BACKGROUND This case report demonstrates the simultaneous development of a gastrointestinal stromal tumour(GIST)with arteriovenous malformations(AVMs)within the jejunal mesentery.A 74-year-old male presented to the de...BACKGROUND This case report demonstrates the simultaneous development of a gastrointestinal stromal tumour(GIST)with arteriovenous malformations(AVMs)within the jejunal mesentery.A 74-year-old male presented to the department of surgery at our institution with a one-month history of abdominal pain.Contrast-enhanced computed tomography revealed an AVM.During exploratory laparotomy,hyperspectral imaging(HSI)and indocyanine green(ICG)fluorescence were used to evaluate the extent of the tumour and determine the resection margins.Intraoperative imaging confirmed AVM,while histopathological evaluation showed an epithelioid,partially spindle cell GIST.CASE SUMMARY This is the first case reporting the use of HSI and ICG to image GIST intermingled with an AVM.The resection margins were planned using intraoperative analysis of additional optical data.Image-guided surgery enhances the clinician’s knowledge of tissue composition and facilitates tissue differentiation.CONCLUSION Since image-guided surgery is safe,this procedure should increase in popularity among the next generation of surgeons as it is associated with better postoperative outcomes.展开更多
Fingerprints are unique and life-long to everyone, so they occupy very important statuses in forensic science. However, due to the limit of current imaging technologies and instruments, recognition and matching of fin...Fingerprints are unique and life-long to everyone, so they occupy very important statuses in forensic science. However, due to the limit of current imaging technologies and instruments, recognition and matching of fingerprints are mostly based on their level 2 structures(bifurcation, crossover, and etc.).Moreover, in real-world cases, fingerprints collected in the field are often incomplete or damaged, which adds further difficulty in fingerprint analysis. Quantum dots(QDs) are superior fluorescent imaging agents for latent fingerprints, which can provide both level 2 and level 3(sweat pores) details. Here, we used red-emitting N-acetylcysteine-capped Cd Te QDs as imaging agent for staining of eccrine LFPs. The numbers of level 2 and level 3 features that can be mapped are significantly larger than those obtained by cyanoacrylate fuming, a standard technique being adopted at forensic scene. Therefore, the level 2 and level 3 characteristics from QD-staining were simultaneously extracted for improved fingerprint analysis.A preliminary fingerprint matching based modified Pore Matching algorithm was thus developed based on the integration of both level 2 and level 3 characteristics. Satisfactory results of fingerprint matching were obtained, demonstrating the advantage of the QD-staining for advanced fingerprint analysis.展开更多
High-repetition-rate(HRR) pulsed fiber lasers have attracted much attention in various fields. To effectively achieve HRR pulses in fiber lasers, dissipative four-wave-mixing mode-locking is a promising method. In thi...High-repetition-rate(HRR) pulsed fiber lasers have attracted much attention in various fields. To effectively achieve HRR pulses in fiber lasers, dissipative four-wave-mixing mode-locking is a promising method. In this work, we demonstrated an HRR pulsed fiber laser based on a virtually imaged phased array(VIPA), serving as a comb filter. Due to the high spectral resolution and low polarization sensitivity features of VIPA, the 30 GHz pulse with high quality and high stability could be obtained. In the experiments, both the single-waveband and dual-waveband HRR pulses were achieved. Such an HRR pulsed fiber laser could have potential applications in related fields, such as optical communications.展开更多
Cerebral small vessel disease encompasses a group of neurological disorders characterized by injury to small blood vessels,often leading to stroke and dementia.Due to its diverse etiologies and complex pathological me...Cerebral small vessel disease encompasses a group of neurological disorders characterized by injury to small blood vessels,often leading to stroke and dementia.Due to its diverse etiologies and complex pathological mechanisms,preventing and treating cerebral small vessel vasculopathy is challenging.Recent studies have shown that the glymphatic system plays a crucial role in interstitial solute clearance and the maintenance of brain homeostasis.Increasing evidence also suggests that dysfunction in glymphatic clearance is a key factor in the progression of cerebral small vessel disease.This review begins with a comprehensive introduction to the structure,function,and driving factors of the glymphatic system,highlighting its essential role in brain waste clearance.Afterwards,cerebral small vessel disease was reviewed from the perspective of the glymphatic system,after which the mechanisms underlying their correlation were summarized.Glymphatic dysfunction may lead to the accumulation of metabolic waste in the brain,thereby exacerbating the pathological processes associated with cerebral small vessel disease.The review also discussed the direct evidence of glymphatic dysfunction in patients and animal models exhibiting two subtypes of cerebral small vessel disease:arteriolosclerosis-related cerebral small vessel disease and amyloid-related cerebral small vessel disease.Diffusion tensor image analysis along the perivascular space is an important non-invasive tool for assessing the clearance function of the glymphatic system.However,the effectiveness of its parameters needs to be enhanced.Among various nervous system diseases,including cerebral small vessel disease,glymphatic failure may be a common final pathway toward dementia.Overall,this review summarizes prevention and treatment strategies that target glymphatic drainage and will offer valuable insight for developing novel treatments for cerebral small vessel disease.展开更多
Aiming at the scale adaptation of automatic driving target detection algorithms in low illumination environments and the shortcomings in target occlusion processing,this paper proposes a YOLO-LKSDS automatic driving d...Aiming at the scale adaptation of automatic driving target detection algorithms in low illumination environments and the shortcomings in target occlusion processing,this paper proposes a YOLO-LKSDS automatic driving detection model.Firstly,the Contrast-Limited Adaptive Histogram Equalisation(CLAHE)image enhancement algorithm is improved to increase the image contrast and enhance the detailed features of the target;then,on the basis of the YOLOv5 model,the Kmeans++clustering algorithm is introduced to obtain a suitable anchor frame,and SPPELAN spatial pyramid pooling is improved to enhance the accuracy and robustness of the model for multi-scale target detection.Finally,an improved SEAM(Separated and Enhancement Attention Module)attention mechanism is combined with the DIOU-NMS algorithm to optimize the model’s performance when dealing with occlusion and dense scenes.Compared with the original model,the improved YOLO-LKSDS model achieves a 13.3%improvement in accuracy,a 1.7%improvement in mAP,and 240,000 fewer parameters on the BDD100K dataset.In order to validate the generalization of the improved algorithm,we selected the KITTI dataset for experimentation,which shows that YOLOv5’s accuracy improves by 21.1%,recall by 36.6%,and mAP50 by 29.5%,respectively,on the KITTI dataset.The deployment of this paper’s algorithm is verified by an edge computing platform,where the average speed of detection reaches 24.4 FPS while power consumption remains below 9 W,demonstrating high real-time capability and energy efficiency.展开更多
Modern manufacturing processes have become more reliant on automation because of the accelerated transition from Industry 3.0 to Industry 4.0.Manual inspection of products on assembly lines remains inefficient,prone t...Modern manufacturing processes have become more reliant on automation because of the accelerated transition from Industry 3.0 to Industry 4.0.Manual inspection of products on assembly lines remains inefficient,prone to errors and lacks consistency,emphasizing the need for a reliable and automated inspection system.Leveraging both object detection and image segmentation approaches,this research proposes a vision-based solution for the detection of various kinds of tools in the toolkit using deep learning(DL)models.Two Intel RealSense D455f depth cameras were arranged in a top down configuration to capture both RGB and depth images of the toolkits.After applying multiple constraints and enhancing them through preprocessing and augmentation,a dataset consisting of 3300 annotated RGB-D photos was generated.Several DL models were selected through a comprehensive assessment of mean Average Precision(mAP),precision-recall equilibrium,inference latency(target≥30 FPS),and computational burden,resulting in a preference for YOLO and Region-based Convolutional Neural Networks(R-CNN)variants over ViT-based models due to the latter’s increased latency and resource requirements.YOLOV5,YOLOV8,YOLOV11,Faster R-CNN,and Mask R-CNN were trained on the annotated dataset and evaluated using key performance metrics(Recall,Accuracy,F1-score,and Precision).YOLOV11 demonstrated balanced excellence with 93.0%precision,89.9%recall,and a 90.6%F1-score in object detection,as well as 96.9%precision,95.3%recall,and a 96.5%F1-score in instance segmentation with an average inference time of 25 ms per frame(≈40 FPS),demonstrating real-time performance.Leveraging these results,a YOLOV11-based windows application was successfully deployed in a real-time assembly line environment,where it accurately processed live video streams to detect and segment tools within toolkits,demonstrating its practical effectiveness in industrial automation.The application is capable of precisely measuring socket dimensions by utilising edge detection techniques on YOLOv11 segmentation masks,in addition to detection and segmentation.This makes it possible to do specification-level quality control right on the assembly line,which improves the ability to examine things in real time.The implementation is a big step forward for intelligent manufacturing in the Industry 4.0 paradigm.It provides a scalable,efficient,and accurate way to do automated inspection and dimensional verification activities.展开更多
Chemical exchange saturation transfer magnetic resonance imaging is an advanced imaging technique that enables the detection of compounds at low concentrations with high sensitivity and spatial resolution and has been...Chemical exchange saturation transfer magnetic resonance imaging is an advanced imaging technique that enables the detection of compounds at low concentrations with high sensitivity and spatial resolution and has been extensively studied for diagnosing malignancy and stroke.In recent years,the emerging exploration of chemical exchange saturation transfer magnetic resonance imaging for detecting pathological changes in neurodegenerative diseases has opened up new possibilities for early detection and repetitive scans without ionizing radiation.This review serves as an overview of chemical exchange saturation transfer magnetic resonance imaging with detailed information on contrast mechanisms and processing methods and summarizes recent developments in both clinical and preclinical studies of chemical exchange saturation transfer magnetic resonance imaging for Alzheimer’s disease,Parkinson’s disease,multiple sclerosis,and Huntington’s disease.A comprehensive literature search was conducted using databases such as PubMed and Google Scholar,focusing on peer-reviewed articles from the past 15 years relevant to clinical and preclinical applications.The findings suggest that chemical exchange saturation transfer magnetic resonance imaging has the potential to detect molecular changes and altered metabolism,which may aid in early diagnosis and assessment of the severity of neurodegenerative diseases.Although promising results have been observed in selected clinical and preclinical trials,further validations are needed to evaluate their clinical value.When combined with other imaging modalities and advanced analytical methods,chemical exchange saturation transfer magnetic resonance imaging shows potential as an in vivo biomarker,enhancing the understanding of neuropathological mechanisms in neurodegenerative diseases.展开更多
Musculoskeletal injuries are among the most common causes of disability worldwide,with early detection and appropriate intervention critical to minimizing long-term complications.Infrared thermography(IRT)has emerged ...Musculoskeletal injuries are among the most common causes of disability worldwide,with early detection and appropriate intervention critical to minimizing long-term complications.Infrared thermography(IRT)has emerged as a noninvasive,real-time imaging modality that captures superficial temperature changes reflecting underlying physiological processes such as inflammation and vascular alterations.This review explores the fundamental principles of medical thermography,differentiates between passive and active approaches,and outlines key technological advancements including artificial intelligence integration.The clinical utility of IRT is discussed in various contexts–ranging from acute soft tissue injuries and overuse syndromes to chronic pain and rehabilitation monitoring.Comparative insights with conventional imaging techniques such as ultrasound and magnetic resonance imaging are also presented.While IRT offers functional imaging capabilities with advantages in portability,safety,and speed,its limitations–such as lack of deep-tissue penetration and protocol standardization–remain significant barriers to broader adoption.Future directions include the integration of IRT with other imaging modalities and digital health platforms to enhance musculoskeletal assessment and injury prevention strategies.展开更多
Digital watermarking technology plays an important role in detecting malicious tampering and protecting image copyright.However,in practical applications,this technology faces various problems such as severe image dis...Digital watermarking technology plays an important role in detecting malicious tampering and protecting image copyright.However,in practical applications,this technology faces various problems such as severe image distortion,inaccurate localization of the tampered regions,and difficulty in recovering content.Given these shortcomings,a fragile image watermarking algorithm for tampering blind-detection and content self-recovery is proposed.The multi-feature watermarking authentication code(AC)is constructed using texture feature of local binary patterns(LBP),direct coefficient of discrete cosine transform(DCT)and contrast feature of gray level co-occurrence matrix(GLCM)for detecting the tampered region,and the recovery code(RC)is designed according to the average grayscale value of pixels in image blocks for recovering the tampered content.Optimal pixel adjustment process(OPAP)and least significant bit(LSB)algorithms are used to embed the recovery code and authentication code into the image in a staggered manner.When detecting the integrity of the image,the authentication code comparison method and threshold judgment method are used to perform two rounds of tampering detection on the image and blindly recover the tampered content.Experimental results show that this algorithm has good transparency,strong and blind detection,and self-recovery performance against four types of malicious attacks and some conventional signal processing operations.When resisting copy-paste,text addition,cropping and vector quantization under the tampering rate(TR)10%,the average tampering detection rate is up to 94.09%,and the peak signal-to-noise ratio(PSNR)of the watermarked image and the recovered image are both greater than 41.47 and 40.31 dB,which demonstrates its excellent advantages compared with other related algorithms in recent years.展开更多
The rapid advancements in computer vision(CV)technology have transformed the traditional approaches to material microstructure analysis.This review outlines the history of CV and explores the applications of deep-lear...The rapid advancements in computer vision(CV)technology have transformed the traditional approaches to material microstructure analysis.This review outlines the history of CV and explores the applications of deep-learning(DL)-driven CV in four key areas of materials science:microstructure-based performance prediction,microstructure information generation,microstructure defect detection,and crystal structure-based property prediction.The CV has significantly reduced the cost of traditional experimental methods used in material performance prediction.Moreover,recent progress made in generating microstructure images and detecting microstructural defects using CV has led to increased efficiency and reliability in material performance assessments.The DL-driven CV models can accelerate the design of new materials with optimized performance by integrating predictions based on both crystal and microstructural data,thereby allowing for the discovery and innovation of next-generation materials.Finally,the review provides insights into the rapid interdisciplinary developments in the field of materials science and future prospects.展开更多
Glymphatic flow has been proposed to clear brain waste while we sleep.Cerebrospinal fluid moves from periarterial to perivenous spaces through the parenchyma,with subsequent cerebrospinal fluid drainage to dural lymph...Glymphatic flow has been proposed to clear brain waste while we sleep.Cerebrospinal fluid moves from periarterial to perivenous spaces through the parenchyma,with subsequent cerebrospinal fluid drainage to dural lymphatics.Glymphatic disruption is associated with neurological conditions such as Alzheimer’s disease and traumatic brain injury.Therefore,investigating its structure and function may improve understanding of pathophysiology.The recent controversy on whether glymphatic flow increases or decreases during sleep demonstrates that the glymphatic hypothesis remains contentious.However,discrepancies between different studies could be due to limitations of the specific techniques used and confounding factors.Here,we review the methods used to study glymphatic function and provide a toolkit from which researchers can choose.We conclude that tracer analysis has been useful,ex vivo techniques are unreliable,and in vivo imaging is still limited.Finally,we explore the potential for future methods and highlight the need for in vitro models,such as microfluidic devices,which may address technique limitations and enable progression of the field.展开更多
Spinal cord injury is a severe neurological disorder;however,current treatment methods often fail to restore nerve function effectively.Spinal cord stimulation via electrical signals is a promising therapeutic modalit...Spinal cord injury is a severe neurological disorder;however,current treatment methods often fail to restore nerve function effectively.Spinal cord stimulation via electrical signals is a promising therapeutic modality for spinal cord injury.Based on similar principles,this review aims to explore the potential of optical and acoustic neuromodulation techniques,emphasizing their benefits in the context of spinal cord injury.Photoacoustic imaging,renowned for its noninvasive nature,high-resolution capabilities,and cost-effectiveness,is well recognized for its role in early diagnosis,dynamic monitoring,and surgical guidance in stem cell therapies for spinal cord injury.Moreover,photoacoustodynamic therapy offers multiple pathways for tissue regeneration.Optogenetics and sonogenetics use genetic engineering to achieve precise neuronal activation,while photoacoustoelectric therapy leverages photovoltaic materials for electrical modulation of the nervous system,introducing an innovative paradigm for nerve system disorder management.Collectively,these advancements represent a transformative shift in the diagnosis and treatment of spinal cord injury,with the potential to significantly enhance nerve function remodeling and improve patient outcomes.展开更多
Cemented paste backfill(CPB)is a technology that achieves safe mining by filling the goaf with waste rocks,tailings,and other materials.It is an inevitable choice to deal with the development of deep and highly diffic...Cemented paste backfill(CPB)is a technology that achieves safe mining by filling the goaf with waste rocks,tailings,and other materials.It is an inevitable choice to deal with the development of deep and highly difficult mines and meet the requirements of environmental protection and safety regulations.It promotes the development of a circular economy in mines through the development of lowgrade resources and the resource utilization of waste,and extends the service life of mines.The mass concentration of solid content(abbreviated as“concentration”)is a critical parameter for CPB.However,discrepancies often arise between the on-site measurements and the pre-designed values due to factors such as groundwater inflow and segregation within the goaf,which cannot be evaluated after the solidification of CPB.This paper innovatively provides an in-situ non-destructive approach to identify the real concentration of CPB after curing for certain days using hyperspectral imaging(HSI)technology.Initially,the spectral variation patterns under different concentration conditions were investigated through hyperspectral scanning experiments on CPB samples.The results demonstrate that as the CPB concentration increases from 61wt%to 73wt%,the overall spectral reflectance gradually increases,with two distinct absorption peaks observed at 1407 and 1917 nm.Notably,the reflectance at 1407 nm exhibited a strong linear relationship with the concentration.Subsequently,the K-nearest neighbors(KNN)and support vector machine(SVM)algorithms were employed to classify and identify different concentrations.The study revealed that,with the KNN algorithm,the highest accuracy was achieved when K(number of nearest neighbors)was 1,although this resulted in overfitting.When K=3,the model displayed the optimal balance between accuracy and stability,with an accuracy of 95.03%.In the SVM algorithm,the highest accuracy of 98.24%was attained with parameters C(regularization parameter)=200 and Gamma(kernel coefficient)=10.A comparative analysis of precision,accuracy,and recall further highlighted that the SVM provided superior stability and precision for identifying CPB concentration.Thus,HSI technology offers an effective solution for the in-situ,non-destructive monitoring of CPB concentration,presenting a promising approach for optimizing and controlling CPB characteristic parameters.展开更多
Perinatal exposure to infection/inflammation is highly associated with neural injury,and subsequent impaired cortical growth,disturbances in neuronal connectivity,and impaired neurodevelopment.However,our understandin...Perinatal exposure to infection/inflammation is highly associated with neural injury,and subsequent impaired cortical growth,disturbances in neuronal connectivity,and impaired neurodevelopment.However,our understanding of the pathophysiological substrate underpinning these changes in brain structure and function is limited.The objective of this review is to summarize the growing evidence from animal trials and human cohort studies that suggest exposure to infection/inflammation during the perinatal period promotes regional impairments in neuronal maturation and function,including loss of high-frequency electroencephalographic activity,and reduced growth and arborization of cortical dendrites and dendritic spines resulting in reduced cortical volume.These inflammation-induced disturbances to neuronal structure and function are likely to underpin subsequent disturbances to cortical development and connectivity in fetuses and/or newborns exposed to infection/inflammation during the perinatal period,leading,in the long term,to impaired neurodevelopment.The combined use of early electroencephalography monitoring with neuroimaging techniques that enable detailed evaluation of brain microstructure,and the use of therapeutics that successfully target systemic and central nervous system inflammation could provide an effective strategy for early detection and therapeutic intervention.展开更多
In wave-equation migration and demigration,the cross-correlation imaging/forwarding step implicitly injects an additional copy of the source wavelet,so that the amplitude spectrum of the wavelet is applied redundantly...In wave-equation migration and demigration,the cross-correlation imaging/forwarding step implicitly injects an additional copy of the source wavelet,so that the amplitude spectrum of the wavelet is applied redundantly(effectively imposing a wavelet-spectrum weighting,often akin to an amplitude-squared bias).This redundancy degrades structural fidelity and amplitude balance yet is frequently overlooked.We(i)formalize the mechanism by which cross-correlation duplicates the source-wavelet amplitude effect in both migration and demigration,and(ii)introduce a source-equalized operator that removes the redundancy by deconvolving(or dividing by)the wavelet amplitude spectrum in the imaging condition and its demigration counterpart,while leaving phase/kinematics intact.Using a band-limited Ricker wavelet on a two-layer model and on Marmousi,we show that,if unmanaged,the redundant wavelet spectrum broadens main lobes,introduces ringing,and suppresses vertical resolution in migrated images,and inflates spectrum mismatches between demigrated and observed data even when peak times agree.With our correction,images recover observed-data-consistent bandwidth and sharpened interfaces,and demigrated data also exhibit improved spectrum conformity and reduced amplitude misfit.The results clarify when source amplitudes matter,why cross-correlation makes them redundantly matter,and how a lightweight spectral correction restores physically meaningful amplitude behavior in wave-equation migration/demigration.展开更多
Skin diseases affect millions worldwide.Early detection is key to preventing disfigurement,lifelong disability,or death.Dermoscopic images acquired in primary-care settings show high intra-class visual similarity and ...Skin diseases affect millions worldwide.Early detection is key to preventing disfigurement,lifelong disability,or death.Dermoscopic images acquired in primary-care settings show high intra-class visual similarity and severe class imbalance,and occasional imaging artifacts can create ambiguity for state-of-the-art convolutional neural networks(CNNs).We frame skin lesion recognition as graph-based reasoning and,to ensure fair evaluation and avoid data leakage,adopt a strict lesion-level partitioning strategy.Each image is first over-segmented using SLIC(Simple Linear Iterative Clustering)to produce perceptually homogeneous superpixels.These superpixels form the nodes of a region-adjacency graph whose edges encode spatial continuity.Node attributes are 1280-dimensional embeddings extracted with a lightweight yet expressive EfficientNet-B0 backbone,providing strong representational power at modest computational cost.The resulting graphs are processed by a five-layer Graph Attention Network(GAT)that learns to weight inter-node relationships dynamically and aggregates multi-hop context before classifying lesions into seven classes with a log-softmax output.Extensive experiments on the DermaMNIST benchmark show the proposed pipeline achieves 88.35%accuracy and 98.04%AUC,outperforming contemporary CNNs,AutoML approaches,and alternative graph neural networks.An ablation study indicates EfficientNet-B0 produces superior node descriptors compared with ResNet-18 and DenseNet,and that roughly five GAT layers strike a good balance between being too shallow and over-deep while avoiding oversmoothing.The method requires no data augmentation or external metadata,making it a drop-in upgrade for clinical computer-aided diagnosis systems.展开更多
High-resolution remote sensing images(HRSIs)are now an essential data source for gathering surface information due to advancements in remote sensing data capture technologies.However,their significant scale changes an...High-resolution remote sensing images(HRSIs)are now an essential data source for gathering surface information due to advancements in remote sensing data capture technologies.However,their significant scale changes and wealth of spatial details pose challenges for semantic segmentation.While convolutional neural networks(CNNs)excel at capturing local features,they are limited in modeling long-range dependencies.Conversely,transformers utilize multihead self-attention to integrate global context effectively,but this approach often incurs a high computational cost.This paper proposes a global-local multiscale context network(GLMCNet)to extract both global and local multiscale contextual information from HRSIs.A detail-enhanced filtering module(DEFM)is proposed at the end of the encoder to refine the encoder outputs further,thereby enhancing the key details extracted by the encoder and effectively suppressing redundant information.In addition,a global-local multiscale transformer block(GLMTB)is proposed in the decoding stage to enable the modeling of rich multiscale global and local information.We also design a stair fusion mechanism to transmit deep semantic information from deep to shallow layers progressively.Finally,we propose the semantic awareness enhancement module(SAEM),which further enhances the representation of multiscale semantic features through spatial attention and covariance channel attention.Extensive ablation analyses and comparative experiments were conducted to evaluate the performance of the proposed method.Specifically,our method achieved a mean Intersection over Union(mIoU)of 86.89%on the ISPRS Potsdam dataset and 84.34%on the ISPRS Vaihingen dataset,outperforming existing models such as ABCNet and BANet.展开更多
A large-scale view of the magnetospheric cusp is expected to be obtained by the Soft X-ray Imager(SXI)onboard the Solar wind Magnetosphere Ionosphere Link Explorer(SMILE).However,it is challenging to trace the three-d...A large-scale view of the magnetospheric cusp is expected to be obtained by the Soft X-ray Imager(SXI)onboard the Solar wind Magnetosphere Ionosphere Link Explorer(SMILE).However,it is challenging to trace the three-dimensional cusp boundary from a two-dimensional X-ray image because the detected X-ray signals will be integrated along the line of sight.In this work,a global magnetohydrodynamic code was used to simulate the X-ray images and photon count images,assuming an interplanetary magnetic field with a pure Bz component.The assumption of an elliptic cusp boundary at a given altitude was used to trace the equatorward and poleward boundaries of the cusp from a simulated X-ray image.The average discrepancy was less than 0.1 RE.To reduce the influence of instrument effects and cosmic X-ray backgrounds,image denoising was considered before applying the method above to SXI photon count images.The cusp boundaries were reasonably reconstructed from the noisy X-ray image.展开更多
文摘BACKGROUND This case report demonstrates the simultaneous development of a gastrointestinal stromal tumour(GIST)with arteriovenous malformations(AVMs)within the jejunal mesentery.A 74-year-old male presented to the department of surgery at our institution with a one-month history of abdominal pain.Contrast-enhanced computed tomography revealed an AVM.During exploratory laparotomy,hyperspectral imaging(HSI)and indocyanine green(ICG)fluorescence were used to evaluate the extent of the tumour and determine the resection margins.Intraoperative imaging confirmed AVM,while histopathological evaluation showed an epithelioid,partially spindle cell GIST.CASE SUMMARY This is the first case reporting the use of HSI and ICG to image GIST intermingled with an AVM.The resection margins were planned using intraoperative analysis of additional optical data.Image-guided surgery enhances the clinician’s knowledge of tissue composition and facilitates tissue differentiation.CONCLUSION Since image-guided surgery is safe,this procedure should increase in popularity among the next generation of surgeons as it is associated with better postoperative outcomes.
基金supported by the National Natural Science Foundation of China (Nos. 21475090 and 21522505)
文摘Fingerprints are unique and life-long to everyone, so they occupy very important statuses in forensic science. However, due to the limit of current imaging technologies and instruments, recognition and matching of fingerprints are mostly based on their level 2 structures(bifurcation, crossover, and etc.).Moreover, in real-world cases, fingerprints collected in the field are often incomplete or damaged, which adds further difficulty in fingerprint analysis. Quantum dots(QDs) are superior fluorescent imaging agents for latent fingerprints, which can provide both level 2 and level 3(sweat pores) details. Here, we used red-emitting N-acetylcysteine-capped Cd Te QDs as imaging agent for staining of eccrine LFPs. The numbers of level 2 and level 3 features that can be mapped are significantly larger than those obtained by cyanoacrylate fuming, a standard technique being adopted at forensic scene. Therefore, the level 2 and level 3 characteristics from QD-staining were simultaneously extracted for improved fingerprint analysis.A preliminary fingerprint matching based modified Pore Matching algorithm was thus developed based on the integration of both level 2 and level 3 characteristics. Satisfactory results of fingerprint matching were obtained, demonstrating the advantage of the QD-staining for advanced fingerprint analysis.
基金supported in part by the National Natural Science Foundation of China(NSFC)(Nos.61805084,11974006,11874018 and 61875058)Science and Technology Program of Guangzhou(No.2019050001)+4 种基金Guangdong Key R&D Program(No.2018B090904003)Guangdong Basic and Applied Basic Research Foundation(No.2019A1515010879)Foundation for Young Talents in Higher Education of Guangdong(No.2017KQNCX051)Scientific Research Foundation of Young Teacher of South China Normal University(No.17KJ09)Open Fund of the Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques(South China University of Technology,2019-2)
文摘High-repetition-rate(HRR) pulsed fiber lasers have attracted much attention in various fields. To effectively achieve HRR pulses in fiber lasers, dissipative four-wave-mixing mode-locking is a promising method. In this work, we demonstrated an HRR pulsed fiber laser based on a virtually imaged phased array(VIPA), serving as a comb filter. Due to the high spectral resolution and low polarization sensitivity features of VIPA, the 30 GHz pulse with high quality and high stability could be obtained. In the experiments, both the single-waveband and dual-waveband HRR pulses were achieved. Such an HRR pulsed fiber laser could have potential applications in related fields, such as optical communications.
基金supported by the National Natural Science Foundation of China,No.82274304(to YH)the Major Clinical Study Projects of Shanghai Shenkang Hospital Development Center,No.SHDC2020CR2046B(to YH)Shanghai Municipal Health Commission Talent Plan,No.2022LJ010(to YH).
文摘Cerebral small vessel disease encompasses a group of neurological disorders characterized by injury to small blood vessels,often leading to stroke and dementia.Due to its diverse etiologies and complex pathological mechanisms,preventing and treating cerebral small vessel vasculopathy is challenging.Recent studies have shown that the glymphatic system plays a crucial role in interstitial solute clearance and the maintenance of brain homeostasis.Increasing evidence also suggests that dysfunction in glymphatic clearance is a key factor in the progression of cerebral small vessel disease.This review begins with a comprehensive introduction to the structure,function,and driving factors of the glymphatic system,highlighting its essential role in brain waste clearance.Afterwards,cerebral small vessel disease was reviewed from the perspective of the glymphatic system,after which the mechanisms underlying their correlation were summarized.Glymphatic dysfunction may lead to the accumulation of metabolic waste in the brain,thereby exacerbating the pathological processes associated with cerebral small vessel disease.The review also discussed the direct evidence of glymphatic dysfunction in patients and animal models exhibiting two subtypes of cerebral small vessel disease:arteriolosclerosis-related cerebral small vessel disease and amyloid-related cerebral small vessel disease.Diffusion tensor image analysis along the perivascular space is an important non-invasive tool for assessing the clearance function of the glymphatic system.However,the effectiveness of its parameters needs to be enhanced.Among various nervous system diseases,including cerebral small vessel disease,glymphatic failure may be a common final pathway toward dementia.Overall,this review summarizes prevention and treatment strategies that target glymphatic drainage and will offer valuable insight for developing novel treatments for cerebral small vessel disease.
基金supported by the Key R&D Program of Shaanxi Province(No.2025CYYBXM-078).
文摘Aiming at the scale adaptation of automatic driving target detection algorithms in low illumination environments and the shortcomings in target occlusion processing,this paper proposes a YOLO-LKSDS automatic driving detection model.Firstly,the Contrast-Limited Adaptive Histogram Equalisation(CLAHE)image enhancement algorithm is improved to increase the image contrast and enhance the detailed features of the target;then,on the basis of the YOLOv5 model,the Kmeans++clustering algorithm is introduced to obtain a suitable anchor frame,and SPPELAN spatial pyramid pooling is improved to enhance the accuracy and robustness of the model for multi-scale target detection.Finally,an improved SEAM(Separated and Enhancement Attention Module)attention mechanism is combined with the DIOU-NMS algorithm to optimize the model’s performance when dealing with occlusion and dense scenes.Compared with the original model,the improved YOLO-LKSDS model achieves a 13.3%improvement in accuracy,a 1.7%improvement in mAP,and 240,000 fewer parameters on the BDD100K dataset.In order to validate the generalization of the improved algorithm,we selected the KITTI dataset for experimentation,which shows that YOLOv5’s accuracy improves by 21.1%,recall by 36.6%,and mAP50 by 29.5%,respectively,on the KITTI dataset.The deployment of this paper’s algorithm is verified by an edge computing platform,where the average speed of detection reaches 24.4 FPS while power consumption remains below 9 W,demonstrating high real-time capability and energy efficiency.
基金National Science and Technology Council,the Republic of China,under grants NSTC 113-2221-E-194-011-MY3 and Research Center on Artificial Intelligence and Sustainability,National Chung Cheng University under the research project grant titled“Generative Digital Twin System Design for Sustainable Smart City Development in Taiwan.
文摘Modern manufacturing processes have become more reliant on automation because of the accelerated transition from Industry 3.0 to Industry 4.0.Manual inspection of products on assembly lines remains inefficient,prone to errors and lacks consistency,emphasizing the need for a reliable and automated inspection system.Leveraging both object detection and image segmentation approaches,this research proposes a vision-based solution for the detection of various kinds of tools in the toolkit using deep learning(DL)models.Two Intel RealSense D455f depth cameras were arranged in a top down configuration to capture both RGB and depth images of the toolkits.After applying multiple constraints and enhancing them through preprocessing and augmentation,a dataset consisting of 3300 annotated RGB-D photos was generated.Several DL models were selected through a comprehensive assessment of mean Average Precision(mAP),precision-recall equilibrium,inference latency(target≥30 FPS),and computational burden,resulting in a preference for YOLO and Region-based Convolutional Neural Networks(R-CNN)variants over ViT-based models due to the latter’s increased latency and resource requirements.YOLOV5,YOLOV8,YOLOV11,Faster R-CNN,and Mask R-CNN were trained on the annotated dataset and evaluated using key performance metrics(Recall,Accuracy,F1-score,and Precision).YOLOV11 demonstrated balanced excellence with 93.0%precision,89.9%recall,and a 90.6%F1-score in object detection,as well as 96.9%precision,95.3%recall,and a 96.5%F1-score in instance segmentation with an average inference time of 25 ms per frame(≈40 FPS),demonstrating real-time performance.Leveraging these results,a YOLOV11-based windows application was successfully deployed in a real-time assembly line environment,where it accurately processed live video streams to detect and segment tools within toolkits,demonstrating its practical effectiveness in industrial automation.The application is capable of precisely measuring socket dimensions by utilising edge detection techniques on YOLOv11 segmentation masks,in addition to detection and segmentation.This makes it possible to do specification-level quality control right on the assembly line,which improves the ability to examine things in real time.The implementation is a big step forward for intelligent manufacturing in the Industry 4.0 paradigm.It provides a scalable,efficient,and accurate way to do automated inspection and dimensional verification activities.
基金supported by The University of Hong Kong,China(109000487,109001694,204610401,and 204610519)National Natural Science Foundation of China(82402225)(to JH).
文摘Chemical exchange saturation transfer magnetic resonance imaging is an advanced imaging technique that enables the detection of compounds at low concentrations with high sensitivity and spatial resolution and has been extensively studied for diagnosing malignancy and stroke.In recent years,the emerging exploration of chemical exchange saturation transfer magnetic resonance imaging for detecting pathological changes in neurodegenerative diseases has opened up new possibilities for early detection and repetitive scans without ionizing radiation.This review serves as an overview of chemical exchange saturation transfer magnetic resonance imaging with detailed information on contrast mechanisms and processing methods and summarizes recent developments in both clinical and preclinical studies of chemical exchange saturation transfer magnetic resonance imaging for Alzheimer’s disease,Parkinson’s disease,multiple sclerosis,and Huntington’s disease.A comprehensive literature search was conducted using databases such as PubMed and Google Scholar,focusing on peer-reviewed articles from the past 15 years relevant to clinical and preclinical applications.The findings suggest that chemical exchange saturation transfer magnetic resonance imaging has the potential to detect molecular changes and altered metabolism,which may aid in early diagnosis and assessment of the severity of neurodegenerative diseases.Although promising results have been observed in selected clinical and preclinical trials,further validations are needed to evaluate their clinical value.When combined with other imaging modalities and advanced analytical methods,chemical exchange saturation transfer magnetic resonance imaging shows potential as an in vivo biomarker,enhancing the understanding of neuropathological mechanisms in neurodegenerative diseases.
文摘Musculoskeletal injuries are among the most common causes of disability worldwide,with early detection and appropriate intervention critical to minimizing long-term complications.Infrared thermography(IRT)has emerged as a noninvasive,real-time imaging modality that captures superficial temperature changes reflecting underlying physiological processes such as inflammation and vascular alterations.This review explores the fundamental principles of medical thermography,differentiates between passive and active approaches,and outlines key technological advancements including artificial intelligence integration.The clinical utility of IRT is discussed in various contexts–ranging from acute soft tissue injuries and overuse syndromes to chronic pain and rehabilitation monitoring.Comparative insights with conventional imaging techniques such as ultrasound and magnetic resonance imaging are also presented.While IRT offers functional imaging capabilities with advantages in portability,safety,and speed,its limitations–such as lack of deep-tissue penetration and protocol standardization–remain significant barriers to broader adoption.Future directions include the integration of IRT with other imaging modalities and digital health platforms to enhance musculoskeletal assessment and injury prevention strategies.
基金supported by Postgraduate Research&Practice Innovation Program of Jiangsu Province,China(Grant No.SJCX24_1332)Jiangsu Province Education Science Planning Project in 2024(Grant No.B-b/2024/01/122)High-Level Talent Scientific Research Foundation of Jinling Institute of Technology,China(Grant No.jit-b-201918).
文摘Digital watermarking technology plays an important role in detecting malicious tampering and protecting image copyright.However,in practical applications,this technology faces various problems such as severe image distortion,inaccurate localization of the tampered regions,and difficulty in recovering content.Given these shortcomings,a fragile image watermarking algorithm for tampering blind-detection and content self-recovery is proposed.The multi-feature watermarking authentication code(AC)is constructed using texture feature of local binary patterns(LBP),direct coefficient of discrete cosine transform(DCT)and contrast feature of gray level co-occurrence matrix(GLCM)for detecting the tampered region,and the recovery code(RC)is designed according to the average grayscale value of pixels in image blocks for recovering the tampered content.Optimal pixel adjustment process(OPAP)and least significant bit(LSB)algorithms are used to embed the recovery code and authentication code into the image in a staggered manner.When detecting the integrity of the image,the authentication code comparison method and threshold judgment method are used to perform two rounds of tampering detection on the image and blindly recover the tampered content.Experimental results show that this algorithm has good transparency,strong and blind detection,and self-recovery performance against four types of malicious attacks and some conventional signal processing operations.When resisting copy-paste,text addition,cropping and vector quantization under the tampering rate(TR)10%,the average tampering detection rate is up to 94.09%,and the peak signal-to-noise ratio(PSNR)of the watermarked image and the recovered image are both greater than 41.47 and 40.31 dB,which demonstrates its excellent advantages compared with other related algorithms in recent years.
基金financially supported by the National Science Fund for Distinguished Young Scholars,China(No.52025041)the National Natural Science Foundation of China(Nos.52450003,U2341267,and 52174294)+1 种基金the National Postdoctoral Program for Innovative Talents,China(No.BX20240437)the Fundamental Research Funds for the Central Universities,China(Nos.FRF-IDRY-23-037 and FRF-TP-20-02C2)。
文摘The rapid advancements in computer vision(CV)technology have transformed the traditional approaches to material microstructure analysis.This review outlines the history of CV and explores the applications of deep-learning(DL)-driven CV in four key areas of materials science:microstructure-based performance prediction,microstructure information generation,microstructure defect detection,and crystal structure-based property prediction.The CV has significantly reduced the cost of traditional experimental methods used in material performance prediction.Moreover,recent progress made in generating microstructure images and detecting microstructural defects using CV has led to increased efficiency and reliability in material performance assessments.The DL-driven CV models can accelerate the design of new materials with optimized performance by integrating predictions based on both crystal and microstructural data,thereby allowing for the discovery and innovation of next-generation materials.Finally,the review provides insights into the rapid interdisciplinary developments in the field of materials science and future prospects.
基金supported by the European Union Horizon 2020 Research and Innovation Programme(Marie Skłodowska-Curie grant agreement No 847419)supported by the Biotechnology and Biological Sciences Research Council via a Discovery Fellowship(BB/W00934X/1)+6 种基金the Aston University RKE Pump Priming Programmefunded by UKRI’s Research England as part of their Expanding Excellence in England(E3)fundsupported by a UKRI Frontier Research Grant EP/Y023684/1(following assessment as an ERC Advanced grant,FORTIFY,ERC-2022-ADG-101096882 under the UK Government Guarantee scheme)acknowledged a Biotechnology and Biological Sciences Research Council Pioneer Award(BB/Y512874/1)MMS was supported by a Medical Research Council Career Development Award(MR/W027119/1)acknowledged support from the BHF Centre of Research Excellence,University of Oxford(grant code:RE/24/130024)a Biotechnology and Biological Sciences Research Council Pioneer Award(BB/Y512874/1).
文摘Glymphatic flow has been proposed to clear brain waste while we sleep.Cerebrospinal fluid moves from periarterial to perivenous spaces through the parenchyma,with subsequent cerebrospinal fluid drainage to dural lymphatics.Glymphatic disruption is associated with neurological conditions such as Alzheimer’s disease and traumatic brain injury.Therefore,investigating its structure and function may improve understanding of pathophysiology.The recent controversy on whether glymphatic flow increases or decreases during sleep demonstrates that the glymphatic hypothesis remains contentious.However,discrepancies between different studies could be due to limitations of the specific techniques used and confounding factors.Here,we review the methods used to study glymphatic function and provide a toolkit from which researchers can choose.We conclude that tracer analysis has been useful,ex vivo techniques are unreliable,and in vivo imaging is still limited.Finally,we explore the potential for future methods and highlight the need for in vitro models,such as microfluidic devices,which may address technique limitations and enable progression of the field.
基金supported by the National Key R&D Program of China,No.2023YFC2509700the Beijing Natural Science Foundation-Haidian Original Innovation Joint Fund,No.L232141the Research and Application of Clinical Characteristic Diagnosis and Treatment Program,No.Z221100007422019(all to WD)。
文摘Spinal cord injury is a severe neurological disorder;however,current treatment methods often fail to restore nerve function effectively.Spinal cord stimulation via electrical signals is a promising therapeutic modality for spinal cord injury.Based on similar principles,this review aims to explore the potential of optical and acoustic neuromodulation techniques,emphasizing their benefits in the context of spinal cord injury.Photoacoustic imaging,renowned for its noninvasive nature,high-resolution capabilities,and cost-effectiveness,is well recognized for its role in early diagnosis,dynamic monitoring,and surgical guidance in stem cell therapies for spinal cord injury.Moreover,photoacoustodynamic therapy offers multiple pathways for tissue regeneration.Optogenetics and sonogenetics use genetic engineering to achieve precise neuronal activation,while photoacoustoelectric therapy leverages photovoltaic materials for electrical modulation of the nervous system,introducing an innovative paradigm for nerve system disorder management.Collectively,these advancements represent a transformative shift in the diagnosis and treatment of spinal cord injury,with the potential to significantly enhance nerve function remodeling and improve patient outcomes.
基金funded by the National Natural Science Foundation of China(Nos.52474165 and 52522404)。
文摘Cemented paste backfill(CPB)is a technology that achieves safe mining by filling the goaf with waste rocks,tailings,and other materials.It is an inevitable choice to deal with the development of deep and highly difficult mines and meet the requirements of environmental protection and safety regulations.It promotes the development of a circular economy in mines through the development of lowgrade resources and the resource utilization of waste,and extends the service life of mines.The mass concentration of solid content(abbreviated as“concentration”)is a critical parameter for CPB.However,discrepancies often arise between the on-site measurements and the pre-designed values due to factors such as groundwater inflow and segregation within the goaf,which cannot be evaluated after the solidification of CPB.This paper innovatively provides an in-situ non-destructive approach to identify the real concentration of CPB after curing for certain days using hyperspectral imaging(HSI)technology.Initially,the spectral variation patterns under different concentration conditions were investigated through hyperspectral scanning experiments on CPB samples.The results demonstrate that as the CPB concentration increases from 61wt%to 73wt%,the overall spectral reflectance gradually increases,with two distinct absorption peaks observed at 1407 and 1917 nm.Notably,the reflectance at 1407 nm exhibited a strong linear relationship with the concentration.Subsequently,the K-nearest neighbors(KNN)and support vector machine(SVM)algorithms were employed to classify and identify different concentrations.The study revealed that,with the KNN algorithm,the highest accuracy was achieved when K(number of nearest neighbors)was 1,although this resulted in overfitting.When K=3,the model displayed the optimal balance between accuracy and stability,with an accuracy of 95.03%.In the SVM algorithm,the highest accuracy of 98.24%was attained with parameters C(regularization parameter)=200 and Gamma(kernel coefficient)=10.A comparative analysis of precision,accuracy,and recall further highlighted that the SVM provided superior stability and precision for identifying CPB concentration.Thus,HSI technology offers an effective solution for the in-situ,non-destructive monitoring of CPB concentration,presenting a promising approach for optimizing and controlling CPB characteristic parameters.
基金supported by National Health and Medical Research Council of Australia(APP1090890 and APP1164954)Cerebral Palsy Alliance(ERG02123)the Victorian Government’s Operational Infrastructure Support Program。
文摘Perinatal exposure to infection/inflammation is highly associated with neural injury,and subsequent impaired cortical growth,disturbances in neuronal connectivity,and impaired neurodevelopment.However,our understanding of the pathophysiological substrate underpinning these changes in brain structure and function is limited.The objective of this review is to summarize the growing evidence from animal trials and human cohort studies that suggest exposure to infection/inflammation during the perinatal period promotes regional impairments in neuronal maturation and function,including loss of high-frequency electroencephalographic activity,and reduced growth and arborization of cortical dendrites and dendritic spines resulting in reduced cortical volume.These inflammation-induced disturbances to neuronal structure and function are likely to underpin subsequent disturbances to cortical development and connectivity in fetuses and/or newborns exposed to infection/inflammation during the perinatal period,leading,in the long term,to impaired neurodevelopment.The combined use of early electroencephalography monitoring with neuroimaging techniques that enable detailed evaluation of brain microstructure,and the use of therapeutics that successfully target systemic and central nervous system inflammation could provide an effective strategy for early detection and therapeutic intervention.
基金supported by the National Natural Science Foundation of China(42430303)Strategy Priority Research Program(Category B)of the Chinese Academy of Sciences(XDB0710000)+2 种基金National Natural Science Foundation of China(42288201)the National Key R&D Program of China(2023YFF0803203)the IGGCAS start-up funding(Grant No.E251510101).
文摘In wave-equation migration and demigration,the cross-correlation imaging/forwarding step implicitly injects an additional copy of the source wavelet,so that the amplitude spectrum of the wavelet is applied redundantly(effectively imposing a wavelet-spectrum weighting,often akin to an amplitude-squared bias).This redundancy degrades structural fidelity and amplitude balance yet is frequently overlooked.We(i)formalize the mechanism by which cross-correlation duplicates the source-wavelet amplitude effect in both migration and demigration,and(ii)introduce a source-equalized operator that removes the redundancy by deconvolving(or dividing by)the wavelet amplitude spectrum in the imaging condition and its demigration counterpart,while leaving phase/kinematics intact.Using a band-limited Ricker wavelet on a two-layer model and on Marmousi,we show that,if unmanaged,the redundant wavelet spectrum broadens main lobes,introduces ringing,and suppresses vertical resolution in migrated images,and inflates spectrum mismatches between demigrated and observed data even when peak times agree.With our correction,images recover observed-data-consistent bandwidth and sharpened interfaces,and demigrated data also exhibit improved spectrum conformity and reduced amplitude misfit.The results clarify when source amplitudes matter,why cross-correlation makes them redundantly matter,and how a lightweight spectral correction restores physically meaningful amplitude behavior in wave-equation migration/demigration.
基金funded by the Deanship of Graduate Studies and Scientific Research at Jouf University under grant No.(DGSSR-2025-02-01296).
文摘Skin diseases affect millions worldwide.Early detection is key to preventing disfigurement,lifelong disability,or death.Dermoscopic images acquired in primary-care settings show high intra-class visual similarity and severe class imbalance,and occasional imaging artifacts can create ambiguity for state-of-the-art convolutional neural networks(CNNs).We frame skin lesion recognition as graph-based reasoning and,to ensure fair evaluation and avoid data leakage,adopt a strict lesion-level partitioning strategy.Each image is first over-segmented using SLIC(Simple Linear Iterative Clustering)to produce perceptually homogeneous superpixels.These superpixels form the nodes of a region-adjacency graph whose edges encode spatial continuity.Node attributes are 1280-dimensional embeddings extracted with a lightweight yet expressive EfficientNet-B0 backbone,providing strong representational power at modest computational cost.The resulting graphs are processed by a five-layer Graph Attention Network(GAT)that learns to weight inter-node relationships dynamically and aggregates multi-hop context before classifying lesions into seven classes with a log-softmax output.Extensive experiments on the DermaMNIST benchmark show the proposed pipeline achieves 88.35%accuracy and 98.04%AUC,outperforming contemporary CNNs,AutoML approaches,and alternative graph neural networks.An ablation study indicates EfficientNet-B0 produces superior node descriptors compared with ResNet-18 and DenseNet,and that roughly five GAT layers strike a good balance between being too shallow and over-deep while avoiding oversmoothing.The method requires no data augmentation or external metadata,making it a drop-in upgrade for clinical computer-aided diagnosis systems.
基金provided by the Science Research Project of Hebei Education Department under grant No.BJK2024115.
文摘High-resolution remote sensing images(HRSIs)are now an essential data source for gathering surface information due to advancements in remote sensing data capture technologies.However,their significant scale changes and wealth of spatial details pose challenges for semantic segmentation.While convolutional neural networks(CNNs)excel at capturing local features,they are limited in modeling long-range dependencies.Conversely,transformers utilize multihead self-attention to integrate global context effectively,but this approach often incurs a high computational cost.This paper proposes a global-local multiscale context network(GLMCNet)to extract both global and local multiscale contextual information from HRSIs.A detail-enhanced filtering module(DEFM)is proposed at the end of the encoder to refine the encoder outputs further,thereby enhancing the key details extracted by the encoder and effectively suppressing redundant information.In addition,a global-local multiscale transformer block(GLMTB)is proposed in the decoding stage to enable the modeling of rich multiscale global and local information.We also design a stair fusion mechanism to transmit deep semantic information from deep to shallow layers progressively.Finally,we propose the semantic awareness enhancement module(SAEM),which further enhances the representation of multiscale semantic features through spatial attention and covariance channel attention.Extensive ablation analyses and comparative experiments were conducted to evaluate the performance of the proposed method.Specifically,our method achieved a mean Intersection over Union(mIoU)of 86.89%on the ISPRS Potsdam dataset and 84.34%on the ISPRS Vaihingen dataset,outperforming existing models such as ABCNet and BANet.
基金funded by the National Natural Science Foundation of China(NNSFC)under Grant Numbers 42322408,42188101,and 42441809Additional support was provided by the Climbing Program of the National Space Science Center(NSSC,Grant No.E4PD3005)as well as the Specialized Research Fund for State Key Laboratories of China.
文摘A large-scale view of the magnetospheric cusp is expected to be obtained by the Soft X-ray Imager(SXI)onboard the Solar wind Magnetosphere Ionosphere Link Explorer(SMILE).However,it is challenging to trace the three-dimensional cusp boundary from a two-dimensional X-ray image because the detected X-ray signals will be integrated along the line of sight.In this work,a global magnetohydrodynamic code was used to simulate the X-ray images and photon count images,assuming an interplanetary magnetic field with a pure Bz component.The assumption of an elliptic cusp boundary at a given altitude was used to trace the equatorward and poleward boundaries of the cusp from a simulated X-ray image.The average discrepancy was less than 0.1 RE.To reduce the influence of instrument effects and cosmic X-ray backgrounds,image denoising was considered before applying the method above to SXI photon count images.The cusp boundaries were reasonably reconstructed from the noisy X-ray image.