Rigid barrier is a straightforward and effective countermeasure widely used for mitigating debris flow.However,in current designs,it remains unclear how to optimize the rigid barrier to enhance its mechanical properti...Rigid barrier is a straightforward and effective countermeasure widely used for mitigating debris flow.However,in current designs,it remains unclear how to optimize the rigid barrier to enhance its mechanical properties.Therefore,this study investigates the influence of the shape of the upstream face of the rigid barrier,referred to as the'barrier shape',on the impact dynamics of debris flow entraining a boulder onto rigid barrier.This study employs a coupled numerical approach involving smoothed particle hydrodynamics(SPH),the discrete element method(DEM),and the finite element method(FEM).The simulation results demonstrate that the barrier shape can affect the mechanical properties of the rigid barrier by altering the interaction mode between the debris flow and the barrier.Compared to vertical and slanted barriers,a curved barrier exhibits superior mechanical properties when subjected to debris flow impact.Furthermore,reducing the slope of the upstream face appropriately proves to be an effective method for enhancing the impact resistance of slanted barriers.The relevant findings from this study can serve as valuable references for the structural optimization of rigid barriers.展开更多
The impact dynamics of a flexible multibody system is investigated. By using a partition method, the system is divided into two parts, the local impact region and the region away from the impact. The two parts are con...The impact dynamics of a flexible multibody system is investigated. By using a partition method, the system is divided into two parts, the local impact region and the region away from the impact. The two parts are connected by specific boundary conditions, and the system after partition is equivalent to the original system. According to the rigid-flexible coupling dynamic theory of multibody system, system's rigid-flexible coupling dynamic equations without impact are derived. A local impulse method for establishing the initial impact conditions is proposed. It satisfies the compatibility con- ditions for contact constraints and the actual physical situation of the impact process of flexible bodies. Based on the contact constraint method, system's impact dynamic equa- tions are derived in a differential-algebraic form. The contact/separation criterion and the algorithm are given. An impact dynamic simulation is given. The results show that system's dynamic behaviors including the energy, the deformations, the displacements, and the impact force during the impact process change dramatically. The impact makes great effects on the global dynamics of the system during and after impact.展开更多
The impact dynamics, impact effect, and post-impact unstable motion sup- pression of free-floating space manipulator capturing a satellite on orbit are analyzed. Firstly, the dynamics equation of free-floating space m...The impact dynamics, impact effect, and post-impact unstable motion sup- pression of free-floating space manipulator capturing a satellite on orbit are analyzed. Firstly, the dynamics equation of free-floating space manipulator is derived using the sec- ond Lagrangian equation. Combining the momentum conservation principle, the impact dynamics and effect between the space manipulator end-effector and satellite of the cap- ture process are analyzed with the momentum impulse method. Focusing on the unstable motion of space manipulator due to the above impact effect, a robust adaptive compound control algorithm is designed to suppress the above unstable motion. There is no need to control the free-floating base position to save the jet fuel. Finally, the simulation is proposed to show the impact effect and verify the validity of the control algorithm.展开更多
The impact problem of a flexible multibody system is a non-smooth, high-transient, and strong-nonlinear dynamic process with variable boundary. How to model the contact/impact process accurately and efficiently is one...The impact problem of a flexible multibody system is a non-smooth, high-transient, and strong-nonlinear dynamic process with variable boundary. How to model the contact/impact process accurately and efficiently is one of the main difficulties in many engineering applications. The numerical approaches being used widely in impact analysis are mainly from two fields: multibody system dynamics (MBS) and computational solid mechanics (CSM). Approaches based on MBS provide a more efficient yet less accurate analysis of the contact/impact problems, while approaches based on CSM are well suited for particularly high accuracy needs, yet require very high computational effort. To bridge the gap between accuracy and efficiency in the dynamic simulation of a flexible multibody system with contacts/impacts, a partition method is presented considering that the contact body is divided into two parts, an impact region and a non-impact region. The impact region is modeled using the finite element method to guarantee the local accuracy, while the non-impact region is modeled using the modal reduction approach to raise the global efficiency. A three-dimensional rod-plate impact experiment is designed and performed to validate the numerical results. The principle for how to partition the contact bodies is proposed: the maximum radius of the impact region can be estimated by an analytical method, and the modal truncation orders of the non-impact region can be estimated by the highest frequency of the signal measured. The simulation results using the presented method are in good agreement with the experimental results. It shows that this method is an effec-rive formulation considering both accuracy and efficiency. Moreover, a more complicated multibody impact problem of a crank slider mechanism is investigated to strengthen this conclusion.展开更多
In this paper a computational methodology on impact dynamics of the flexible multibody system is presented. First, the floating frame of reference approach and nodal coordinates on the basis of finite element formulat...In this paper a computational methodology on impact dynamics of the flexible multibody system is presented. First, the floating frame of reference approach and nodal coordinates on the basis of finite element formulation are used to describe the kinematics of planar deformable bodies. According to the kinematic description of contact conditions, the contact constraint equations of planar flexible bodies are derived. Based on the varying topology technique the impact dynamic equations for a planar multibody system are established. Then the initial conditions of the equations in each contact stage are determined according to the discontinuity theory in continuum mechanics. The experiments between the aluminum rods are performed to check the correctness of the proposed method. Through the comparison between the numerical and experimental results the proposed method is validated. Experimental results also show that the impulse momentum method cannot accurately predict the complex impact dynamic phenomena and the continuous model may lead to a serious error when used to simulate the impact problems with significant wave propagation effects.展开更多
The lift force was reported not to be high enough to support the dragonfly’s weight during flight in some conventional investigations,and higher lift force is required for its takeoff.In this study,by employing a thi...The lift force was reported not to be high enough to support the dragonfly’s weight during flight in some conventional investigations,and higher lift force is required for its takeoff.In this study,by employing a thin plate model,impact effect is investigated for the wing deformation in dragonfly flapping during takeoff.The static displacement is formulated to compare with the dynamical displacement caused by impact.The governing equation of motion for the impact dynamics of a dragonfly wing is derived based on Newton’s second law.Separation of variables technique and assumed modes method are introduced to solve the resulting equations.Further,lift force is presented for the cases of considering and without considering the impact on the wing flapping which indicates that the impact has prominent effects for the dragonfly’s aerodynamic performance.Numerical simulations demonstrate that considering the impact effect on the wing flapping can increase the wing deformation,which results in the rise of the lift force.The enhanced lift force is of critical importance for the dragonfly’s takeoff.展开更多
The examination of an unstructured finite volume method for structural dynamics is assessed for simulations of systematic impact dynamics. A robust display dual-time stepping method is utilized to obtain time accurate...The examination of an unstructured finite volume method for structural dynamics is assessed for simulations of systematic impact dynamics. A robust display dual-time stepping method is utilized to obtain time accurate solutions. The study of impact dynamics is a complex problem that should consider strength models and state equations to describe the mechanical behavior of materials. The current method has several features, l) Discrete equations of unstructured finite volume method naturally follow the conservation law. 2) Display dual-time stepping method is suitable for the analysis of impact dynamic problems of time accurate solutions. 3) The method did not produce grid distortion when large deformation appeared. The method is validated by the problem of impact dynamics of an elastic plate with initial conditions and material properties. The results validate the finite element numerical data展开更多
The effects of the initial conditions of impact dynamics equations are investigated numerically and experimentally.The inadequacies of previous studies on initial conditions are pointed out.Then a coefficient of veloc...The effects of the initial conditions of impact dynamics equations are investigated numerically and experimentally.The inadequacies of previous studies on initial conditions are pointed out.Then a coefficient of velocity jump at the moment of impact is introduced,and the experiments for the mental rods are implemented to validate the appending constraints modeling methods for impact process.The comparisons between the experimental and simulated results at different coefficients are used to study the effects of the velocity jump conditions to the numerical simulation.The results indicate that the physical velocity response of bodies during impact is smooth;the different values of velocity jump only have small effects on numerical oscillation of velocity response,and they have no effects on the time history of impact force.展开更多
Percussion drilling technology can be used to increase the rate of penetration in deep shale reservoirs,but the interaction mechanism among impact loads,drilling teeth and rock has not been sufficiently investigated.F...Percussion drilling technology can be used to increase the rate of penetration in deep shale reservoirs,but the interaction mechanism among impact loads,drilling teeth and rock has not been sufficiently investigated.For this reason,shales with different bedding angles are used to carry out impact compression and tensile experiments as well as the rock-breaking experiments by single axe-shaped tooth,the variation of dynamic strengths,rock failure characteristics,fractal dimensions,and tensile/compression ratios under different load-bedding angles(α)are investigated.Then,the three-dimensional scanning device is used to measure the penetration depth and rock-breaking volume under different load-bedding angles.The results show that with the increase of load-bedding angle(0°-90°),the compressive strength decreases and then increases,with the lowest strength atα=45°and the highest strength atα=0°;the tensile strength decreases and then increases,with the lowest strength nearα=30°and the highest strength atα=90°.With the growing impact rate,the effect of load-bedding angle on dynamic compressive strength decreases,and the effect on dynamic tensile strength becomes more significant.When the impact velocity is high(≥8.0 m/s),the tensile-compressive ratio first decreases and then increases,and both reach a minimum at a load-bedding angle of 30°and a maximum at 60°.With the increasing of the load-bedding angle,the depth of tooth penetration increases and then decreases,and the highest depth of tooth penetration and the highest energy absorption efficiency are achieved atα=45°;the width of the impact pit increases and then decreases,and the maximum width value is achieved atα=30°,with the smallest value of the specific work value of the rock-breaking.The results have significant reference value for improving the rock-breaking efficiency of percussion drilling in deep anisotropic formations.展开更多
To reveal the deterioration mechanism of coal-rock assemblages under chemical corrosion and dynamic loading,chemical corrosion and dynamic impact experiments were conducted.Under different chemical corrosion condition...To reveal the deterioration mechanism of coal-rock assemblages under chemical corrosion and dynamic loading,chemical corrosion and dynamic impact experiments were conducted.Under different chemical corrosion conditions,the weakening characteristics,observable characteristics,softening characteristics of the dynamic parameters,dynamic failure characteristics,dynamic failure forms and dynamic microscopic characteristics were analyzed.Under each corrosion condition,the dynamic elastic modulus,dynamic deformation modulus and dynamic peak intensity tended to decrease with immersing time.The dynamic elastic modulus,dynamic deformation modulus and dynamic peak intensity exhibited an inverted U-shaped trend.Under dynamic impact,the failure process of acidly corroded samples can be divided into the following stages:the initial stage,elastic energy accumulation stage,local failure of coal and secondary rock crack expansion stage,coal fragment ejection stage,rock spalling stage and complete instability stage.Under dynamic impact,failure modes exist:coal crushing failure,rock fragmenting failure,rock splitting failure and full splitting failure.After impact failure,sample fragments are distributed in powder,granular,cone and block forms.Based on Zhu-Wang-Tang nonlinear viscoelastic properties,a model considering chemical corrosion and impact damage was proposed.The combined effects of chemical and impact-induced damage on the dynamic mechanical properties of coal-rock assemblages were systematically analyzed.展开更多
As coal mining depth increases,the combined effects of high stress,mining stress,and fault structures make dynamic impact hazards more frequent.The reproduction of dynamic impact phenomena is basis for studying their ...As coal mining depth increases,the combined effects of high stress,mining stress,and fault structures make dynamic impact hazards more frequent.The reproduction of dynamic impact phenomena is basis for studying their occurrence patterns and control mechanisms.Physical simulation test represents an efficacious methodology.However,there is currently a lack of simulation devices that can effectively simulate two types of dynamic impact phenomena,including high stress and fault slip dynamic impact.To solve aforementioned issues,the physical simulation test system for dynamic impact in deep roadways developed by authors is employed to carry out comparative tests of high stress and fault slip dynamic impact.The phenomena of high stress and fault slip dynamic impact are reproduced successfully.A comparative analysis is conducted on dynamic phenomena,stress evolution,roadway deformation,and support force.The high stress dynamic impact roadway instability mode,which is characterized by the release of high energy accompanied by symmetric damage,and the fault slip dynamic impact roadway instability mode,which is characterized by the propagation of unilateral stress waves accompanied by asymmetric damage,are clarified.On the basis,the differentiated control concepts for different types of dynamic impact in deep roadways are proposed.展开更多
Inspired by the thermal stability mechanism of thermophilic protein,which presents ionic bonds that have better stability at higher temperatures,this paper proposes the introduction of electrostatic interactions by ad...Inspired by the thermal stability mechanism of thermophilic protein,which presents ionic bonds that have better stability at higher temperatures,this paper proposes the introduction of electrostatic interactions by adding carboxyl-modified silica(C-SiO2),PAA,and CaCl_(2) to achieve higher viscosity over 25℃.The rheological behavior of C-SiO_(2)-based shear thickening fluid(CS-STF)was investigated at a temperature range of 25–55℃.Unlike SiO_(2)-based STF,which exhibits single-step thickening and a negative correlation between viscosity and temperature.As the C-SiO_(2) content was 41%(w/w)and the mass ratio of PAA:CaCl_(2):C-SiO_(2) was 3:1:10,the CS-STF displayed a double-thickening behavior,and the peak viscosity reached 1330 Pa·s at 35℃.From the yarn pull-out test,the inter-yarn force was significantly increased with the increasing CS-STF content.Treating UHMWPE fabrics with CS-STF improved the impact resistance effectively.In the blunt impact test,the U-CS fabrics with high CS-STF content(121.45 wt%)experienced penetration failure under high impact energy(18 J)due to stress concentration caused by the shear thickening behavior.The knife stabbing test demonstrated that U-CS fabrics with appropriate content(88.38 wt%)have the best stabbing resistance in various impact energies.Overall,this study proposed a high-performence STF showing double-thickening and enhancing shear-thickening behavior at a wide temperature range,the composite fabrics with the performance of resisting both the blunt and stab impact had broad application prospects in the field of personal protection.展开更多
The fatigue fracture under cyclic dynamic direct tensions of brittle rock is an important mechanical characteristic index for the evaluation of geological disasters and underground engineering safety.However,most stud...The fatigue fracture under cyclic dynamic direct tensions of brittle rock is an important mechanical characteristic index for the evaluation of geological disasters and underground engineering safety.However,most studies focus on macroscopic fracture mechanical properties,and the mechanism linking the macroscopic fracture with the microcrack growth during the cyclic dynamic direct tensile loading of brittle rocks is rarely studied.In this paper,a micro-macro fracture model explaining the stress-strain constitutive relationship is established at the last impact failure after being subjected to multiple cyclic direct tensile impacts of brittle rocks.This model is based on the wing crack extension model under direct tensile loading,the quasi-static and dynamic fracture toughness relationship,the suggested crack rate and strain rate relationship,the relationship of damage and dynamic tensile fatigue life N,the relationship of dynamic fracture toughness and dynamic tensile fatigue life N.The variations of dynamic mechanical properties of rocks with dynamic tensile fatigue life for different initial crack sizes and angles within the rocks are further discussed.The compressive strength,elastic modulus,crack initiation stress,limit crack extension length and crack extension rate descend and the failure strain ascends with an increment of dynamic tensile fatigue life in rocks.This study's results provide help for the safety and stability of the underground surrounding rocks under blasting working or seismic disasters.展开更多
A composite liquid metal marble made of metal droplet coated with water film was proposed and its impact dynamics phenomenon was disclosed. After encapsulating the liquid metal into water droplets, the fabricated liqu...A composite liquid metal marble made of metal droplet coated with water film was proposed and its impact dynamics phenomenon was disclosed. After encapsulating the liquid metal into water droplets, the fabricated liquid marble successfully avoided being oxygenized by the metal fluid and thus significantly improved its many physical capabilities such as surface tension modification and shape control. The striking behaviors of the composite liquid metal marbles on a substrate at room temperature were experimentally inves- tigated in a high speed imaging way. It was disclosed that such marbles could disintegrate, merge, and even rebound when impacting the substrate, unlike the existing dynamic fluidic behaviors of liquid marble or metal droplet. The mechanisms lying behind these features were preliminarily interpreted. This fundamental finding raised profound multiphase fluid mechanics for understanding the complex liquid composite which was also critical for a variety of practical applications such as liquid metal jet cooling, inkjet printed electronics, 3D printing or metal particle fabrication etc.展开更多
When an aircraft passes through a rainy area at high speed,the coating on the front edge of the fuselage will be continuously eroded by raindrops,causing the coating to wear,crack or even peel off.This paper uses carb...When an aircraft passes through a rainy area at high speed,the coating on the front edge of the fuselage will be continuously eroded by raindrops,causing the coating to wear,crack or even peel off.This paper uses carbon fiber T300 material as the base material,and at the different impact speeds and impact numbers,water cutting equipment was used to simulate the erosion of the coating caused by the continuous impact of water droplets.The damage morphology of samples at different damage stages was observed by digital microscope and Scanning Electron Microscope(SEM),and the damage evolution curve was established to analyze and reveal the damage behavior and damage mechanism of rain erosion.The results show that the degree of damage experienced an increasing trend with the increase of impact numbers and speed,until circular peel damage was formed;no damage occurred during the incubation period,and the curvature of the damage evolution curve increased significantly after the expansion period and eventually showed a stable expansion trend.The mechanical properties of the coating material were the main influencing factors of its rain corrosion resistance.Moreover,the axially symmetric unsteady contact problem of droplets impacting the surface of a solid deformable body was studied.And the contact area was determined based on the iterative algorithm boundary positioning method.A mathematical model and closed mathematical formula describing the unsteady interaction between a droplet and a solid deformable obstacle were proposed.展开更多
Recent studies in complexity science have uncovered temporal regularities in the dynamics of impact along scientific and other creative careers, but they did not extend the obtained insights to firms. In this paper, w...Recent studies in complexity science have uncovered temporal regularities in the dynamics of impact along scientific and other creative careers, but they did not extend the obtained insights to firms. In this paper, we show that firms' technological impact patterns cannot be captured by the state-of-the-art dynamical models for the evolution of scientists' research impact, such as the Q model. Therefore, we propose a time-varying returns model which integrates the empiricallyobserved relation between patent order and technological impact into the Q model. The proposed model can reproduce the timing pattern of firms' highest-impact patents accurately. Our results shed light on modeling the differences behind the impact dynamics of researchers and firms.展开更多
Metamorphic mechanisms have attracted considerable attention owing to their capability to switch their topology to adapt to different operational tasks.One feature of topological change is the re-contact of different ...Metamorphic mechanisms have attracted considerable attention owing to their capability to switch their topology to adapt to different operational tasks.One feature of topological change is the re-contact of different bodies,which inevitably causes collisions affecting operation accuracy and service life.Consequently,in this study,a collision incidence matrix was introduced to describe the topology of a system involved in collisions,and a method for reducing the closed-loop system to an open-loop system was proposed.The complex movement of the metamorphic mechanism in a changing topology was classified into two different running stages of the source metamorphic mechanism.Based on the relative coordinate method,dynamic modeling of the source metamorphic mechanism considering the impact effects was conducted.Combining the classical collision theory and Newton–Euler equation,the generated impact impulse and the motion after collision were determined.Subsequently,a dynamic analytical method for the full configuration of metamorphic mechanisms was proposed to reflect the changes in the topological structure in the dynamic model.Finally,two typical metamorphic mechanisms used in packaging and spinning were considered as examples to verify the correctness and effectiveness of the proposed method,and their impact characteristics during configuration transformation were analyzed.The proposed analytical method of internal impact for a variable topology process provides effective theoretical guidance for the stability analysis of configuration transformation and structural design aimed at minimizing impacts.展开更多
Using an improved FVCOM numerical model, combined with the momentum-sinking scheme based on the structural characteristics of specific turbines, this study analyzed the temporal and spatial distributions of tidal ener...Using an improved FVCOM numerical model, combined with the momentum-sinking scheme based on the structural characteristics of specific turbines, this study analyzed the temporal and spatial distributions of tidal energy resources before and after the deployment of tidal turbines near Pingtan Island, China. Considering factors such as the distribution of tidal stream energy, bathymetry, topography, and the design parameters of the turbines, an appropriate location for a demonstration tidal turbine was selected and the corresponding energy resource was evaluated. Several sites with strong tidal streams were considered: south of the northern cape, east of the southem cape, and the southern end of Haitan Bay. The former was thought most suitable for the deployment of a tidal energy turbine, with projected power generation for approximately 470 h per month. The average power of this demonstration was about 2.4 kW, and the annual electricity output was approximately 17.47 MWh. The intervention of the turbine device had little influence on the near-field tidal stream or water level. The tidal stream was reduced slightly in the area south of the northern cape, although the effect weakened further from the turbine. Conversely, the velocity increased slightly on both sides of the demonstration site. The difference in current speed with and without the turbine was greater at slack tide than still tide. The influence of turbine operation on water level was minor. The method adopted in this study can be considered a reference for the selection of sites for the demonstration of tidal stream energy. However, the method is unable describe the dynamic characteristics of the turbulent flow surrounding the deployed turbines, which has an important role regarding the optimal designs of the turbine blade and pile foundations. Therefore, we will continue to work to improve this model in future research.展开更多
Based on the structural characteristics of the high-speed loading tester,a four-point bending test device was designed to carry out the four-point bending strength test of glass under the action of static load and dif...Based on the structural characteristics of the high-speed loading tester,a four-point bending test device was designed to carry out the four-point bending strength test of glass under the action of static load and different impact velocities,and the formulae for calculating the maximum dynamic stress and strain rate of glass specimens under the action of impact loads were derived.The experimental results show that the bending strength values of the glass under dynamic impact loading are all higher than those under static loading.With the increase of impact speed,the bending strength value of glass specimens generally tends to increase,and the bending strength value increases more obviously when the impact speed exceeds 0.5 m/s or higher.By increasing the impact velocity,higher tensile strain rate of glass specimens can be obtained because the load action time becomes shorter.The bending strength of the glass material increases with its tensile strain rate,and when the tensile strain rate is between 0 and 2 s^(-1),the bending strength of the glass specimen grows more obviously with the strain rate,indicating that the glass bending strength is particularly sensitive to the tensile strain rate in this interval.As the strain rate increases,the number of cracks formed after glass breakage increases significantly,thus requiring more energy to drive the crack formation and expansion,and showing the strain rate effect of bending strength at the macroscopic level.The results of the study can provide a reference for the load bearing and structural design of glass materials under dynamic loading.展开更多
The deep rock mass within coal mines situated in a challenging environment are characterized by high ground stress,high geotemperature,high osmotic water pressure,and dynamic disturbances from mechanical excavation.To...The deep rock mass within coal mines situated in a challenging environment are characterized by high ground stress,high geotemperature,high osmotic water pressure,and dynamic disturbances from mechanical excavation.To investigate the impact of this complex mechanical environment on the dynamic characteristics of roof sandstone in self-formed roadways without coal pillars,standard specimens of deep sandstone from the 2611 upper tunnel working face of the Yongmei Company within the Henan Coal Chemical Industry Group in Henan,China were prepared,and an orthogonal test was designed.Using a self-developed geotechnical dynamic impact mechanics test system,triaxial dynamic impact tests under thermal-hydraulicmechanical coupling conditions were conducted on deep sandstone.The results indicate that under high confining pressure,deep sandstone exhibits pronounced brittle failure at low temperatures,with peak strength gradually decreasing as temperature and osmotic water pressure increase.Conversely,under low confining pressure and low temperature,the brittleness of deep sandstone weakens gradually,while ductility increases.Moreover,sandstone demonstrates higher peak strength at low temperatures under high axial pressure conditions,lower peak strength at high temperatures,and greater strain under low axial pressure and high osmotic water pressure.Increases in impact air pressure and osmotic water pressure have proportionally greater effects on peak stress and peak strain.Approximately 50%of the input strain energy is utilized as effective energy driving the sandstone fracture process.Polar analysis identifies the optimal combination of factors affecting the peak stress and peak strain of sandstone.Under the coupling effect,intergranular and transgranular fractures occur within the sandstone.SEM images illustrate that the damage forms range from minor damage with multiple fissures to extensive fractures and severe fragmentation.This study elucidates the varied dynamic impact mechanical properties of deep sandstones under thermal-hydraulic-mechanical coupling,along with multifactor analysis methods and their optimal factor combinations.展开更多
基金supported by the National Key Research and Development Program of China(No.2022YFC3005704)the National Natural Science Foundation of China(No.42277143)+3 种基金the Natural Science Foundation of Sichuan Province(2024NSFSC0100)the Fundamental Research Funds for the Central Universities(No.2682023ZTPY022)Projects of Science and Technology Research and Development Program of China Railway Group Limited(2021-Special Class-03)the Natural Science Foundation of Sichuan Province(2024NSFSC0834).
文摘Rigid barrier is a straightforward and effective countermeasure widely used for mitigating debris flow.However,in current designs,it remains unclear how to optimize the rigid barrier to enhance its mechanical properties.Therefore,this study investigates the influence of the shape of the upstream face of the rigid barrier,referred to as the'barrier shape',on the impact dynamics of debris flow entraining a boulder onto rigid barrier.This study employs a coupled numerical approach involving smoothed particle hydrodynamics(SPH),the discrete element method(DEM),and the finite element method(FEM).The simulation results demonstrate that the barrier shape can affect the mechanical properties of the rigid barrier by altering the interaction mode between the debris flow and the barrier.Compared to vertical and slanted barriers,a curved barrier exhibits superior mechanical properties when subjected to debris flow impact.Furthermore,reducing the slope of the upstream face appropriately proves to be an effective method for enhancing the impact resistance of slanted barriers.The relevant findings from this study can serve as valuable references for the structural optimization of rigid barriers.
基金supported by the National Natural Science Foundation of China(Nos.11132007,11272155,and 10772085)the Fundamental Research Funds for the Central Universities(No.30920130112009)the 333 Project of Jiangsu Province of China(No.BRA2011172)
文摘The impact dynamics of a flexible multibody system is investigated. By using a partition method, the system is divided into two parts, the local impact region and the region away from the impact. The two parts are connected by specific boundary conditions, and the system after partition is equivalent to the original system. According to the rigid-flexible coupling dynamic theory of multibody system, system's rigid-flexible coupling dynamic equations without impact are derived. A local impulse method for establishing the initial impact conditions is proposed. It satisfies the compatibility con- ditions for contact constraints and the actual physical situation of the impact process of flexible bodies. Based on the contact constraint method, system's impact dynamic equa- tions are derived in a differential-algebraic form. The contact/separation criterion and the algorithm are given. An impact dynamic simulation is given. The results show that system's dynamic behaviors including the energy, the deformations, the displacements, and the impact force during the impact process change dramatically. The impact makes great effects on the global dynamics of the system during and after impact.
基金supported by the National Natural Science Foundation of China(Nos.11072061 and 11372073)the Natural Science Foundation of Fujian Province(No.2010J01003)
文摘The impact dynamics, impact effect, and post-impact unstable motion sup- pression of free-floating space manipulator capturing a satellite on orbit are analyzed. Firstly, the dynamics equation of free-floating space manipulator is derived using the sec- ond Lagrangian equation. Combining the momentum conservation principle, the impact dynamics and effect between the space manipulator end-effector and satellite of the cap- ture process are analyzed with the momentum impulse method. Focusing on the unstable motion of space manipulator due to the above impact effect, a robust adaptive compound control algorithm is designed to suppress the above unstable motion. There is no need to control the free-floating base position to save the jet fuel. Finally, the simulation is proposed to show the impact effect and verify the validity of the control algorithm.
基金supported by the National Natural Science Foundation of China (Grants 11772188, 11132007)
文摘The impact problem of a flexible multibody system is a non-smooth, high-transient, and strong-nonlinear dynamic process with variable boundary. How to model the contact/impact process accurately and efficiently is one of the main difficulties in many engineering applications. The numerical approaches being used widely in impact analysis are mainly from two fields: multibody system dynamics (MBS) and computational solid mechanics (CSM). Approaches based on MBS provide a more efficient yet less accurate analysis of the contact/impact problems, while approaches based on CSM are well suited for particularly high accuracy needs, yet require very high computational effort. To bridge the gap between accuracy and efficiency in the dynamic simulation of a flexible multibody system with contacts/impacts, a partition method is presented considering that the contact body is divided into two parts, an impact region and a non-impact region. The impact region is modeled using the finite element method to guarantee the local accuracy, while the non-impact region is modeled using the modal reduction approach to raise the global efficiency. A three-dimensional rod-plate impact experiment is designed and performed to validate the numerical results. The principle for how to partition the contact bodies is proposed: the maximum radius of the impact region can be estimated by an analytical method, and the modal truncation orders of the non-impact region can be estimated by the highest frequency of the signal measured. The simulation results using the presented method are in good agreement with the experimental results. It shows that this method is an effec-rive formulation considering both accuracy and efficiency. Moreover, a more complicated multibody impact problem of a crank slider mechanism is investigated to strengthen this conclusion.
基金supported by the National Natural Science Foundation of China (10772113)
文摘In this paper a computational methodology on impact dynamics of the flexible multibody system is presented. First, the floating frame of reference approach and nodal coordinates on the basis of finite element formulation are used to describe the kinematics of planar deformable bodies. According to the kinematic description of contact conditions, the contact constraint equations of planar flexible bodies are derived. Based on the varying topology technique the impact dynamic equations for a planar multibody system are established. Then the initial conditions of the equations in each contact stage are determined according to the discontinuity theory in continuum mechanics. The experiments between the aluminum rods are performed to check the correctness of the proposed method. Through the comparison between the numerical and experimental results the proposed method is validated. Experimental results also show that the impulse momentum method cannot accurately predict the complex impact dynamic phenomena and the continuous model may lead to a serious error when used to simulate the impact problems with significant wave propagation effects.
基金National Natural Science Foundation of China(Project No.11972261,11572229)Fundamental Research Funds for the Central Universities(Project No.22120180063).
文摘The lift force was reported not to be high enough to support the dragonfly’s weight during flight in some conventional investigations,and higher lift force is required for its takeoff.In this study,by employing a thin plate model,impact effect is investigated for the wing deformation in dragonfly flapping during takeoff.The static displacement is formulated to compare with the dynamical displacement caused by impact.The governing equation of motion for the impact dynamics of a dragonfly wing is derived based on Newton’s second law.Separation of variables technique and assumed modes method are introduced to solve the resulting equations.Further,lift force is presented for the cases of considering and without considering the impact on the wing flapping which indicates that the impact has prominent effects for the dragonfly’s aerodynamic performance.Numerical simulations demonstrate that considering the impact effect on the wing flapping can increase the wing deformation,which results in the rise of the lift force.The enhanced lift force is of critical importance for the dragonfly’s takeoff.
文摘The examination of an unstructured finite volume method for structural dynamics is assessed for simulations of systematic impact dynamics. A robust display dual-time stepping method is utilized to obtain time accurate solutions. The study of impact dynamics is a complex problem that should consider strength models and state equations to describe the mechanical behavior of materials. The current method has several features, l) Discrete equations of unstructured finite volume method naturally follow the conservation law. 2) Display dual-time stepping method is suitable for the analysis of impact dynamic problems of time accurate solutions. 3) The method did not produce grid distortion when large deformation appeared. The method is validated by the problem of impact dynamics of an elastic plate with initial conditions and material properties. The results validate the finite element numerical data
基金the National Natural Science Foundation of China (No. 10772113)
文摘The effects of the initial conditions of impact dynamics equations are investigated numerically and experimentally.The inadequacies of previous studies on initial conditions are pointed out.Then a coefficient of velocity jump at the moment of impact is introduced,and the experiments for the mental rods are implemented to validate the appending constraints modeling methods for impact process.The comparisons between the experimental and simulated results at different coefficients are used to study the effects of the velocity jump conditions to the numerical simulation.The results indicate that the physical velocity response of bodies during impact is smooth;the different values of velocity jump only have small effects on numerical oscillation of velocity response,and they have no effects on the time history of impact force.
基金supported by the National Natural Science Foundation of China(52374001,52104001).
文摘Percussion drilling technology can be used to increase the rate of penetration in deep shale reservoirs,but the interaction mechanism among impact loads,drilling teeth and rock has not been sufficiently investigated.For this reason,shales with different bedding angles are used to carry out impact compression and tensile experiments as well as the rock-breaking experiments by single axe-shaped tooth,the variation of dynamic strengths,rock failure characteristics,fractal dimensions,and tensile/compression ratios under different load-bedding angles(α)are investigated.Then,the three-dimensional scanning device is used to measure the penetration depth and rock-breaking volume under different load-bedding angles.The results show that with the increase of load-bedding angle(0°-90°),the compressive strength decreases and then increases,with the lowest strength atα=45°and the highest strength atα=0°;the tensile strength decreases and then increases,with the lowest strength nearα=30°and the highest strength atα=90°.With the growing impact rate,the effect of load-bedding angle on dynamic compressive strength decreases,and the effect on dynamic tensile strength becomes more significant.When the impact velocity is high(≥8.0 m/s),the tensile-compressive ratio first decreases and then increases,and both reach a minimum at a load-bedding angle of 30°and a maximum at 60°.With the increasing of the load-bedding angle,the depth of tooth penetration increases and then decreases,and the highest depth of tooth penetration and the highest energy absorption efficiency are achieved atα=45°;the width of the impact pit increases and then decreases,and the maximum width value is achieved atα=30°,with the smallest value of the specific work value of the rock-breaking.The results have significant reference value for improving the rock-breaking efficiency of percussion drilling in deep anisotropic formations.
基金supported by the National Natural Science Foundation of China(Nos.52034009 and 52174093)the Fundamental Research Funds for the Central Universities(Nos.2024ZKPYNY01,2023ZKPYNY03,and 2023YQTD02).
文摘To reveal the deterioration mechanism of coal-rock assemblages under chemical corrosion and dynamic loading,chemical corrosion and dynamic impact experiments were conducted.Under different chemical corrosion conditions,the weakening characteristics,observable characteristics,softening characteristics of the dynamic parameters,dynamic failure characteristics,dynamic failure forms and dynamic microscopic characteristics were analyzed.Under each corrosion condition,the dynamic elastic modulus,dynamic deformation modulus and dynamic peak intensity tended to decrease with immersing time.The dynamic elastic modulus,dynamic deformation modulus and dynamic peak intensity exhibited an inverted U-shaped trend.Under dynamic impact,the failure process of acidly corroded samples can be divided into the following stages:the initial stage,elastic energy accumulation stage,local failure of coal and secondary rock crack expansion stage,coal fragment ejection stage,rock spalling stage and complete instability stage.Under dynamic impact,failure modes exist:coal crushing failure,rock fragmenting failure,rock splitting failure and full splitting failure.After impact failure,sample fragments are distributed in powder,granular,cone and block forms.Based on Zhu-Wang-Tang nonlinear viscoelastic properties,a model considering chemical corrosion and impact damage was proposed.The combined effects of chemical and impact-induced damage on the dynamic mechanical properties of coal-rock assemblages were systematically analyzed.
基金supported by the National Natural Science Foundation of China(Nos.U24A2088,42177130,42277174,and 42477166).
文摘As coal mining depth increases,the combined effects of high stress,mining stress,and fault structures make dynamic impact hazards more frequent.The reproduction of dynamic impact phenomena is basis for studying their occurrence patterns and control mechanisms.Physical simulation test represents an efficacious methodology.However,there is currently a lack of simulation devices that can effectively simulate two types of dynamic impact phenomena,including high stress and fault slip dynamic impact.To solve aforementioned issues,the physical simulation test system for dynamic impact in deep roadways developed by authors is employed to carry out comparative tests of high stress and fault slip dynamic impact.The phenomena of high stress and fault slip dynamic impact are reproduced successfully.A comparative analysis is conducted on dynamic phenomena,stress evolution,roadway deformation,and support force.The high stress dynamic impact roadway instability mode,which is characterized by the release of high energy accompanied by symmetric damage,and the fault slip dynamic impact roadway instability mode,which is characterized by the propagation of unilateral stress waves accompanied by asymmetric damage,are clarified.On the basis,the differentiated control concepts for different types of dynamic impact in deep roadways are proposed.
基金the Major Science and Technology Demonstration Projects in Jiangsu Province(Grant No.BE2022608).
文摘Inspired by the thermal stability mechanism of thermophilic protein,which presents ionic bonds that have better stability at higher temperatures,this paper proposes the introduction of electrostatic interactions by adding carboxyl-modified silica(C-SiO2),PAA,and CaCl_(2) to achieve higher viscosity over 25℃.The rheological behavior of C-SiO_(2)-based shear thickening fluid(CS-STF)was investigated at a temperature range of 25–55℃.Unlike SiO_(2)-based STF,which exhibits single-step thickening and a negative correlation between viscosity and temperature.As the C-SiO_(2) content was 41%(w/w)and the mass ratio of PAA:CaCl_(2):C-SiO_(2) was 3:1:10,the CS-STF displayed a double-thickening behavior,and the peak viscosity reached 1330 Pa·s at 35℃.From the yarn pull-out test,the inter-yarn force was significantly increased with the increasing CS-STF content.Treating UHMWPE fabrics with CS-STF improved the impact resistance effectively.In the blunt impact test,the U-CS fabrics with high CS-STF content(121.45 wt%)experienced penetration failure under high impact energy(18 J)due to stress concentration caused by the shear thickening behavior.The knife stabbing test demonstrated that U-CS fabrics with appropriate content(88.38 wt%)have the best stabbing resistance in various impact energies.Overall,this study proposed a high-performence STF showing double-thickening and enhancing shear-thickening behavior at a wide temperature range,the composite fabrics with the performance of resisting both the blunt and stab impact had broad application prospects in the field of personal protection.
基金supported by the National Natural Science Foundation of China(Grant Nos.51708016,52438007 and 12172036)the R&D program of Beijing Municipal Education Commission(Grant No.KM202110016014)+1 种基金the Pyramid Talent Training Project of Beijing University of Civil Engineering and Architecture(Grant No.JDYC20200307)the Graduate Innovation Program of Beijing University of Civil Engineering and Architecture(Grant No.PG2025060).
文摘The fatigue fracture under cyclic dynamic direct tensions of brittle rock is an important mechanical characteristic index for the evaluation of geological disasters and underground engineering safety.However,most studies focus on macroscopic fracture mechanical properties,and the mechanism linking the macroscopic fracture with the microcrack growth during the cyclic dynamic direct tensile loading of brittle rocks is rarely studied.In this paper,a micro-macro fracture model explaining the stress-strain constitutive relationship is established at the last impact failure after being subjected to multiple cyclic direct tensile impacts of brittle rocks.This model is based on the wing crack extension model under direct tensile loading,the quasi-static and dynamic fracture toughness relationship,the suggested crack rate and strain rate relationship,the relationship of damage and dynamic tensile fatigue life N,the relationship of dynamic fracture toughness and dynamic tensile fatigue life N.The variations of dynamic mechanical properties of rocks with dynamic tensile fatigue life for different initial crack sizes and angles within the rocks are further discussed.The compressive strength,elastic modulus,crack initiation stress,limit crack extension length and crack extension rate descend and the failure strain ascends with an increment of dynamic tensile fatigue life in rocks.This study's results provide help for the safety and stability of the underground surrounding rocks under blasting working or seismic disasters.
文摘A composite liquid metal marble made of metal droplet coated with water film was proposed and its impact dynamics phenomenon was disclosed. After encapsulating the liquid metal into water droplets, the fabricated liquid marble successfully avoided being oxygenized by the metal fluid and thus significantly improved its many physical capabilities such as surface tension modification and shape control. The striking behaviors of the composite liquid metal marbles on a substrate at room temperature were experimentally inves- tigated in a high speed imaging way. It was disclosed that such marbles could disintegrate, merge, and even rebound when impacting the substrate, unlike the existing dynamic fluidic behaviors of liquid marble or metal droplet. The mechanisms lying behind these features were preliminarily interpreted. This fundamental finding raised profound multiphase fluid mechanics for understanding the complex liquid composite which was also critical for a variety of practical applications such as liquid metal jet cooling, inkjet printed electronics, 3D printing or metal particle fabrication etc.
基金Supported by the National Natural Science Foundation of China(Nos.12261131505,62005172)the Russian Science Fund(No.23-49-00133)+1 种基金the Fundamental Research Funds for the Central Universities,China(No.D5000210517)the Basic Research Programs of Taicang,China(No.TC2021JC21).
文摘When an aircraft passes through a rainy area at high speed,the coating on the front edge of the fuselage will be continuously eroded by raindrops,causing the coating to wear,crack or even peel off.This paper uses carbon fiber T300 material as the base material,and at the different impact speeds and impact numbers,water cutting equipment was used to simulate the erosion of the coating caused by the continuous impact of water droplets.The damage morphology of samples at different damage stages was observed by digital microscope and Scanning Electron Microscope(SEM),and the damage evolution curve was established to analyze and reveal the damage behavior and damage mechanism of rain erosion.The results show that the degree of damage experienced an increasing trend with the increase of impact numbers and speed,until circular peel damage was formed;no damage occurred during the incubation period,and the curvature of the damage evolution curve increased significantly after the expansion period and eventually showed a stable expansion trend.The mechanical properties of the coating material were the main influencing factors of its rain corrosion resistance.Moreover,the axially symmetric unsteady contact problem of droplets impacting the surface of a solid deformable body was studied.And the contact area was determined based on the iterative algorithm boundary positioning method.A mathematical model and closed mathematical formula describing the unsteady interaction between a droplet and a solid deformable obstacle were proposed.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 61673150 and 11622538)financial support from the URPP Social Networks at the University of Zurich+1 种基金the UESTC professor research start-up (Grant No. ZYGX2018KYQD215)the Science Strength Promotion Programme of UESTC,Chengdu。
文摘Recent studies in complexity science have uncovered temporal regularities in the dynamics of impact along scientific and other creative careers, but they did not extend the obtained insights to firms. In this paper, we show that firms' technological impact patterns cannot be captured by the state-of-the-art dynamical models for the evolution of scientists' research impact, such as the Q model. Therefore, we propose a time-varying returns model which integrates the empiricallyobserved relation between patent order and technological impact into the Q model. The proposed model can reproduce the timing pattern of firms' highest-impact patents accurately. Our results shed light on modeling the differences behind the impact dynamics of researchers and firms.
基金Supported by National Natural Science Foundation of China(Grant Nos.52005368,51475330)。
文摘Metamorphic mechanisms have attracted considerable attention owing to their capability to switch their topology to adapt to different operational tasks.One feature of topological change is the re-contact of different bodies,which inevitably causes collisions affecting operation accuracy and service life.Consequently,in this study,a collision incidence matrix was introduced to describe the topology of a system involved in collisions,and a method for reducing the closed-loop system to an open-loop system was proposed.The complex movement of the metamorphic mechanism in a changing topology was classified into two different running stages of the source metamorphic mechanism.Based on the relative coordinate method,dynamic modeling of the source metamorphic mechanism considering the impact effects was conducted.Combining the classical collision theory and Newton–Euler equation,the generated impact impulse and the motion after collision were determined.Subsequently,a dynamic analytical method for the full configuration of metamorphic mechanisms was proposed to reflect the changes in the topological structure in the dynamic model.Finally,two typical metamorphic mechanisms used in packaging and spinning were considered as examples to verify the correctness and effectiveness of the proposed method,and their impact characteristics during configuration transformation were analyzed.The proposed analytical method of internal impact for a variable topology process provides effective theoretical guidance for the stability analysis of configuration transformation and structural design aimed at minimizing impacts.
基金Supported by the Chinese Marine Renewable Energy Special Fund(Nos.GHME2012ZC05,GHME2013GC03,GHME2013ZC01,GHME2014ZC01)
文摘Using an improved FVCOM numerical model, combined with the momentum-sinking scheme based on the structural characteristics of specific turbines, this study analyzed the temporal and spatial distributions of tidal energy resources before and after the deployment of tidal turbines near Pingtan Island, China. Considering factors such as the distribution of tidal stream energy, bathymetry, topography, and the design parameters of the turbines, an appropriate location for a demonstration tidal turbine was selected and the corresponding energy resource was evaluated. Several sites with strong tidal streams were considered: south of the northern cape, east of the southem cape, and the southern end of Haitan Bay. The former was thought most suitable for the deployment of a tidal energy turbine, with projected power generation for approximately 470 h per month. The average power of this demonstration was about 2.4 kW, and the annual electricity output was approximately 17.47 MWh. The intervention of the turbine device had little influence on the near-field tidal stream or water level. The tidal stream was reduced slightly in the area south of the northern cape, although the effect weakened further from the turbine. Conversely, the velocity increased slightly on both sides of the demonstration site. The difference in current speed with and without the turbine was greater at slack tide than still tide. The influence of turbine operation on water level was minor. The method adopted in this study can be considered a reference for the selection of sites for the demonstration of tidal stream energy. However, the method is unable describe the dynamic characteristics of the turbulent flow surrounding the deployed turbines, which has an important role regarding the optimal designs of the turbine blade and pile foundations. Therefore, we will continue to work to improve this model in future research.
基金Found by the National Natural Science Foundation of China(Nos.52072356 and 52032011)the Shandong Province Science and Technology Small and Medium-sized Enterprises Innovation Ability Improvement Project(No.2022TSGC1194)。
文摘Based on the structural characteristics of the high-speed loading tester,a four-point bending test device was designed to carry out the four-point bending strength test of glass under the action of static load and different impact velocities,and the formulae for calculating the maximum dynamic stress and strain rate of glass specimens under the action of impact loads were derived.The experimental results show that the bending strength values of the glass under dynamic impact loading are all higher than those under static loading.With the increase of impact speed,the bending strength value of glass specimens generally tends to increase,and the bending strength value increases more obviously when the impact speed exceeds 0.5 m/s or higher.By increasing the impact velocity,higher tensile strain rate of glass specimens can be obtained because the load action time becomes shorter.The bending strength of the glass material increases with its tensile strain rate,and when the tensile strain rate is between 0 and 2 s^(-1),the bending strength of the glass specimen grows more obviously with the strain rate,indicating that the glass bending strength is particularly sensitive to the tensile strain rate in this interval.As the strain rate increases,the number of cracks formed after glass breakage increases significantly,thus requiring more energy to drive the crack formation and expansion,and showing the strain rate effect of bending strength at the macroscopic level.The results of the study can provide a reference for the load bearing and structural design of glass materials under dynamic loading.
基金supported by the Science and Technology Commissioner Project of Zhejiang Province(2023ST04)the supporting funds for scientific research launch of Zhejiang University of Science and Technology(F701104M11).
文摘The deep rock mass within coal mines situated in a challenging environment are characterized by high ground stress,high geotemperature,high osmotic water pressure,and dynamic disturbances from mechanical excavation.To investigate the impact of this complex mechanical environment on the dynamic characteristics of roof sandstone in self-formed roadways without coal pillars,standard specimens of deep sandstone from the 2611 upper tunnel working face of the Yongmei Company within the Henan Coal Chemical Industry Group in Henan,China were prepared,and an orthogonal test was designed.Using a self-developed geotechnical dynamic impact mechanics test system,triaxial dynamic impact tests under thermal-hydraulicmechanical coupling conditions were conducted on deep sandstone.The results indicate that under high confining pressure,deep sandstone exhibits pronounced brittle failure at low temperatures,with peak strength gradually decreasing as temperature and osmotic water pressure increase.Conversely,under low confining pressure and low temperature,the brittleness of deep sandstone weakens gradually,while ductility increases.Moreover,sandstone demonstrates higher peak strength at low temperatures under high axial pressure conditions,lower peak strength at high temperatures,and greater strain under low axial pressure and high osmotic water pressure.Increases in impact air pressure and osmotic water pressure have proportionally greater effects on peak stress and peak strain.Approximately 50%of the input strain energy is utilized as effective energy driving the sandstone fracture process.Polar analysis identifies the optimal combination of factors affecting the peak stress and peak strain of sandstone.Under the coupling effect,intergranular and transgranular fractures occur within the sandstone.SEM images illustrate that the damage forms range from minor damage with multiple fissures to extensive fractures and severe fragmentation.This study elucidates the varied dynamic impact mechanical properties of deep sandstones under thermal-hydraulic-mechanical coupling,along with multifactor analysis methods and their optimal factor combinations.