期刊文献+
共找到17,663篇文章
< 1 2 250 >
每页显示 20 50 100
Deep learning-based multi-task prediction of response to neoadjuvant chemotherapy using multiscale whole slide images in breast cancer:A multicenter study 被引量:1
1
作者 Qin Wang Feng Zhao +19 位作者 Haicheng Zhang Tongpeng Chu Qi Wang Xipeng Pan Yuqian Chen Heng Zhou Tiantian Zheng Ziyin Li Fan Lin Haizhu Xie Heng Ma Lan Liu Lina Zhang Qin Li Weiwei Wang Yi Dai Ruijun Tang Jigang Wang Ping Yang Ning Mao 《Chinese Journal of Cancer Research》 2025年第1期28-47,共20页
Objective:Early predicting response before neoadjuvant chemotherapy(NAC)is crucial for personalized treatment plans for locally advanced breast cancer patients.We aim to develop a multi-task model using multiscale who... Objective:Early predicting response before neoadjuvant chemotherapy(NAC)is crucial for personalized treatment plans for locally advanced breast cancer patients.We aim to develop a multi-task model using multiscale whole slide images(WSIs)features to predict the response to breast cancer NAC more finely.Methods:This work collected 1,670 whole slide images for training and validation sets,internal testing sets,external testing sets,and prospective testing sets of the weakly-supervised deep learning-based multi-task model(DLMM)in predicting treatment response and pCR to NAC.Our approach models two-by-two feature interactions across scales by employing concatenate fusion of single-scale feature representations,and controls the expressiveness of each representation via a gating-based attention mechanism.Results:In the retrospective analysis,DLMM exhibited excellent predictive performance for the prediction of treatment response,with area under the receiver operating characteristic curves(AUCs)of 0.869[95%confidence interval(95%CI):0.806−0.933]in the internal testing set and 0.841(95%CI:0.814−0.867)in the external testing sets.For the pCR prediction task,DLMM reached AUCs of 0.865(95%CI:0.763−0.964)in the internal testing and 0.821(95%CI:0.763−0.878)in the pooled external testing set.In the prospective testing study,DLMM also demonstrated favorable predictive performance,with AUCs of 0.829(95%CI:0.754−0.903)and 0.821(95%CI:0.692−0.949)in treatment response and pCR prediction,respectively.DLMM significantly outperformed the baseline models in all testing sets(P<0.05).Heatmaps were employed to interpret the decision-making basis of the model.Furthermore,it was discovered that high DLMM scores were associated with immune-related pathways and cells in the microenvironment during biological basis exploration.Conclusions:The DLMM represents a valuable tool that aids clinicians in selecting personalized treatment strategies for breast cancer patients. 展开更多
关键词 Artificial intelligence breast cancer digital pathology whole slide images
暂未订购
An EfficientNet integrated ResNet deep network and explainable AI for breast lesion classification from ultrasound images
2
作者 Kiran Jabeen Muhammad Attique Khan +4 位作者 Ameer Hamza Hussain Mobarak Albarakati Shrooq Alsenan Usman Tariq Isaac Ofori 《CAAI Transactions on Intelligence Technology》 2025年第3期842-857,共16页
Breast cancer is one of the major causes of deaths in women.However,the early diagnosis is important for screening and control the mortality rate.Thus for the diagnosis of breast cancer at the early stage,a computer-a... Breast cancer is one of the major causes of deaths in women.However,the early diagnosis is important for screening and control the mortality rate.Thus for the diagnosis of breast cancer at the early stage,a computer-aided diagnosis system is highly required.Ultrasound is an important examination technique for breast cancer diagnosis due to its low cost.Recently,many learning-based techniques have been introduced to classify breast cancer using breast ultrasound imaging dataset(BUSI)datasets;however,the manual handling is not an easy process and time consuming.The authors propose an EfficientNet-integrated ResNet deep network and XAI-based framework for accurately classifying breast cancer(malignant and benign).In the initial step,data augmentation is performed to increase the number of training samples.For this purpose,three-pixel flip mathematical equations are introduced:horizontal,vertical,and 90°.Later,two pretrained deep learning models were employed,skipped some layers,and fine-tuned.Both fine-tuned models are later trained using a deep transfer learning process and extracted features from the deeper layer.Explainable artificial intelligence-based analysed the performance of trained models.After that,a new feature selection technique is proposed based on the cuckoo search algorithm called cuckoo search controlled standard error mean.This technique selects the best features and fuses using a new parallel zeropadding maximum correlated coefficient features.In the end,the selection algorithm is applied again to the fused feature vector and classified using machine learning algorithms.The experimental process of the proposed framework is conducted on a publicly available BUSI and obtained 98.4%and 98%accuracy in two different experiments.Comparing the proposed framework is also conducted with recent techniques and shows improved accuracy.In addition,the proposed framework was executed less than the original deep learning models. 展开更多
关键词 augmentation breast cancer CLASSIFICATION deep learning OPTIMIZATION ultrasound images
在线阅读 下载PDF
Enhanced Kinship Verification through Ear Images:A Comparative Study of CNNs,Attention Mechanisms,and MLP Mixer Models
3
作者 Thien-Tan Cao Huu-Thanh Duong +3 位作者 Viet-Tuan Le Hau Nguyen Trung Vinh Truong Hoang Kiet Tran-Trung 《Computers, Materials & Continua》 2025年第6期4373-4391,共19页
Kinship verification is a key biometric recognition task that determines biological relationships based on physical features.Traditional methods predominantly use facial recognition,leveraging established techniques a... Kinship verification is a key biometric recognition task that determines biological relationships based on physical features.Traditional methods predominantly use facial recognition,leveraging established techniques and extensive datasets.However,recent research has highlighted ear recognition as a promising alternative,offering advantages in robustness against variations in facial expressions,aging,and occlusions.Despite its potential,a significant challenge in ear-based kinship verification is the lack of large-scale datasets necessary for training deep learning models effectively.To address this challenge,we introduce the EarKinshipVN dataset,a novel and extensive collection of ear images designed specifically for kinship verification.This dataset consists of 4876 high-resolution color images from 157 multiracial families across different regions,forming 73,220 kinship pairs.EarKinshipVN,a diverse and large-scale dataset,advances kinship verification research using ear features.Furthermore,we propose the Mixer Attention Inception(MAI)model,an improved architecture that enhances feature extraction and classification accuracy.The MAI model fuses Inceptionv4 and MLP Mixer,integrating four attention mechanisms to enhance spatial and channel-wise feature representation.Experimental results demonstrate that MAI significantly outperforms traditional backbone architectures.It achieves an accuracy of 98.71%,surpassing Vision Transformer models while reducing computational complexity by up to 95%in parameter usage.These findings suggest that ear-based kinship verification,combined with an optimized deep learning model and a comprehensive dataset,holds significant promise for biometric applications. 展开更多
关键词 Biometric analytics ear kin Inceptionv4 kinship verification KIN ear images
在线阅读 下载PDF
WaveSeg-UNet model for overlapped nuclei segmentation from multi-organ histopathology images
4
作者 Hameed Ullah Khan Basit Raza +1 位作者 Muhammad Asad Iqbal Khan Muhammad Faheem 《CAAI Transactions on Intelligence Technology》 2025年第1期253-267,共15页
Nuclei segmentation is a challenging task in histopathology images.It is challenging due to the small size of objects,low contrast,touching boundaries,and complex structure of nuclei.Their segmentation and counting pl... Nuclei segmentation is a challenging task in histopathology images.It is challenging due to the small size of objects,low contrast,touching boundaries,and complex structure of nuclei.Their segmentation and counting play an important role in cancer identification and its grading.In this study,WaveSeg-UNet,a lightweight model,is introduced to segment cancerous nuclei having touching boundaries.Residual blocks are used for feature extraction.Only one feature extractor block is used in each level of the encoder and decoder.Normally,images degrade quality and lose important information during down-sampling.To overcome this loss,discrete wavelet transform(DWT)alongside maxpooling is used in the down-sampling process.Inverse DWT is used to regenerate original images during up-sampling.In the bottleneck of the proposed model,atrous spatial channel pyramid pooling(ASCPP)is used to extract effective high-level features.The ASCPP is the modified pyramid pooling having atrous layers to increase the area of the receptive field.Spatial and channel-based attention are used to focus on the location and class of the identified objects.Finally,watershed transform is used as a post processing technique to identify and refine touching boundaries of nuclei.Nuclei are identified and counted to facilitate pathologists.The same domain of transfer learning is used to retrain the model for domain adaptability.Results of the proposed model are compared with state-of-the-art models,and it outperformed the existing studies. 展开更多
关键词 deep learning histopathology images machine learning nuclei segmentation U-Net
在线阅读 下载PDF
E-GlauNet: A CNN-Based Ensemble Deep Learning Model for Glaucoma Detection and Staging Using Retinal Fundus Images
5
作者 Maheen Anwar Saima Farhan +4 位作者 Yasin Ul Haq Waqar Azeem Muhammad Ilyas Razvan Cristian Voicu Muhammad Hassan Tanveer 《Computers, Materials & Continua》 2025年第8期3477-3502,共26页
Glaucoma,a chronic eye disease affecting millions worldwide,poses a substantial threat to eyesight and can result in permanent vision loss if left untreated.Manual identification of glaucoma is a complicated and time-... Glaucoma,a chronic eye disease affecting millions worldwide,poses a substantial threat to eyesight and can result in permanent vision loss if left untreated.Manual identification of glaucoma is a complicated and time-consuming practice requiring specialized expertise and results may be subjective.To address these challenges,this research proposes a computer-aided diagnosis(CAD)approach using Artificial Intelligence(AI)techniques for binary and multiclass classification of glaucoma stages.An ensemble fusion mechanism that combines the outputs of three pre-trained convolutional neural network(ConvNet)models–ResNet-50,VGG-16,and InceptionV3 is utilized in this paper.This fusion technique enhances diagnostic accuracy and robustness by ensemble-averaging the predictions from individual models,leveraging their complementary strengths.The objective of this work is to assess the model’s capability for early-stage glaucoma diagnosis.Classification is performed on a dataset collected from the Harvard Dataverse repository.With the proposed technique,for Normal vs.Advanced glaucoma classification,a validation accuracy of 98.04%and testing accuracy of 98.03%is achieved,with a specificity of 100%which outperforms stateof-the-art methods.For multiclass classification,the suggested ensemble approach achieved a precision and sensitivity of 97%,specificity,and testing accuracy of 98.57%and 96.82%,respectively.The proposed E-GlauNet model has significant potential in assisting ophthalmologists in the screening and fast diagnosis of glaucoma,leading to more reliable,efficient,and timely diagnosis,particularly for early-stage detection and staging of the disease.While the proposed method demonstrates high accuracy and robustness,the study is limited by the evaluation of a single dataset.Future work will focus on external validation across diverse datasets and enhancing interpretability using explainable AI techniques. 展开更多
关键词 Classification deep learning early disease detection ensemble learning GLAUCOMA machine learning retinal fundus images
暂未订购
Manuscripts,Images,and Medicine:The Encounter of Eurasian Medical Knowledge and Mutual Learning of Civilizations
6
作者 CHEN Ming 《Chinese Medicine and Culture》 2025年第2期97-98,F0002,共3页
For the history of medical culture in the world,the exchange and transmission of medical knowledge has formed an important part of mutual learning among different cultures,which has also increasingly shown unique acad... For the history of medical culture in the world,the exchange and transmission of medical knowledge has formed an important part of mutual learning among different cultures,which has also increasingly shown unique academic value in the study of knowledge history.Traditional Eastern medicine(such as Chinese medicine,Indian ayurvedic medicine,Persian medicine,Arabic medicine),and other medical systems in the ancient Western world(including Greek medicine and Roman medicine)have left precious literature/texts,cultural relics(for example,pills,preparations,medical instruments),folklore and legends,which truly record the process of learning,transplantation,fusion and succession after the encounter of different medical systems at least for the past two thousand years. 展开更多
关键词 images mutual learning MANUSCRIPTS medical systems exchange transmission medical knowledge eastern medicine such MEDICINE Eurasian medical knowledge
暂未订购
Medical and Folklore Images during Pandemics:A Study of Edo Period Epidemic Visual Culture
7
作者 ZENG Yi XIAO Yongzhi 《Chinese Medicine and Culture》 2025年第2期124-138,共15页
Edo-period historical records and documents preserved a substantial number of images,many of which are related to epidemic outbreaks.Through systematic collation and categorical analysis,this study uses the chronologi... Edo-period historical records and documents preserved a substantial number of images,many of which are related to epidemic outbreaks.Through systematic collation and categorical analysis,this study uses the chronological and thematic characteristics of these images as a framework to examine the response mechanisms of the Japanese government and public during infectious disease pandemics in the Edo period,as well as the multidimensional impacts of epidemics on social economy,culture,and customs.Illustrations of smallpox in medical texts reveal the developmental trajectory of Japan’s traditional medical knowledge system,while drawings in essays and diaries reflect public fear and non-medical cognitive patterns during cholera outbreaks.Epidemic-themed paintings not only document cholera treatment protocols by the government and medical professionals,as well as grassroots prevention and treatment practices for measles,but also vividly depict social dynamics during crises.Images related to epidemics in advertising reflect the prosperity of the pharmaceutical industry in the Edo period,while depictions in folding screens,ukiyozoushi and the occupational illustrations demonstrate societal customs for epidemic response.Collectively,the Edo-period epidemic crises profoundly shaped Japan’s medical system,economic structure,cultural forms,folk traditions,and public psychology,prompting the government,medical professionals,and civilians to develop distinct era-specific social coping mechanisms. 展开更多
关键词 Edo period EPIDEMIC Folklore images Kampo medicine
在线阅读 下载PDF
Land Cover Classification for Remote Sensing Images Based on MCM-Net
8
作者 Peilong SHI Shuxin YIN 《Agricultural Biotechnology》 2025年第5期38-41,共4页
A novel CNN-Mamba hybrid architecture was proposed to address intra-class variance and inter-class similarity in remote sensing imagery.The framework integrates:(1)parallel CNN and visual state space(VSS)encoders,(2)m... A novel CNN-Mamba hybrid architecture was proposed to address intra-class variance and inter-class similarity in remote sensing imagery.The framework integrates:(1)parallel CNN and visual state space(VSS)encoders,(2)multi-scale cross-attention feature fusion,and(3)a boundary-constrained decoder.This design overcomes CNN s limited receptive fields and ViT s quadratic complexity while efficiently capturing both local features and global dependencies.Evaluations on LoveDA and ISPRS Vaihingen datasets demonstrate superior segmentation accuracy and boundary preservation compared to existing approaches,with the dual-branch structure maintaining computational efficiency throughout the process. 展开更多
关键词 Semantic segmentation Remote sensing images CNN Mamba
在线阅读 下载PDF
Ensemble of Deep Learning with Crested Porcupine Optimizer Based Autism Spectrum Disorder Detection Using Facial Images
9
作者 Jagadesh Balasubramani Surendran Rajendran +1 位作者 Mohammad Zakariah Abeer Alnuaim 《Computers, Materials & Continua》 2025年第5期2793-2807,共15页
Autism spectrum disorder(ASD)is a multifaceted neurological developmental condition that manifests in several ways.Nearly all autistic children remain undiagnosed before the age of three.Developmental problems affecti... Autism spectrum disorder(ASD)is a multifaceted neurological developmental condition that manifests in several ways.Nearly all autistic children remain undiagnosed before the age of three.Developmental problems affecting face features are often associated with fundamental brain disorders.The facial evolution of newborns with ASD is quite different from that of typically developing children.Early recognition is very significant to aid families and parents in superstition and denial.Distinguishing facial features from typically developing children is an evident manner to detect children analyzed with ASD.Presently,artificial intelligence(AI)significantly contributes to the emerging computer-aided diagnosis(CAD)of autism and to the evolving interactivemethods that aid in the treatment and reintegration of autistic patients.This study introduces an Ensemble of deep learning models based on the autism spectrum disorder detection in facial images(EDLM-ASDDFI)model.The overarching goal of the EDLM-ASDDFI model is to recognize the difference between facial images of individuals with ASD and normal controls.In the EDLM-ASDDFI method,the primary level of data pre-processing is involved by Gabor filtering(GF).Besides,the EDLM-ASDDFI technique applies the MobileNetV2 model to learn complex features from the pre-processed data.For the ASD detection process,the EDLM-ASDDFI method uses ensemble techniques for classification procedure that encompasses long short-term memory(LSTM),deep belief network(DBN),and hybrid kernel extreme learning machine(HKELM).Finally,the hyperparameter selection of the three deep learning(DL)models can be implemented by the design of the crested porcupine optimizer(CPO)technique.An extensive experiment was conducted to emphasize the improved ASD detection performance of the EDLM-ASDDFI method.The simulation outcomes indicated that the EDLM-ASDDFI technique highlighted betterment over other existing models in terms of numerous performance measures. 展开更多
关键词 Autism spectrum disorder ensemble learning crested porcupine optimizer facial images computeraided diagnosis
在线阅读 下载PDF
A Hybrid Deep Learning Method for Forecasting Reservoir Water Level from Sentinel-2 Satellite Images
10
作者 Hoang Thi Minh Chau Tran Thi Ngan +2 位作者 Nguyen Long Giang Tran Manh Tuan Tran Kim Chau 《Computers, Materials & Continua》 2025年第6期4915-4937,共23页
Global climate change,along with the rapid increase of the population,has put significant pressure on water security.A water reservoir is an effective solution for adjusting and ensuring water supply.In particular,the... Global climate change,along with the rapid increase of the population,has put significant pressure on water security.A water reservoir is an effective solution for adjusting and ensuring water supply.In particular,the reservoir water level is an essential physical indicator for the reservoirs.Forecasting the reservoir water level effectively assists the managers in making decisions and plans related to reservoir management policies.In recent years,deep learning models have been widely applied to solve forecasting problems.In this study,we propose a novel hybrid deep learning model namely the YOLOv9_ConvLSTM that integrates YOLOv9,ConvLSTM,and linear interpolation to predict reservoir water levels.It utilizes data from Sentinel-2 satellite images,generated from visible spectrum bands(Red-Blue-Green)to reconstruct true-color reservoir images.Adam is used as the optimization algorithm with the loss function being MSE(Mean Squared Error)to evaluate the model’s error during training.We implemented and validated the proposed model using Sentinel-2 satellite imagery for the An Khe reservoir in Vietnam.To assess its performance,we also conducted comparative experiments with other related models,including SegNet_ConvLSTM and UNet_ConvLSTM,on the same dataset.The model performances were validated using k-fold cross-validation and ANOVA analysis.The experimental results demonstrate that the YOLOv9_ConvLSTM model outperforms the compared models.It has been seen that the proposed approach serves as a valuable tool for reservoir water level forecasting using satellite imagery that contributes to effective water resource management. 展开更多
关键词 YOLOv9 ConvLSTM reservoir water level forecasting satellite images
在线阅读 下载PDF
Seeing the macro in the micro:a diffusion model-based approach for style transfer in cellular images
11
作者 Jiayi CAI Yong HE +2 位作者 Feng LIU Byung-Ho KANG Xuping FENG 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 2025年第6期609-612,共4页
The internal structures of cells as the basic units of life are a major wonder of the microscopic world.Cellular images provide an intriguing window to help explore and understand the composition and function of these... The internal structures of cells as the basic units of life are a major wonder of the microscopic world.Cellular images provide an intriguing window to help explore and understand the composition and function of these structures.Scientific imagery combined with artistic expression can further expand the potential of imaging in educational dissemination and interdisciplinary applications. 展开更多
关键词 interdisciplinary applications artistic expression diffusion model explore understand composition function cellular images educational dissemination style transfer internal structures
原文传递
Automatic diagnosis of extraocular muscle palsy based on machine learning and diplopia images
12
作者 Xiao-Lu Jin Xue-Mei Li +1 位作者 Tie-Juan Liu Ling-Yun Zhou 《International Journal of Ophthalmology(English edition)》 2025年第5期757-764,共8页
AIM:To develop different machine learning models to train and test diplopia images and data generated by the computerized diplopia test.METHODS:Diplopia images and data generated by computerized diplopia tests,along w... AIM:To develop different machine learning models to train and test diplopia images and data generated by the computerized diplopia test.METHODS:Diplopia images and data generated by computerized diplopia tests,along with patient medical records,were retrospectively collected from 3244 cases.Diagnostic models were constructed using logistic regression(LR),decision tree(DT),support vector machine(SVM),extreme gradient boosting(XGBoost),and deep learning(DL)algorithms.A total of 2757 diplopia images were randomly selected as training data,while the test dataset contained 487 diplopia images.The optimal diagnostic model was evaluated using test set accuracy,confusion matrix,and precision-recall curve(P-R curve).RESULTS:The test set accuracy of the LR,SVM,DT,XGBoost,DL(64 categories),and DL(6 binary classifications)algorithms was 0.762,0.811,0.818,0.812,0.858 and 0.858,respectively.The accuracy in the training set was 0.785,0.815,0.998,0.965,0.968,and 0.967,respectively.The weighted precision of LR,SVM,DT,XGBoost,DL(64 categories),and DL(6 binary classifications)algorithms was 0.74,0.77,0.83,0.80,0.85,and 0.85,respectively;weighted recall was 0.76,0.81,0.82,0.81,0.86,and 0.86,respectively;weighted F1 score was 0.74,0.79,0.82,0.80,0.85,and 0.85,respectively.CONCLUSION:In this study,the 7 machine learning algorithms all achieve automatic diagnosis of extraocular muscle palsy.The DL(64 categories)and DL(6 binary classifications)algorithms have a significant advantage over other machine learning algorithms regarding diagnostic accuracy on the test set,with a high level of consistency with clinical diagnoses made by physicians.Therefore,it can be used as a reference for diagnosis. 展开更多
关键词 machine learning extraocular muscle paralysis automatic diagnosis diplopia images
原文传递
YOLO-S3DT:A Small Target Detection Model for UAV Images Based on YOLOv8
13
作者 Pengcheng Gao Zhenjiang Li 《Computers, Materials & Continua》 2025年第3期4555-4572,共18页
The application of deep learning for target detection in aerial images captured by Unmanned Aerial Vehicles(UAV)has emerged as a prominent research focus.Due to the considerable distance between UAVs and the photograp... The application of deep learning for target detection in aerial images captured by Unmanned Aerial Vehicles(UAV)has emerged as a prominent research focus.Due to the considerable distance between UAVs and the photographed objects,coupled with complex shooting environments,existing models often struggle to achieve accurate real-time target detection.In this paper,a You Only Look Once v8(YOLOv8)model is modified from four aspects:the detection head,the up-sampling module,the feature extraction module,and the parameter optimization of positive sample screening,and the YOLO-S3DT model is proposed to improve the performance of the model for detecting small targets in aerial images.Experimental results show that all detection indexes of the proposed model are significantly improved without increasing the number of model parameters and with the limited growth of computation.Moreover,this model also has the best performance compared to other detecting models,demonstrating its advancement within this category of tasks. 展开更多
关键词 Target detection UAV images detection small target detection YOLO
在线阅读 下载PDF
Coupling the Power of YOLOv9 with Transformer for Small Object Detection in Remote-Sensing Images
14
作者 Mohammad Barr 《Computer Modeling in Engineering & Sciences》 2025年第4期593-616,共24页
Recent years have seen a surge in interest in object detection on remote sensing images for applications such as surveillance andmanagement.However,challenges like small object detection,scale variation,and the presen... Recent years have seen a surge in interest in object detection on remote sensing images for applications such as surveillance andmanagement.However,challenges like small object detection,scale variation,and the presence of closely packed objects in these images hinder accurate detection.Additionally,the motion blur effect further complicates the identification of such objects.To address these issues,we propose enhanced YOLOv9 with a transformer head(YOLOv9-TH).The model introduces an additional prediction head for detecting objects of varying sizes and swaps the original prediction heads for transformer heads to leverage self-attention mechanisms.We further improve YOLOv9-TH using several strategies,including data augmentation,multi-scale testing,multi-model integration,and the introduction of an additional classifier.The cross-stage partial(CSP)method and the ghost convolution hierarchical graph(GCHG)are combined to improve detection accuracy by better utilizing feature maps,widening the receptive field,and precisely extracting multi-scale objects.Additionally,we incorporate the E-SimAM attention mechanism to address low-resolution feature loss.Extensive experiments on the VisDrone2021 and DIOR datasets demonstrate the effectiveness of YOLOv9-TH,showing good improvement in mAP compared to the best existing methods.The YOLOv9-TH-e achieved 54.2% of mAP50 on the VisDrone2021 dataset and 92.3% of mAP on the DIOR dataset.The results confirmthemodel’s robustness and suitability for real-world applications,particularly for small object detection in remote sensing images. 展开更多
关键词 Remote sensing images YOLOv9-TH multi-scale object detection transformer heads VisDrone2021 dataset
在线阅读 下载PDF
A novel coal-rock recognition method in coal mining face based on fusing laser point cloud and images
15
作者 Yang Liu Lei Si +4 位作者 Zhongbin Wang Miao Chen Xin Li Dong Wei Jinheng Gu 《International Journal of Mining Science and Technology》 2025年第7期1057-1071,共15页
Rapid and accurate recognition of coal and rock is an important prerequisite for safe and efficient coal mining.In this paper,a novel coal-rock recognition method is proposed based on fusing laser point cloud and imag... Rapid and accurate recognition of coal and rock is an important prerequisite for safe and efficient coal mining.In this paper,a novel coal-rock recognition method is proposed based on fusing laser point cloud and images,named Multi-Modal Frustum PointNet(MMFP).Firstly,MobileNetV3 is used as the backbone network of Mask R-CNN to reduce the network parameters and compress the model volume.The dilated convolutional block attention mechanism(Dilated CBAM)and inception structure are combined with MobileNetV3 to further enhance the detection accuracy.Subsequently,the 2D target candidate box is calculated through the improved Mask R-CNN,and the frustum point cloud in the 2D target candidate box is extracted to reduce the calculation scale and spatial search range.Then,the self-attention PointNet is constructed to segment the fused point cloud within the frustum range,and the bounding box regression network is used to predict the bounding box parameters.Finally,an experimental platform of shearer coal wall cutting is established,and multiple comparative experiments are conducted.Experimental results indicate that the proposed coal-rock recognition method is superior to other advanced models. 展开更多
关键词 Coal miningface Coal-rock recognition Deep learning Laser pointcloud and images fusion Multi-Modal Frustum PointNet(MMFP)
在线阅读 下载PDF
Intelligent detection method for internal fractures in mine rock masses based on borehole camera images
16
作者 Xinbo Ma Fuming Qu +2 位作者 Wenxuan He Liancheng Wang Xiaobo Liu 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第8期4802-4814,共13页
It is important to understand the development of joints and fractures in rock masses to ensure drilling stability and blasting effectiveness.Traditional manual observation techniques for identifying and extracting fra... It is important to understand the development of joints and fractures in rock masses to ensure drilling stability and blasting effectiveness.Traditional manual observation techniques for identifying and extracting fracture characteristics have been proven to be inefficient and prone to subjective interpretation.Moreover,conventional image processing algorithms and classical deep learning models often encounter difficulties in accurately identifying fracture areas,resulting in unclear contours.This study proposes an intelligent method for detecting internal fractures in mine rock masses to address these challenges.The proposed approach captures a nodal fracture map within the targeted blast area and integrates channel and spatial attention mechanisms into the ResUnet(RU)model.The channel attention mechanism dynamically recalibrates the importance of each feature channel,and the spatial attention mechanism enhances feature representation in key areas while minimizing background noise,thus improving segmentation accuracy.A dynamic serpentine convolution module is also introduced that adaptively adjusts the shape and orientation of the convolution kernel based on the local structure of the input feature map.Furthermore,this method enables the automatic extraction and quantification of borehole nodal fracture information by fitting sinusoidal curves to the boundaries of the fracture contours using the least squares method.In comparison to other advanced deep learning models,our enhanced RU demonstrates superior performance across evaluation metrics,including accuracy,pixel accuracy(PA),and intersection over union(IoU).Unlike traditional manual extraction methods,our intelligent detection approach provides considerable time and cost savings,with an average error rate of approximately 4%.This approach has the potential to greatly improve the efficiency of geological surveys of borehole fractures. 展开更多
关键词 Fracture detection Borehole camera images Convolutional neural networks(CNNs) Attention mechanism
在线阅读 下载PDF
Extraction of Suspected Illegal Buildings from Land Satellite Images Based on Fully Convolutional Networks
17
作者 Yu PEI Xi SHEN +2 位作者 Xianwu YANG Kaiyu FU Qinfang ZHOU 《Meteorological and Environmental Research》 2025年第1期64-69,75,共7页
In the management of land resources and the protection of cultivated land,the law enforcement of land satellite images is often used as one of the main means.In recent years,the policies and regulations of the law enf... In the management of land resources and the protection of cultivated land,the law enforcement of land satellite images is often used as one of the main means.In recent years,the policies and regulations of the law enforcement of land satellite images have become more and more strict and been adjusted increasingly frequently,playing a decisive role in preventing excessive non-agricultural and non-food urbanization.In the process of the law enforcement,the extraction of suspected illegal buildings is the most important and time-consuming content.Compared with the traditional deep learning model,fully convolutional networks(FCN)has a great advantage in remote sensing image processing because its input images are not limited by size,and both convolution and deconvolution are independent of the overall size of images.In this paper,an intelligent extraction model of suspected illegal buildings from land satellite images based on deep learning FCN was built.Kaiyuan City,Yunnan Province was taken as an example.The verification results show that the global accuracy of this model was 86.6%in the process of building extraction,and mean intersection over union(mIoU)was 73.6%.This study can provide reference for the extraction of suspected illegal buildings in the law enforcement work of land satellite images,and reduce the tedious manual operation to a certain extent. 展开更多
关键词 Deep learning Fully convolutional network Semantic segmentation Law enforcement of land satellite images Extraction of suspected illegal buildings
在线阅读 下载PDF
Wetland Vegetation Species Classification Using Optical and SAR Remote Sensing Images: A Case Study of Chongming Island, Shanghai, China
18
作者 DENG Yaozi SHI Runhe +3 位作者 ZHANG Chao WANG Xiaoyang LIU Chaoshun GAO Wei 《Chinese Geographical Science》 2025年第3期510-527,共18页
Mudflat vegetation plays a crucial role in the ecological function of wetland environment,and obtaining its fine spatial distri-bution is of great significance for wetland protection and management.Remote sensing tech... Mudflat vegetation plays a crucial role in the ecological function of wetland environment,and obtaining its fine spatial distri-bution is of great significance for wetland protection and management.Remote sensing techniques can realize the rapid extraction of wetland vegetation over a large area.However,the imaging of optical sensors is easily restricted by weather conditions,and the backs-cattered information reflected by Synthetic Aperture Radar(SAR)images is easily disturbed by many factors.Although both data sources have been applied in wetland vegetation classification,there is a lack of comparative study on how the selection of data sources affects the classification effect.This study takes the vegetation of the tidal flat wetland in Chongming Island,Shanghai,China,in 2019,as the research subject.A total of 22 optical feature parameters and 11 SAR feature parameters were extracted from the optical data source(Sentinel-2)and SAR data source(Sentinel-1),respectively.The performance of optical and SAR data and their feature paramet-ers in wetland vegetation classification was quantitatively compared and analyzed by different feature combinations.Furthermore,by simulating the scenario of missing optical images,the impact of optical image missing on vegetation classification accuracy and the compensatory effect of integrating SAR data were revealed.Results show that:1)under the same classification algorithm,the Overall Accuracy(OA)of the combined use of optical and SAR images was the highest,reaching 95.50%.The OA of using only optical images was slightly lower,while using only SAR images yields the lowest accuracy,but still achieved 86.48%.2)Compared to using the spec-tral reflectance of optical data and the backscattering coefficient of SAR data directly,the constructed optical and SAR feature paramet-ers contributed to improving classification accuracy.The inclusion of optical(vegetation index,spatial texture,and phenology features)and SAR feature parameters(SAR index and SAR texture features)in the classification algorithm resulted in an OA improvement of 4.56%and 9.47%,respectively.SAR backscatter,SAR index,optical phenological features,and vegetation index were identified as the top-ranking important features.3)When the optical data were missing continuously for six months,the OA dropped to a minimum of 41.56%.However,when combined with SAR data,the OA could be improved to 71.62%.This indicates that the incorporation of SAR features can effectively compensate for the loss of accuracy caused by optical image missing,especially in regions with long-term cloud cover. 展开更多
关键词 optical images Synthetic Aperture Radar(SAR) multi-source remote sensing vegetation classification tidal flat wetland Chongming Island Shanghai China
在线阅读 下载PDF
An Efficient Explainable AI Model for Accurate Brain Tumor Detection Using MRI Images
19
作者 Fatma M.Talaat Mohamed Salem +1 位作者 Mohamed Shehata Warda M.Shaban 《Computer Modeling in Engineering & Sciences》 2025年第8期2325-2358,共34页
The diagnosis of brain tumors is an extended process that significantly depends on the expertise and skills of radiologists.The rise in patient numbers has substantially elevated the data processing volume,making conv... The diagnosis of brain tumors is an extended process that significantly depends on the expertise and skills of radiologists.The rise in patient numbers has substantially elevated the data processing volume,making conventional methods both costly and inefficient.Recently,Artificial Intelligence(AI)has gained prominence for developing automated systems that can accurately diagnose or segment brain tumors in a shorter time frame.Many researchers have examined various algorithms that provide both speed and accuracy in detecting and classifying brain tumors.This paper proposes a newmodel based on AI,called the Brain Tumor Detection(BTD)model,based on brain tumor Magnetic Resonance Images(MRIs).The proposed BTC comprises three main modules:(i)Image Processing Module(IPM),(ii)Patient Detection Module(PDM),and(iii)Explainable AI(XAI).In the first module(i.e.,IPM),the used dataset is preprocessed through two stages:feature extraction and feature selection.At first,the MRI is preprocessed,then the images are converted into a set of features using several feature extraction methods:gray level co-occurrencematrix,histogramof oriented gradient,local binary pattern,and Tamura feature.Next,the most effective features are selected fromthese features separately using ImprovedGrayWolfOptimization(IGWO).IGWOis a hybrid methodology that consists of the Filter Selection Step(FSS)using information gain ratio as an initial selection stage and Binary Gray Wolf Optimization(BGWO)to make the proposed method better at detecting tumors by further optimizing and improving the chosen features.Then,these features are fed to PDM using several classifiers,and the final decision is based on weighted majority voting.Finally,through Local Interpretable Model-agnostic Explanations(LIME)XAI,the interpretability and transparency in decision-making processes are provided.The experiments are performed on a publicly available Brain MRI dataset that consists of 98 normal cases and 154 abnormal cases.During the experiments,the dataset was divided into 70%(177 cases)for training and 30%(75 cases)for testing.The numerical findings demonstrate that the BTD model outperforms its competitors in terms of accuracy,precision,recall,and F-measure.It introduces 98.8%accuracy,97%precision,97.5%recall,and 97.2%F-measure.The results demonstrate the potential of the proposed model to revolutionize brain tumor diagnosis,contribute to better treatment strategies,and improve patient outcomes. 展开更多
关键词 Brain tumor detection MRI images explainable AI(XAI) improved gray wolf optimization(IGWO)
在线阅读 下载PDF
Observing Images to Identify Herbs:A Study of Materia Medica Images from Early to Mid-Edo Japan
20
作者 ZHOU Min HU Yingchong 《Chinese Medicine and Culture》 2025年第2期192-200,共9页
The transmission of Ben Cao Gang Mu(《本草纲目》The Grand Compendium of Materia Medica)to Japan in the early 17th century significantly influenced the development of Japanese herbalism.Inspired by materia medica illus... The transmission of Ben Cao Gang Mu(《本草纲目》The Grand Compendium of Materia Medica)to Japan in the early 17th century significantly influenced the development of Japanese herbalism.Inspired by materia medica illustrations in this work,herbalists during the Edo period(1603-1867)recognized the importance of images in herbal literature and created a series of illustrated texts.In the early Edo,materia medica illustrations primarily imitated or referenced Chinese illustrations.Singular picturing techniques,a lack of accuracy,and a reliance on limited object references characterized these works.However,starting in the 18th century,with the support and promotion of the Edo Shogunate,herbalists,naturalists,and illustrators conducted field surveys and picturings of natural products in Japan and neighboring nations.This effort led to a trend of picturing based on nature.As a result,the illustrations in herbal literature from the mid-Edo period began to exhibit a distinct realistic painting style.This development became essential for verifying names and realities in Japanese herbal studies.Furthermore,the knowledge of botany and natural history during this time influenced the creation of herbal illustrations,paving the way for the differentiation of Japanese herbalism in the later Edo period. 展开更多
关键词 Edo period Materia medica images(药图) Picturing style herbal medicinal materials
暂未订购
上一页 1 2 250 下一页 到第
使用帮助 返回顶部