期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
A new landing impact attenuation seat in manned spacecraft biologically-inspired by felids 被引量:2
1
作者 Yu Hui Zhang Zhiqiang +3 位作者 Liu Hua Yang Jialing Wang Lili Yang Liming 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2015年第2期434-446,共13页
When manned spacecraft comes back to the earth, it relies on the impact attenuation seat to protect astronauts from injuries during landing phase. Hence, the seat needs to transfer impact load, as small as possible, t... When manned spacecraft comes back to the earth, it relies on the impact attenuation seat to protect astronauts from injuries during landing phase. Hence, the seat needs to transfer impact load, as small as possible, to the crew. However, there is little room left for traditional seat to improve further. Herein, a new seat system biologically-inspired by felids' landing is proposed. Firstly, a series of experiments was carried out on cats and tigers, in which they were trained to jump down voluntarily from different heights. Based on the ground reaction forces combined with kinematics, the experiment indicated that felids' landing after self-initial jump was a multi-step impact attenuation process and the new seat was inspired by this. Then the construction and work process of new seat were redesigned to realize the multi-step impact attenuation. The dynamic response of traditional and new seat is analyzed under the identical conditions and the results show that the new concept seat can significantly weaken the occupant overload in two directions compared with that of traditional seat. As a consequence, the risk of injury evaluated for spinal and head is also lowered, meaning a higher level of protection which is especially beneficial to the debilitated astronaut. 展开更多
关键词 ASTRONAUTICS BIONICS impact attenuation LANDING OVERLOAD SEAT
原文传递
Over-height truck collisions with railway bridges:attenuation of damage using crash beams
2
作者 Dan Xu Xinxing Yuan +4 位作者 Ali Irmak Ozdagli Marlon Agüero Roya Nasimi Tao Wang Fernando Moreu 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2022年第1期237-252,共16页
Railway bridges are susceptible to over-height truck collisions and to address this issue,it is necessary to attenuate the effect of these impacts to ensure the safety of transportation operations.This study experimen... Railway bridges are susceptible to over-height truck collisions and to address this issue,it is necessary to attenuate the effect of these impacts to ensure the safety of transportation operations.This study experimentally investigates the effectiveness of crash beams as a cushioning mechanism for railway bridges against collisions.Over-height truck and railway bridge impact events were simulated in a 1:5 scale experiment.The design parameters such as the stiffness of the crash beam and the bridge supports were scaled to evaluate different levels of attenuation.Seventeen experiments were conducted with five configurations consisting of four different types of crash beams and one no-crash beam arrangement.The results show that crash beams attenuate bridge total peak dynamic displacement responses between 14.5%and 35.7%,depending on the intensity of the impact and crash beam type.In addition,the results show that the average effectiveness in attenuating residual deformation for all four crash beams ranges from 43.03%to 83.40%.Finally,various designs and their effectiveness against lateral impacts with different speeds are discussed.The overall scope of this research is to provide objective information about the design of crash beams for railway bridges based on their response to over-height truck collisions at various speeds. 展开更多
关键词 railway bridge over-height truck impact attenuation crash beam dynamic displacement scaled model
在线阅读 下载PDF
PARAMETRIC MATCHING SELECTION OF MULTI-MEDIUM COUPLING SHOCK ABSORBER
3
作者 YANG Ping DING Jianning YANG Jichang LI Changsheng FAN Zhen LIN Zhiyong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2006年第1期124-127,共4页
To achieve the dual demand of resisting violent impact and attenuating vibration in vibration-impact-safety of protection for precision equipment such as MEMS packaging system, a theo- retical mathematical model of mu... To achieve the dual demand of resisting violent impact and attenuating vibration in vibration-impact-safety of protection for precision equipment such as MEMS packaging system, a theo- retical mathematical model of multi-medium coupling shock absorber is presented. The coupling of quadratic damping, linear damping, Coulomb damping and nonlinear spring are considered in the model. The approximate theoretical calculating formulae are deduced by introducing transformation-tactics. The contrasts between the analytical results and numerical integration results are developed. The resisting impact characteristics of the model are also analyzed in progress. In the meantime, the optimum model of the parameters matching selection for design of the shock absorber is built. The example design is illustrated to confirm the validity of the modeling method and the theoretical solution. 展开更多
关键词 Multi-damping medium Shock absorber Model Parametric matching selection Resisting impact and attenuating vibration
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部