期刊文献+
共找到232篇文章
< 1 2 12 >
每页显示 20 50 100
The well-posedness of incompressible impinging jet flow in an axisymmetric finitely long nozzle
1
作者 WANG Xin ZHANG Fan 《四川大学学报(自然科学版)》 北大核心 2025年第1期31-37,共7页
This paper mainly studies the well-posedness of steady incompressible impinging jet flow problem through a 3D axisymmetric finitely long nozzle.This problem originates from the physical phenomena encountered in practi... This paper mainly studies the well-posedness of steady incompressible impinging jet flow problem through a 3D axisymmetric finitely long nozzle.This problem originates from the physical phenomena encountered in practical engineering fields,such as in short take-off and vertical landing(STOVL)aircraft.Nowadays many intricate phenomena associated with impinging jet flows remain inadequately elucidated,which limits the ability to optimize aircraft design.Given a boundary condition in the inlet,the impinging jet problem is transformed into a Bernoulli-type free boundary problem according to the stream function.Then the variational method is used to study the corresponding variational problem with one parameter,thereby the wellposedness is established.The main conclusion is as follows.For a 3D axisymmetric finitely long nozzle and an infinitely long vertical wall,given an axial velocity in the inlet of nozzle,there exists a unique smooth incom‑pressible impinging jet flow such that the free boundary initiates smoothly at the endpoint of the nozzle and extends to infinity along the vertical wall at far fields.The key point is to investigate the regularity of the corner where the nozzle and the vertical axis intersect. 展开更多
关键词 Existence and uniqueness impinging jet flow Incompressible flow Free boundary Axisym-metric finitely long nozzle
在线阅读 下载PDF
Removal of deposited metal particles on a horizontal surface by vertical submerged impinging jets
2
作者 Han Peng Xinliang Jia +4 位作者 Xiaofang Guo Yubo Jiang Zhipeng Li Zhengming Gao J.J.Derksen 《Chinese Journal of Chemical Engineering》 2025年第7期137-147,共11页
Jet agitation is known as a maintenance-free stirring technique for nuclear wastewater treatment and demonstrates great potential in transport of radioactive particles.Removal processes of horizontal sediment beds dri... Jet agitation is known as a maintenance-free stirring technique for nuclear wastewater treatment and demonstrates great potential in transport of radioactive particles.Removal processes of horizontal sediment beds driven by impinging jets were experimentally investigated using image capture and processing technique.The beds were composed of heavy fine particles with particle density ranging from 3700 to 12600 kg·m^(-3) and particle diameter from 5 to 100 μm.The jet Reynolds number varied between 4300 and 9600.The single-phase large eddy simulation method was used for calculating both jet flow characteristics and wall shear stresses.The effects of jet strength,particle density,particle diameter,and bed thickness on bed mobility in terms of the critical Shields numbers were considered.Specifically,the critical Shields number was found to be intricately related to properties of particles,and independent of jet intensity.A new Shields number curve for stainless-steel particles was found,and a model was proposed to predict the transport rate of thin beds,with R^(2)=0.96. 展开更多
关键词 Particle removal impinging jet Shields number Computational fluid dynamics Two-phase flow Transport
在线阅读 下载PDF
Mechanistic insights and practical applications of impinging-jet dynamics and atomization
3
作者 Yongze An Bo Wang +2 位作者 Zhili Peng Xiaodong Chen Vigor Yang 《Acta Mechanica Sinica》 2025年第7期21-37,共17页
This review summarizes recent progress in the study of impinging-jet dynamics and atomization,with a focus on liquid sheet formation,instability mechanisms,and the influence of key parameters such as fluid properties,... This review summarizes recent progress in the study of impinging-jet dynamics and atomization,with a focus on liquid sheet formation,instability mechanisms,and the influence of key parameters such as fluid properties,Weber number,and Reynolds number.Special attention is given to atomization behaviors under high pressure and external perturbations.Representative experimental and numerical approaches are introduced,and critical findings under complex conditions are highlighted.In addition,practical applications of impinging-jet technology in aerospace propulsion,biomedical devices,and energy science are discussed.This review aims to serve as a concise reference for researchers interested in multiphase flow dynamics and engineering applications of impinging jets. 展开更多
关键词 impinging jets Liquid sheet breakup ATOMIZATION Interfacial instability Spray dynamics Multiphase flow
原文传递
Multi-Objective Optimization of Swirling Impinging Air Jets with Genetic Algorithm and Weighted Sum Method
4
作者 Sudipta Debnath Zahir Uddin Ahmed +3 位作者 Muhammad Ikhlaq Md.Tanvir Khan Avneet Kaur Kuljeet Singh Grewal 《Frontiers in Heat and Mass Transfer》 2025年第1期71-94,共24页
Impinging jet arrays are extensively used in numerous industrial operations,including the cooling of electronics,turbine blades,and other high-heat flux systems because of their superior heat transfer capabilities.Opt... Impinging jet arrays are extensively used in numerous industrial operations,including the cooling of electronics,turbine blades,and other high-heat flux systems because of their superior heat transfer capabilities.Optimizing the design and operating parameters of such systems is essential to enhance cooling efficiency and achieve uniform pressure distribution,which can lead to improved system performance and energy savings.This paper presents two multi-objective optimization methodologies for a turbulent air jet impingement cooling system.The governing equations are resolved employing the commercial computational fluid dynamics(CFD)software ANSYS Fluent v17.The study focuses on four controlling parameters:Reynolds number(Re),swirl number(S),jet-to-jet separation distance(Z/D),and impingement height(H/D).The effects of these parameters on heat transfer and impingement pressure distribution are investigated.Non-dominated Sorting Genetic Algorithm(NSGA-II)and Weighted Sum Method(WSM)are employed to optimize the controlling parameters for maximum cooling performance.The aim is to identify optimal design parameters and system configurations that enhance heat transfer efficiency while achieving a uniform impingement pressure distribution.These findings have practical implications for applications requiring efficient cooling.The optimized design achieved a 12.28%increase in convective heat transfer efficiency with a local Nusselt number of 113.05 compared to 100.69 in the reference design.Enhanced convective cooling and heat flux were observed in the optimized configuration,particularly in areas of direct jet impingement.Additionally,the optimized design maintained lower wall temperatures,demonstrating more effective thermal dissipation. 展开更多
关键词 Jet impingement multi-objective optimization pareto front NSGA-Ⅱ WSM
在线阅读 下载PDF
EFFECT OF WALL FUNC TION IN NUMERICAL STUDY ON TURBULENT IMPINGING JET
5
作者 徐惊雷 徐忠 +1 位作者 黄淑娟 张堃元 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2001年第1期29-34,共6页
A low Reynolds number k-ε model is used in the numeri cal study on a circular semi-confined turbulent impinging jet . The result is c ompared with that of the standard k-ε model and a refined k-ε mode l, which re-c... A low Reynolds number k-ε model is used in the numeri cal study on a circular semi-confined turbulent impinging jet . The result is c ompared with that of the standard k-ε model and a refined k-ε mode l, which re-consi-dered the fluctuating pressure diffusion term in the dissipa tion rate equation (ε-equation) through modeling. It shows that the low Re ynolds number k-ε model and the standard k-ε model yield very poor performance, while the predicting ability of the refined k-ε model is mu ch improved , especially for the turbulent kinetic energy k. So it can be co ncluded that the poor performance of the standard k-ε model is owing to t he incorrect considering the effect of the fluctuating pressure diffusion term r ather than the use of the wall function near the wall just as presumed in the re ference. 展开更多
关键词 impinging jet TURBULENCE fluctuating pressure diffusion term wall function
在线阅读 下载PDF
Experimental Investigation on Flow and Drying Characteristics of Impinging Stream Drying
6
作者 Xiulan Huai, Dengying Liu, Xiaoming Cui, Qun Meng (Institute of Engineering Thermophysics, Chemise Academy of Sciences, P. O. Box 2706, Beijing 100080, China) 《Journal of University of Science and Technology Beijing》 CSCD 2001年第2期141-144,共4页
Based on the experimental investigation of one-stage semi-circular impinging stream drying, the experiments with the two-stage semi-circular, as well as the vertical and semi-circular combined impinging stream drying ... Based on the experimental investigation of one-stage semi-circular impinging stream drying, the experiments with the two-stage semi-circular, as well as the vertical and semi-circular combined impinging stream drying were conducted. The variations of system pressure drop, the mean residence time of particles with the mass flow-rate ratio and air velocity etc, were determined. The influences of inlet air temperature, mass flow-rate ratio, initial moisture content of particles and air velocity etc. on drying characteristics were also studied. The results indicate that the vertical and semi-circular combined impinging stream drying can make full use of the advantages of both the vertical and semi-circular impinging stream drying. Reasonable mass flow-rate ratio, air velocity, and higher inlet air temperature should be used for less energy consumption and cost during drying process. 展开更多
关键词 two-stage semi-circular impinging stream drying combined impinging stream drying flow characteristics drying characteristics
在线阅读 下载PDF
Investigation of erosion behavior of 304 stainless steel under solid–liquid jet flow impinging at 30° 被引量:14
7
作者 Yan-Lin Zhao Chun-Yan Tang +2 位作者 Jun Yao Zi-Hua Zeng Shi-Gang Dong 《Petroleum Science》 SCIE CAS CSCD 2020年第4期1135-1150,共16页
This work carried out liquid-solid two-phase jet experiments and simulations to study the erosion behavior of 304 stainless steel at 30° impingement.The single-phase impinging jet was simulated using dense grid b... This work carried out liquid-solid two-phase jet experiments and simulations to study the erosion behavior of 304 stainless steel at 30° impingement.The single-phase impinging jet was simulated using dense grid by one-way coupling of solid phase due to its dilute distribution.The simulation results agreed well with experiments.It was found that after impinging particle attrition occurred and particles became round with decreasing length-ratio and particle breakage occurred along the "long" direction.Both experiment and simulations found that the erosion generated on the sample could be divided into three regions that were nominated as stagnant region,cutting transition region and wall jet region.Most particle-wall impacts were found to occur in the cutting transition region and the wall jet region.In the cutting transition region,holes and lip-shaped hogbacks were generated in the same direction as the flow imping.In the wall jet region,furrows and grooves were generated.The averaged grooves depth tended to become constant with the progress of impinging and reach the steady state of erosion in the end.In addition,it was found that impinging effect increased erosion and anti-wear rate. 展开更多
关键词 Solid–liquid flow impinging jet EROSION EXPERIMENT Numerical simulation
原文传递
Micromixing in the Submerged Circulative Impinging Stream Reactor 被引量:20
8
作者 伍沅 肖杨 周玉新 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2003年第4期420-425,共6页
Micromixing in the submerged circulative impinging stream reactor (SCISR) developed by the authors is investigated with the Bourne's reaction scheme. The values measured for the impinging velocity, u0, under the ... Micromixing in the submerged circulative impinging stream reactor (SCISR) developed by the authors is investigated with the Bourne's reaction scheme. The values measured for the impinging velocity, u0, under the conditions of SCISR normal operation, only is of the order of 0.1m·s^-1, are much slower than that inferred,suggesting low power requirement for operation. The values of the characteristic time constant for micromixing,tM, determined in the impinging velocity range of 0.184m·s^-1 < u0 < 0.326m·s^-1 are ranged from 192ms to 87 ms, showing that impinging streams promotes micromixing very efficiently. The data follow approximately the relationship of tM∝ u0^-1.5. A comparative study shows that the micromixing performance of SCISR is much better than that of the traditional stirred tank reactor. The tM values predicted with the existing theoretical model are systematically longer than those measured by about 2--3 times, implying that the regularity of impinging streams promoting micromixing is unclear yet. 展开更多
关键词 MICROMIXING impinging streams REACTOR
在线阅读 下载PDF
Influence of shock wave impinging region on supersonic film cooling 被引量:10
9
作者 Xiaokai SUN Hang NI +2 位作者 Wei PENG Peixue JIANG Yinhai ZHU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2021年第5期452-465,共14页
Shock waves can significantly affect the film cooling for supersonic flow and shock waves may have different influence when impinging in different regions.The present study numerically compared the results of shock wa... Shock waves can significantly affect the film cooling for supersonic flow and shock waves may have different influence when impinging in different regions.The present study numerically compared the results of shock wave impinging in three different regions and analyzed the effect of impinging region.The shock wave generators were located at x/s=5,25,45 with 4°,7°and 10°shock wave incidence.The mainstream Mach number was 3.2 and the coolant Mach number was 1.2 or 1.5.The numerical results illustrated that the shock wave impinged in the further upstream region led to a larger high-pressure region and a larger vortex in the boundary layer.Moreover,placing the shock wave generator upstream resulted in the lower mass fraction of coolant in the downstream region.The velocity in the upstream part of the cooling layer was lower than the midstream and downstream part,which resulted in the less ability to resist the shock wave impingement.Therefore,the upstream impingement deteriorated the cooling performance to a greater extent.The study also manifested that the stronger shock wave had a larger effect on supersonic film cooling.Increasing the coolant inlet Mach number can increase the blowing ratio and reduce the mixing,which was of benefit to improve cooling effect. 展开更多
关键词 Film cooling impinging region Mach number Shock wave Supersonic flow
原文传递
Pressure Fluctuation in the Submerged Circulative Impinging Stream Reactor 被引量:14
10
作者 孙怀宇 伍沅 徐成海 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2006年第4期428-434,共7页
Pressure fluctuation in the submerged circulative impinging stream reactor (SCISR) is studied by measuring the dynamic pressure with micro pressure sensors of high accuracy, with water as the process material. Exper... Pressure fluctuation in the submerged circulative impinging stream reactor (SCISR) is studied by measuring the dynamic pressure with micro pressure sensors of high accuracy, with water as the process material. Experimental results show that the maximum amplitude of fluctuation can be up to about 1.6kPa. On the power spectra the fluctuation is relatively concentrated in the range of 〈1000Hz, with some weak peeks in acoustic wave range. The space profile of intensive fluctuation region in the reactor is determined. The region is found to take the form of a couple truncated cones of empty core, with coincided bottoms, and is symmetrical with respect to the impinging plane and approximately symmetrical about the axis, essentially independent of u0. The integral intensity of fluctuation increases as the impinging velocity, Uo increasing. 展开更多
关键词 pressure fluctuation impinging streams REACTOR
在线阅读 下载PDF
Simulation of Droplet-gas Flow in the Effervescent Atomization Spray with an Impinging Plate 被引量:6
11
作者 钱丽娟 林建忠 熊红兵 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2009年第1期8-19,共12页
Abstract A comprehensive three-dimensional model of droplet-gas flow was presented to study the evolution of spray in the effervescent atomization spray with an impinging plate. For gas phase, the N-S equation with t... Abstract A comprehensive three-dimensional model of droplet-gas flow was presented to study the evolution of spray in the effervescent atomization spray with an impinging plate. For gas phase, the N-S equation with the κ-ε turbulence model was solved, considering two-way coupling interaction between droplets and gas phase. Dispersed droplet phase is modeled as Lagrangian entities, accounting for the physics of droplet generation from primary and secondary breakup, droplet collision and coalescence, droplet momentum and heat transfer. The mean size and sta- tistical distribution of atomized droplets at various nozzle-to-plate distances were calculated. Some simulation resuits were compared well with experimental data. The results show that the existence of the impinging plate has a pronounced influence on the droplet mean size, size distribution and the droplet spatial distribution. The air-to-liquid ratio has obvious effects on the droplet size and distribution. 展开更多
关键词 effervescent atomization spray impinging plate droplet distribution Sauter mean diameter SIMULATION
在线阅读 下载PDF
Optimal Conditions for Preparing Ultra-Fine CeO_2 Powders in A Submerged Circulative Impinging Stream Reactor 被引量:6
12
作者 池汝安 徐志高 +1 位作者 吴元欣 王存文 《Journal of Rare Earths》 SCIE EI CAS CSCD 2007年第4期422-427,共6页
Cerium carbonate powders were produced in a submerged circulation impinging stream reactor (SCISR) from Ce(NO3)3· 6H2O. NH4HCO3 was used as a precipitant in the reaction. Cerium carbonate powders were roasted... Cerium carbonate powders were produced in a submerged circulation impinging stream reactor (SCISR) from Ce(NO3)3· 6H2O. NH4HCO3 was used as a precipitant in the reaction. Cerium carbonate powders were roasted to produce ultra-fine cerium dioxide (CeO2) powders. The optimal conditions of such production process were obtained by orthogonal and one-factor experiments. The results showed that ultra-fine and narrowly distributed cerium carbonate powders were produced under the optimal flowing conditions. The concentrations of Ce(NO3)3 and NH4HCO3 solutions were 02,5 and 0.3 mol · L^-1, respectively. The concentration of PEG4000 added in these two solutions was 4 g · L^-1. The stirring ratio, reaction temperature, feeding time, solution pH, reaction time and digestion time were 900 r · min^- 1,80 ℃, 20 min, 5 - 6, 5 min and 1 h, respectively. The final product, CeO2 powders, was obtained by roasting the produced cerium carbonate in air for 3 h at 500 ℃. The finally produced CeO2 powders were torispherical particles with a narrow size distribution of 0.8 -2.5 μm. The crystal structure of CeO2 powders belonged to cubic crystal system and its space point 5 group was OH^5-FM3M. Under optimal conditions, powders produced by SCISR were finer and more narrowly distributed than that by Stirred Tank Reactor (STR). 展开更多
关键词 impinging stream REACTOR cerium dioxide ultra-fine powder rare earths
在线阅读 下载PDF
Quadrature Method of Moments for Nanoparticle Coagulation and Diffusion in the Planar Impinging Jet Flow 被引量:5
13
作者 于明州 林建忠 熊红兵 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2007年第6期828-836,共9页
A computational model combining large .eddy simulation with quadrature moment method was em-ployed to study nanoparticle evolution in a confined impinging jet. The investigated particle size is limited in the transien... A computational model combining large .eddy simulation with quadrature moment method was em-ployed to study nanoparticle evolution in a confined impinging jet. The investigated particle size is limited in the transient regime, and the particle collision kernel was obtained by using the theory of flux matching. The simulation was validated by comparing it with the experimental results. The numerical results show coherent structure acts to dominate particle number intensity, size and polydispersity distributions, and it also induce particle-laden iet to be diluted by .the ambient.The evolution of particle dynarnics in.the impinging jet flow are strongly related to the Rey-nolds number and nozzle-to-plate distance, and their relationships were analyzed. 展开更多
关键词 NANOPARTICLE COAGULATION impinging jet large eddy simulation quadrature moment method
在线阅读 下载PDF
Experimental of combustion instability in NTO/MMH impinging combustion chambers 被引量:5
14
作者 Anlong YANG Bin LI +2 位作者 Yu YAN Shuaijie XUE Lixin ZHOU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2020年第5期1476-1485,共10页
This paper presents an experimental study into dynamics of chamber pressure and heat release rate during self-excited spinning and standing azimuthal mode in NTO/MMH (nitrogen tetroxide/monomethylhydrazine) impinging ... This paper presents an experimental study into dynamics of chamber pressure and heat release rate during self-excited spinning and standing azimuthal mode in NTO/MMH (nitrogen tetroxide/monomethylhydrazine) impinging combustion chambers.Nine cases including two combustion chamber configurations were conducted.The operating conditions of all unstable cases were located in the instability region according to Hewitt empirical correlation.The results show that chamber pressure oscillations keep pace with the corresponding OH*chemiluminescence intensity over the whole combustion region in the spinning and standing modes.It is indicated that the Rayleigh index is positive over the whole combustion area in all the unstable cases.A significant supersonic flame front structure of the first-order spinning mode was found in a cylindrical chamber,which means that a detonation wave could exist in the cylindrical chamber without a center body.The pressure and heat release rate oscillations at the pressure node are nonnegligible although their amplitudes are lower than those at the pressure antinode in the first-order standing mode with an annular chamber.Besides,the dominant frequency of pressure and heat release rate oscillations at the pressure node is twice as high as that at the pressure antinode. 展开更多
关键词 ATOMIZATION Combustion stability impinging jet injector Klystron effect Liquid rocket engine
原文传递
Periodic atomization characteristics of an impinging jet injector element modulated by Klystron effect 被引量:4
15
作者 Anlong YANG Bin LI +2 位作者 Shangrong YANG Yunfei XU Longfei LI 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2018年第10期1973-1984,共12页
An experimental study on the Klystron effect of periodic injection modulated by pressure drop fluctuations on subsequent atomization is conducted. Time-resolved atomization backlit images and atomization Mie scatter i... An experimental study on the Klystron effect of periodic injection modulated by pressure drop fluctuations on subsequent atomization is conducted. Time-resolved atomization backlit images and atomization Mie scatter images are captured by using the high speed camera. It is found that periodicity of forced atomization relies on pressure drop fluctuation amplitude and phase differences between atomization and pressure drop fluctuations relate to fluctuation frequencies. This feature of periodic atomization induced by Klystron effect corresponds to periodicities and high amplitudes of pressure fluctuations in unstable combustion chambers and chaos and low amplitudes of pressure fluctuations in stable combustions chambers. Drastically periodic varying of gross surface area of droplets with time was shown in Mie scatter images. The importance of periodic impinging jet atomization modulated by pressure drop fluctuations for acoustic liquid propellant combustion instabilities is illustrated. 展开更多
关键词 ATOMIZATION Combustion stability impinging jet injector Klystron effect Liquid rocket engine Mie scatter
原文传递
CFD analysis of performance improvement of the Savonius water turbine by using an impinging jet duct design 被引量:3
16
作者 Narendra Thakur Agnimitra Biswas +1 位作者 Yogesh Kumar Mithinga Basumatary 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2019年第4期794-801,共8页
The majority of research on water turbines focuses on design improvement of large-scale hydrokinetic turbines for power generation, which may have delayed the utilization of kinetic energy contained in rivers and cana... The majority of research on water turbines focuses on design improvement of large-scale hydrokinetic turbines for power generation, which may have delayed the utilization of kinetic energy contained in rivers and canals. The aim of this paper is to improve the efficiency of a two bladed Savonius type cross-flow hydrokinetic turbine, which can be used as an energy converter to harness free-stream kinetic energy of water. An impinging jet duct design is presented for improving performance of the Savonius turbine in wind application as seen from literature. The performance of the modified turbine is evaluated using CFD software Fluent, and is compared with that of a simple two bladed Savonius water turbine and some of the prominent literature designs of the Savonius turbine. It is shown that the present design exhibits improved performance compared to the selected designs of the Savonius turbine.Further an insight of the improved performance of the modified turbine is also obtained from flow physics study. 展开更多
关键词 SAVONIUS WATER TURBINE CFD impinging jet DUCT design POWER coefficient WATER POWER Flow physics
在线阅读 下载PDF
Theoretical analysis of fluid mixing time in liquid-continuous impinging streams reactor 被引量:3
17
作者 罗燕 周剑秋 +2 位作者 郭钊 余蓓 熊卉 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第8期3217-3222,共6页
The mixing time of impact zone in liquid-continuous impinging streams reactor(LISR) is theoretically calculated by empirical model and modern micromixing model of the fluid mixing process, and the variation laws of ma... The mixing time of impact zone in liquid-continuous impinging streams reactor(LISR) is theoretically calculated by empirical model and modern micromixing model of the fluid mixing process, and the variation laws of macromixing time and micromixing time are quantitatively discussed. The results show that under a continuous and stable operating condition, as the paddle speed increases, the macromixing time and micromixing time calculated by the two models both decrease, even in a linkage equilibrium state. Simultaneously, as the paddle speed increases, the results figured by the two models tend to be consistent. It indicates that two models both are more suitable for calculation of mixing time in high paddle speed. Compared with the existing experimental results of this type of reactor, the mixing time computed in the speed of 1500 r/min is closer to it. These conclusions can provide an important reference for systematically studying the strengthening mechanism of LISR under continuous mixing conditions. 展开更多
关键词 impinging stream reactor empirical model theoretical model mixing time comparative analysis
在线阅读 下载PDF
Numerical studies on four-engine rocket exhaust plume impinging on flame deflectors with afterburning 被引量:3
18
作者 Zhi-tan Zhou Chang-fang Zhao +1 位作者 Chen-yu Lu Gui-gao Le 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第4期1207-1216,共10页
This paper studies the four-engine liquid rocket flow field during the launching phase.Using threedimensional compressible Navier-Stokes equations and two-equation realizable k-epsilon turbulence model,an impact model... This paper studies the four-engine liquid rocket flow field during the launching phase.Using threedimensional compressible Navier-Stokes equations and two-equation realizable k-epsilon turbulence model,an impact model is established and flow fields of plume impinging on the two different shapes of flame deflectors,including wedge-shaped flame deflector and cone-shaped flame deflector,are calculated.The finite-rate chemical kinetics is used to track chemical reactions.The simulation results show that afterburning mainly occurs in the mixed layer.And the region of peak pressure occurs directly under the rocket nozzle,which is the result of the direct impact of exhaust plume.Compared with the wedgeshaped flame deflector,the cone-shaped flame deflector has great performance on guiding exhaust gas.The wedge-shaped and cone-shaped flame deflectors guide the supersonic exhaust plume away from the impingement point with two directions and circumferential direction,respectively.The maximum pressure and temperature on the wedge-shaped flame deflector surface are 37.2%and 9.9%higher than those for the cone-shaped flame deflector.The results provide engineering guidance and theoretical significance for design in flame deflector of the launch platforms. 展开更多
关键词 Four-engine rocket AFTERBURNING impinging flow field Different deflectors Numerical simulations
在线阅读 下载PDF
Micromixing efficiency in a T-shaped confined impinging jet reactor 被引量:3
19
作者 高正明 韩敬 +1 位作者 包雨云 李志鹏 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2015年第2期350-355,共6页
Confined impinging jet reactor(CIJR)offers advantages for chemical rapid processes and has become an important new reactor used in the chemical industry.The micromixing efficiency in a T-shaped CIJR for two tubes of i... Confined impinging jet reactor(CIJR)offers advantages for chemical rapid processes and has become an important new reactor used in the chemical industry.The micromixing efficiency in a T-shaped CIJR for two tubes of inner diameter of 3 mm was studied by using a parallel competing iodide–iodate reaction as the working system.In this work,the effects of different operating conditions,such as impinging velocity and acid concentration,on segregation index were investigated.In addition,the effects of the inner nozzles diameter and the distance L between the jet axis and the top wall of the mixing chamber on the micromixing efficiency were also considered.It is concluded that the best range of L in this CIJR is 6.5–12.5 mm.Based on the incorporation model,the estimated minimum micromixing time tmof CIJR approximately equals to 2×10-4s.These experimental results indicate clearly that CIJR possesses a much better micromixing performance compared with the conventional stirred tank(micromixing time of 2×10-3to 2×10-2s).Hence,it can be envisioned that CIJR has more promising applications in various industrial processes. 展开更多
关键词 impinging jet reactor MICROMIXING Segregation index Incorporation model
在线阅读 下载PDF
Pressure Fluctuation in the Submerged Circulative Impinging Stream Reactor 被引量:2
20
作者 孙怀宇 伍沅 徐成海 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2006年第4X期428-434,共7页
Pressure fluctuation in the submerged circulative impinging stream reactor (SCISR) is studied by meas- uring the dynamic pressure with micro pressure sensors of high accuracy, with water as the process material. Ex- p... Pressure fluctuation in the submerged circulative impinging stream reactor (SCISR) is studied by meas- uring the dynamic pressure with micro pressure sensors of high accuracy, with water as the process material. Ex- perimental results show that the maximum amplitude of fluctuation can be up to about 1.6kPa. On the power spectra the fluctuation is relatively concentrated in the range of <1000Hz, with some weak peeks in acoustic wave range. The space profile of intensive fluctuation region in the reactor is determined. The region is found to take the form of a couple truncated cones of empty core, with coincided bottoms, and is symmetrical with respect to the impinging plane and approximately symmetrical about the axis, essentially independent of u0. The integral intensity of fluctua- tion increases as the impinging velocity, u0 increasing. 展开更多
关键词 PRESSURE FLUCTUATION impinging STREAMS REACTOR
在线阅读 下载PDF
上一页 1 2 12 下一页 到第
使用帮助 返回顶部