was created in both directions,X-direction as a longitudinal direction and Y-direction as the transversal direction.An incremental iterative procedure was used with monotonically increasing horizontal loads,using constant gravity loads.The results showed that the transversal direction is the most vulnerable and the damage concentrates at the main lateral(longitudinal)walls,mainly at the south and north alignment walls,and also at the vaults and at the connections of the vaults to the apse.Crack width was at the upper limit in the in-plane direction(X-direction).While,in Y-direction,it exceeded the limits of IBC code in width and length with a maximum width of 13.7 mm.A more accurate nonlinear dynamic analysis is recommended in the near future,which takes into account the material nonlinearity for more reasonable seismic behavior simulation.