Deformable batteries with compressive and impact-buffered abilities are essential for enhancing battery safety.However,existing compressible electrodes often face limited physical deformation and generate high stress,...Deformable batteries with compressive and impact-buffered abilities are essential for enhancing battery safety.However,existing compressible electrodes often face limited physical deformation and generate high stress,leading to package bulges of batteries.Here,we present a metamaterial-inspired design to develop negative Poisson’s ratio(NPR)structural electrodes using a directional freezing 3D printing-assisted strategy.This approach incorporates both macroscopic NPR structures and microscopic directional porous structures,which enhances ion transport,improves compressibility and provides impact resistance,effectively preventing package bulges during compression.Consequently,the electrodes demonstrate a high 50%compressible deformation and recover their original state even after 50 cycles of 25%compression.The 3D-printed lithium iron phosphate cathodes deliver a high average specific capacity of 153 mAh/g over 100 cycles and exhibit outstanding rate capability.Furthermore,the assembled full cell maintains both excellent compressibility and impact-buffered resistance,highlighting its potential applications.This innovative design of NPR metamaterial-structured electrodes provides a universal platform for developing the next generation of impact-buffered,compressible structural batteries.展开更多
基金financial support from the National Key Research and Development Program of China(2022YFB3807200)the National Natural Science Foundation of China(22109021)+2 种基金Natural Science Foundation of Jiangsu Province,Major Project(BK20222005)the Start-up Research Fund of Southeast University(RF1028623150)the Taihu Lake Innovation Fund for the School of Future Technology of Southeast University.
文摘Deformable batteries with compressive and impact-buffered abilities are essential for enhancing battery safety.However,existing compressible electrodes often face limited physical deformation and generate high stress,leading to package bulges of batteries.Here,we present a metamaterial-inspired design to develop negative Poisson’s ratio(NPR)structural electrodes using a directional freezing 3D printing-assisted strategy.This approach incorporates both macroscopic NPR structures and microscopic directional porous structures,which enhances ion transport,improves compressibility and provides impact resistance,effectively preventing package bulges during compression.Consequently,the electrodes demonstrate a high 50%compressible deformation and recover their original state even after 50 cycles of 25%compression.The 3D-printed lithium iron phosphate cathodes deliver a high average specific capacity of 153 mAh/g over 100 cycles and exhibit outstanding rate capability.Furthermore,the assembled full cell maintains both excellent compressibility and impact-buffered resistance,highlighting its potential applications.This innovative design of NPR metamaterial-structured electrodes provides a universal platform for developing the next generation of impact-buffered,compressible structural batteries.