To hit stationary ground targets in specified direction, a nonlinear impact angle control guidance law based on Lyapunov stability theory is proposed. The proposed law ensures the convergence of the heading angle and ...To hit stationary ground targets in specified direction, a nonlinear impact angle control guidance law based on Lyapunov stability theory is proposed. The proposed law ensures the convergence of the heading angle and the miss distance to guarantee a successful engagement. The impact angle can be adjusted by varying a single parameter. And the maximum value of acceleration has been analyzed to get the proper range for control parameter. Considering the achievable impact angle set is limited, an additional phase is added to form a two-phase control strategy.The first phase is to establish a proper initial condition for the second phase, and the second phase is to hit the target with a certain impact angle. An analysis of the proper selection of control parameters to expand the achievable impact angle set is presented. The performance of the proposed guidance law is illustrated with simulations.展开更多
In this paper, a novel fuzzy sliding mode control(FSMC) guidance law with terminal constraints of miss distance, impact angle and acceleration is presented for a constant speed missile against the stationary or slow...In this paper, a novel fuzzy sliding mode control(FSMC) guidance law with terminal constraints of miss distance, impact angle and acceleration is presented for a constant speed missile against the stationary or slowly moving target. The proposed guidance law combines the sliding mode control algorithm with a fuzzy logic control scheme for the lag-free system and the first-order lag system. Through using Lyapunov stability theory, we prove the sliding surface converges to zero in finite time. Furthermore, considering the uncertain information and system disturbances, the guidance gains are on-line optimized by fuzzy logic technique. Numerical simulations are performed to demonstrate the performance of the FSMC guidance law and the results illustrate the validity and effectiveness of the proposed guidance law.展开更多
A novel closed-form guidance law with impact time and impact angle constraints is pro- posed for salvo attack of anti-ship missiles, which employs missile's normal acceleration (not jerk) as the control command dir...A novel closed-form guidance law with impact time and impact angle constraints is pro- posed for salvo attack of anti-ship missiles, which employs missile's normal acceleration (not jerk) as the control command directly. Firstly, the impact time control problem is formulated as tracking the designated time-to-go (the difference between the designated impact time and the current flight time) for the actual time-to-go of missile, and the impact angle control problem is formulated as tracking the designated heading angle for the actual heading angle of missile. Secondly, a biased proportional navigation guidance (BPNG) law with designated heading angle constraint is constructed, and the actual time-to-go estimation for this BPNG is derived analytically by solving the system differential equations. Thirdly, by adding a feedback control to this constructed BPNG to eliminate the time-to-go errorthe difference between the standard time-to-go and the actual time-to-go, a guidance law with adjustable coefficients to control the impact time and impact angle simultaneously is developed. Finally, simulation results demonstrate the performance and feasibility of the proposed approach.展开更多
Cooperative guidance is a method for achieving combat objectives through information sharing and cooperative effects,and has emerged as a significant research area in the fields of missile guidance and systematic warf...Cooperative guidance is a method for achieving combat objectives through information sharing and cooperative effects,and has emerged as a significant research area in the fields of missile guidance and systematic warfare.This study presents a systematic review and analysis of current research on cooperative guidance.First,a bibliometric analysis is conducted on 513 articles using the Scopus database and CiteSpace software to assess keyword clustering,keyword cooccurrence,and keyword burst,and to later visualize the results.Second,fundamental theories of cooperative guidance,including relative motion modeling methods,algebraic graph theory,and multi-agent consensus theory,are summarized.Subsequently,an overview of current cooperative laws and corresponding analysis methods is provided,with categorization based on the cooperative structure and convergence performance.Finally,we summarize current research developments based on five perspectives and propose a developmental framework based on five layers(cyber,physical,decision,information,and system),discussing potential future advancements in cooperative terminal guidance.This framework emphasizes five key areas of research:networked,heterogeneous,integrated,intelligent,and group cooperations,with the goal of offering trends and insights for futurework.展开更多
This study presents a fixed-time convergence guidance scheme for impact time and angle control.First,two improved fixed-time stable systems are presented,which have smaller initial control command and better terminal ...This study presents a fixed-time convergence guidance scheme for impact time and angle control.First,two improved fixed-time stable systems are presented,which have smaller initial control command and better terminal convergence.16 An improved fixed-time extended state observer is proposed to provide accurate estimation of system states and disturbance,which effectively solves peaking value problem.Furthermore,an improved fixed-time sliding mode controller is derived,which avoids the singular problem and achieves faster convergence rate with smaller initial control command.Second,a new guidance scheme with impact angle and impact time constraints is proposed for intercepting a stationary target.By introducing a virtual target,the guidance process is divided into two stages.The proposed fixed-time controller is employed in the first stage.The method with a virtual leader ensures that the missile intercept the virtual target with desired line-of-sight angles at a specific time.By using the proportional navigation guidance law,the missile keeps travelling with desired flight-path angles to hit the real target in the second stage,17 so as to achieve the impact time and angle control.Finally,the feasibility and effectiveness of the proposed guidance scheme in different engagement scenarios are verified by numerical simulations with comparisons.展开更多
基金co-supported in part by the National Natural Science Foundation of China (Nos. 61473124, 61573161)
文摘To hit stationary ground targets in specified direction, a nonlinear impact angle control guidance law based on Lyapunov stability theory is proposed. The proposed law ensures the convergence of the heading angle and the miss distance to guarantee a successful engagement. The impact angle can be adjusted by varying a single parameter. And the maximum value of acceleration has been analyzed to get the proper range for control parameter. Considering the achievable impact angle set is limited, an additional phase is added to form a two-phase control strategy.The first phase is to establish a proper initial condition for the second phase, and the second phase is to hit the target with a certain impact angle. An analysis of the proper selection of control parameters to expand the achievable impact angle set is presented. The performance of the proposed guidance law is illustrated with simulations.
基金supported by the National Natural Science Foundation of China(6130422461305018+1 种基金61472423)the National Advanced Research Project of China(51301010206)
文摘In this paper, a novel fuzzy sliding mode control(FSMC) guidance law with terminal constraints of miss distance, impact angle and acceleration is presented for a constant speed missile against the stationary or slowly moving target. The proposed guidance law combines the sliding mode control algorithm with a fuzzy logic control scheme for the lag-free system and the first-order lag system. Through using Lyapunov stability theory, we prove the sliding surface converges to zero in finite time. Furthermore, considering the uncertain information and system disturbances, the guidance gains are on-line optimized by fuzzy logic technique. Numerical simulations are performed to demonstrate the performance of the FSMC guidance law and the results illustrate the validity and effectiveness of the proposed guidance law.
基金supported by National Natural Science Foundation of China(No.61273058)
文摘A novel closed-form guidance law with impact time and impact angle constraints is pro- posed for salvo attack of anti-ship missiles, which employs missile's normal acceleration (not jerk) as the control command directly. Firstly, the impact time control problem is formulated as tracking the designated time-to-go (the difference between the designated impact time and the current flight time) for the actual time-to-go of missile, and the impact angle control problem is formulated as tracking the designated heading angle for the actual heading angle of missile. Secondly, a biased proportional navigation guidance (BPNG) law with designated heading angle constraint is constructed, and the actual time-to-go estimation for this BPNG is derived analytically by solving the system differential equations. Thirdly, by adding a feedback control to this constructed BPNG to eliminate the time-to-go errorthe difference between the standard time-to-go and the actual time-to-go, a guidance law with adjustable coefficients to control the impact time and impact angle simultaneously is developed. Finally, simulation results demonstrate the performance and feasibility of the proposed approach.
基金supported by the National Natural Science Foundation of China(No.62173274)the National Key R&D Program of China(No.2019YFA0405300)+4 种基金the Natural Science Foundation of Hunan Province of China(Nos.2021JJ10045 and 2025JJ60072)the Open Research Subject of State Key Laboratory of Intelligent Game(No.ZBKF-24-01)the Postdoctoral Fellowship Program of CPSF(No.GZB20240989)the China Postdoctoral Science Foundation(No.2024M754304)the Aeronautical Science Foundation of China(No.2023Z005030001).
文摘Cooperative guidance is a method for achieving combat objectives through information sharing and cooperative effects,and has emerged as a significant research area in the fields of missile guidance and systematic warfare.This study presents a systematic review and analysis of current research on cooperative guidance.First,a bibliometric analysis is conducted on 513 articles using the Scopus database and CiteSpace software to assess keyword clustering,keyword cooccurrence,and keyword burst,and to later visualize the results.Second,fundamental theories of cooperative guidance,including relative motion modeling methods,algebraic graph theory,and multi-agent consensus theory,are summarized.Subsequently,an overview of current cooperative laws and corresponding analysis methods is provided,with categorization based on the cooperative structure and convergence performance.Finally,we summarize current research developments based on five perspectives and propose a developmental framework based on five layers(cyber,physical,decision,information,and system),discussing potential future advancements in cooperative terminal guidance.This framework emphasizes five key areas of research:networked,heterogeneous,integrated,intelligent,and group cooperations,with the goal of offering trends and insights for futurework.
基金supported by the National Natural Science Foundation of China under Grant nos.62273250,62073002the Natural Science Foundation of Tianjin City under Grant no.21JCYBJC00590.
文摘This study presents a fixed-time convergence guidance scheme for impact time and angle control.First,two improved fixed-time stable systems are presented,which have smaller initial control command and better terminal convergence.16 An improved fixed-time extended state observer is proposed to provide accurate estimation of system states and disturbance,which effectively solves peaking value problem.Furthermore,an improved fixed-time sliding mode controller is derived,which avoids the singular problem and achieves faster convergence rate with smaller initial control command.Second,a new guidance scheme with impact angle and impact time constraints is proposed for intercepting a stationary target.By introducing a virtual target,the guidance process is divided into two stages.The proposed fixed-time controller is employed in the first stage.The method with a virtual leader ensures that the missile intercept the virtual target with desired line-of-sight angles at a specific time.By using the proportional navigation guidance law,the missile keeps travelling with desired flight-path angles to hit the real target in the second stage,17 so as to achieve the impact time and angle control.Finally,the feasibility and effectiveness of the proposed guidance scheme in different engagement scenarios are verified by numerical simulations with comparisons.