期刊文献+
共找到18篇文章
< 1 >
每页显示 20 50 100
非受限条件下多级残差网络人脸图像年龄估计 被引量:11
1
作者 张珂 高策 +3 位作者 郭丽茹 苑津莎 赵振兵 李保罡 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2018年第2期346-353,共8页
年龄是人的固有属性,在人的社会交往中起到了基础性作用,因此人脸图像的年龄估计是人工智能领域的重要问题之一.为了解决非受限条件下人脸图像年龄估计困难的问题,提出一种非受限条件下的多级残差网络人脸年龄估计方法.首先针对高分辨... 年龄是人的固有属性,在人的社会交往中起到了基础性作用,因此人脸图像的年龄估计是人工智能领域的重要问题之一.为了解决非受限条件下人脸图像年龄估计困难的问题,提出一种非受限条件下的多级残差网络人脸年龄估计方法.首先针对高分辨率图像数据集构建多级残差神经网络模型;然后采用Image Net数据集对多级残差网络进行预训练,以获得图像的基本特征表达;最后在非受限人脸年龄数据集上结合随机深度算法对网络模型进行微调.在非受限的Adience人脸年龄分类数据集上进行年龄分类对比实验的结果表明,该方法能够明显地提高非受限条件下人脸年龄估计的准确率,并在提高网络学习能力的同时有效地抑制小规模数据集带来的过拟合问题. 展开更多
关键词 多级残差网络 年龄估计 非受限条件 随机深度算法 imagenet和Adience数据集
在线阅读 下载PDF
基于Apache Spark的海量图像并行检索 被引量:4
2
作者 曹健 张俊杰 +1 位作者 李海生 蔡强 《计算机应用》 CSCD 北大核心 2018年第A02期183-186,230,共5页
针对海量图像如何高效存储和快速检索问题,结合Spark大数据平台和视觉词袋图像(BoVW)检索方法,设计了一种基于Bo VW模型的海量图像并行检索框架。首先,通过BoVW模型对图像进行特征提取、特征聚类和向量表示等预处理过程;其次,对Hadoop... 针对海量图像如何高效存储和快速检索问题,结合Spark大数据平台和视觉词袋图像(BoVW)检索方法,设计了一种基于Bo VW模型的海量图像并行检索框架。首先,通过BoVW模型对图像进行特征提取、特征聚类和向量表示等预处理过程;其次,对Hadoop分布式文件系统(HDFS)中将预处理结果实现高效和稳定的存储;最后,框架利用Spark平台进行并行检索,完成图像间的相似度匹配。在ImageNet图像集上,利用图像的特征提取和聚类、向量表示等方法作为基础实验,采用扩展率和数据伸缩率证明框架稳定性的情况下,通过与传统框架进行对比,该系统加速比均在58%以上,检索准确率保持一致。实验结果表明,该方法具有更强的稳定性和更快速的检索效果。 展开更多
关键词 图像检索 SPARK 视觉词袋 HADOOP分布式文件系统 imagenet数据集
在线阅读 下载PDF
基于深度学习方法的复杂场景下车辆目标检测 被引量:65
3
作者 宋焕生 张向清 +1 位作者 郑宝峰 严腾 《计算机应用研究》 CSCD 北大核心 2018年第4期1270-1273,共4页
针对实际交通场景下的车辆目标,应用深度学习目标分类算法中具有代表性的Faster R-CNN框架,结合Image Net中的车辆数据集,把场景中的目标检测问题转换为目标的二分类问题,进行车辆目标的检测识别。相比传统机器学习目标检测算法,基于深... 针对实际交通场景下的车辆目标,应用深度学习目标分类算法中具有代表性的Faster R-CNN框架,结合Image Net中的车辆数据集,把场景中的目标检测问题转换为目标的二分类问题,进行车辆目标的检测识别。相比传统机器学习目标检测算法,基于深度学习的目标检测算法在检测准确度和执行效率上优势明显。通过本实验结果分析表明,该方法在识别精度以及速度上均取得了显著的提高。 展开更多
关键词 深度学习 FASTER R-CNN imagenet数据集 车辆目标检测
在线阅读 下载PDF
非受限条件下的深度人脸年龄分类 被引量:2
4
作者 张珂 高策 +2 位作者 郭丽茹 苑津莎 赵振兵 《计算机应用》 CSCD 北大核心 2017年第11期3244-3248,3255,共6页
针对非受限条件下人脸图像年龄分类准确度较低的问题,提出了一种基于深度残差网络(ResNets)和大数据集微调的非受限条件下人脸年龄分类方法。首先,选用深度残差网络作为基础卷积神经网络模型处理人脸年龄分类问题;其次,在ImageNet数据... 针对非受限条件下人脸图像年龄分类准确度较低的问题,提出了一种基于深度残差网络(ResNets)和大数据集微调的非受限条件下人脸年龄分类方法。首先,选用深度残差网络作为基础卷积神经网络模型处理人脸年龄分类问题;其次,在ImageNet数据集上对深度残差网络预训练,学习基本图像特征的表达;然后,对大规模人脸年龄图像数据集IMDB-WIKI清洗,并建立了IMDB-WIKI-8数据集用于微调深度残差网络,实现一般物体图像到人脸年龄图像的迁移学习,使模型适应于年龄段的分布并提高网络学习能力;最后,在非受限人脸数据集Adience上对微调后的网络模型进行训练和测试,并采用交叉验证方法获取年龄分类准确度。通过34/50/101/152层残差网络对比可知,随着网络层数越深年龄分类准确度越高,并利用152层残差网络获得了Adience数据集上人脸图像年龄分类的最高准确度65.01%。实验结果表明,结合更深层残差网络和大数据集微调,能有效提高人脸图像年龄分类准确度。 展开更多
关键词 非受限人脸年龄分类 深度残差网络 迁移学习 imagenet
在线阅读 下载PDF
糖微方治疗早期糖尿病视网膜病变疗效观察 被引量:1
5
作者 张雨 钟良玉 +3 位作者 诸力伟 戴琦 徐俊丽 戴红梅 《浙江中西医结合杂志》 2018年第10期876-877,共2页
糖尿病视网膜病变(DR)是一种常见的眼科疾病,具有较高的致盲性,是糖尿病患者的一种常见并发症。现有的药物及手术等新技术治疗DR的循证医学证据不够充分,中医药治疗DR疗效满意。
关键词 糖尿病视网膜病变 糖微方 imagenet2000软件 疗效观察
暂未订购
基于OverFeat模型的长江口南汇潮滩植被分类
6
作者 李静 韩震 +1 位作者 王文柳 崔艳荣 《生态科学》 CSCD 2019年第4期135-141,共7页
潮滩地带环境复杂多变,有些植被之间光谱特性相似,为了解决植被精细分类精度不高的问题,利用基于ImageNet预训练的卷积神经网络OverFeat模型,以高分二号(GF-2)卫星遥感影像作为实验数据,对长江口南汇潮滩不同生长状态的植被进行了深度... 潮滩地带环境复杂多变,有些植被之间光谱特性相似,为了解决植被精细分类精度不高的问题,利用基于ImageNet预训练的卷积神经网络OverFeat模型,以高分二号(GF-2)卫星遥感影像作为实验数据,对长江口南汇潮滩不同生长状态的植被进行了深度特征提取,然后将模型训练好的深度特征输入到支持向量机(SVM)分类器中,得到植被分布信息。研究结果表明,与基于光谱特征的SVM分类方法相比,文章所用方法的分类精度更高,总体精度可达96.08%,证明了使用基于ImageNet数据集的预训练卷积神经网络对不同生长状态的植被可以实现较好的识别。 展开更多
关键词 imagenet 卷积神经网络 OverFeat 特征提取 分类
在线阅读 下载PDF
中文多模态知识库构建 被引量:3
7
作者 晁睿 张坤丽 +4 位作者 王佳佳 胡斌 张维聪 韩英杰 昝红英 《广西师范大学学报(自然科学版)》 CAS 北大核心 2022年第3期31-39,共9页
多模态融合旨在将多个模态信息整合以得到一致、公共的模型输出,是多模态领域的一个基本问题。通过多模态信息的融合能获得更全面的特征并且提高模型鲁棒性,目前多模态融合技术已成为多模态领域核心研究课题之一。本文基于ImageNet、How... 多模态融合旨在将多个模态信息整合以得到一致、公共的模型输出,是多模态领域的一个基本问题。通过多模态信息的融合能获得更全面的特征并且提高模型鲁棒性,目前多模态融合技术已成为多模态领域核心研究课题之一。本文基于ImageNet、HowNet和CCD,通过人工标注构建了一个新的多模态知识库,已完成校准ImageNet中21455个名词及动词概念的映射,有效地将HowNet以及CCD中概念映射到ImageNet中。该数据集能够应用于自然语言处理任务和计算机视觉任务,并通过图片信息和概念信息提高任务效果。在图片分类中,通过增加HowNet和ImageNet概念能够融合更多的图片特征来辅助分类;在语义理解中,通过映射增加图片信息可以更好地理解语义。 展开更多
关键词 多模态信息 多模态融合 imagenet HOWNET CCD
在线阅读 下载PDF
一种基于三通道图像的恶意软件分类方法 被引量:2
8
作者 杨春雨 徐洋 +1 位作者 张思聪 李小剑 《武汉大学学报(理学版)》 CAS CSCD 北大核心 2022年第1期26-34,共9页
针对传统恶意软件采用图像分类方法准确率不高、抗混淆能力弱、模型训练收敛慢的缺点,本文对恶意软件图像表示方法进行改进,将恶意软件、字节Bigram、Lst文件转化成3种灰度图像,将3种灰度图像组合成三通道彩色图像进行分类,并将图像分... 针对传统恶意软件采用图像分类方法准确率不高、抗混淆能力弱、模型训练收敛慢的缺点,本文对恶意软件图像表示方法进行改进,将恶意软件、字节Bigram、Lst文件转化成3种灰度图像,将3种灰度图像组合成三通道彩色图像进行分类,并将图像分类效果好的EfficientNet模型用于恶意软件图像分类。结合迁移学习领域中的微调技术将ImageNet数据集的分类权重应用于EfficientNet,提高模型的收敛速度和分类效果,减少模型的训练开销。实验表明在微调技术下模型收敛速度快于预训练,且微调后的最优模型对20种恶意软件的分类准确率达到97.22%。相比ResNet、VGG16等网络,本文的模型具有参数量和浮点运算次数少、准确率高的优点。 展开更多
关键词 恶意软件 EfficientNet imagenet 微调
原文传递
结合迁移学习与深度卷积网络的心电分类研究 被引量:9
9
作者 查雪帆 杨丰 +2 位作者 吴俣南 刘颖 袁绍锋 《中国医学物理学杂志》 CSCD 2018年第11期1307-1312,共6页
为解决一维深度卷积网络(1D-DCNN)在心电分类方面存在的多类疾病识别不准、难以提取最佳特征等问题,提出一种结合迁移学习与二维深度卷积网络(2D-DCNN)直接识别心电图像的方法。首先,截取R波前后75 ms内的心电信号,并将一维心电电压信... 为解决一维深度卷积网络(1D-DCNN)在心电分类方面存在的多类疾病识别不准、难以提取最佳特征等问题,提出一种结合迁移学习与二维深度卷积网络(2D-DCNN)直接识别心电图像的方法。首先,截取R波前后75 ms内的心电信号,并将一维心电电压信号转化为二维灰度图像信号。接着,构建2D-DCNN对心电节拍样本进行分类训练,权值初始化采用在ImageNet大规模图像数据集上进行预训练的AlexNet参数值。本文提出方法在MIT-BIH心电数据库上进行性能验证,其准确率达到98%,并在不同信噪比下保持较高的准确率,证明了所述模型在心电分类上具有良好的鲁棒性。为了验证2D-DCNN的识别性能,实验部分与采用不同激活函数的1D-DCNN、近些年性能较好的深度学习方法进行比较。量化结果表明,结合迁移学习和2D-DCNN方法,比最优1D-DCNN算法,其准确率提升2%、敏感度提升0.6%、特异性提高4%;在二分类与多分类任务中,均好于现有的其他算法。 展开更多
关键词 心电节拍分类 迁移学习 深度学习 二维深度卷积网络 一维深度卷积网络 imagenet数据集
暂未订购
基于输入通道拆分的对抗攻击迁移性增强算法 被引量:3
10
作者 郑德生 陈继鑫 +4 位作者 周静 柯武平 陆超 周永 仇钎 《计算机工程》 CAS CSCD 北大核心 2023年第1期130-137,共8页
深度神经网络已被应用于人脸识别、自动驾驶等场景中,但容易受到对抗样本的攻击。对抗样本的生成方法被分为白盒攻击和黑盒攻击,当对抗攻击算法攻击白盒模型时存在过拟合问题,导致生成对抗样本的迁移性降低。提出一种用于生成高迁移性... 深度神经网络已被应用于人脸识别、自动驾驶等场景中,但容易受到对抗样本的攻击。对抗样本的生成方法被分为白盒攻击和黑盒攻击,当对抗攻击算法攻击白盒模型时存在过拟合问题,导致生成对抗样本的迁移性降低。提出一种用于生成高迁移性对抗样本的对抗攻击算法CSA。在每次迭代过程中,通过对输入RGB图片的通道进行拆分,得到三张具有一个通道的输入图片,并对其进行零值填充,获得三张具有三个通道的输入图片。将最终得到的图片与原始RGB输入图片共同传入到模型中进行梯度计算,调整原始梯度的更新方向,避免出现局部最优。在此基础上,通过符号法生成对抗样本。在ImageNet数据集上的实验验证该算法的有效性,结果表明,CSA算法能够有效提高对抗攻击的迁移性,在四种常规训练模型上的攻击成功率平均为84.2%,与DIM、TIM结合所得DI-TI-CSA算法在三种对抗训练黑盒模型上的攻击成功率平均为94.7%,对七种防御模型的攻击成功率平均为91.8%。 展开更多
关键词 对抗攻击 迁移性增强 对抗样本 白盒模型 imagenet数据集
在线阅读 下载PDF
基于InceptionV3和特征融合的人脸活体检测 被引量:3
11
作者 杨瑞杰 郑贵林 《计算机应用》 CSCD 北大核心 2022年第7期2037-2042,共6页
针对身份验证中经常出现的照片欺诈问题,提出了一种基于InceptionV3和特征融合的人脸活体检测模型——InceptionV3_FF。首先,在ImageNet数据集上预训练InceptionV3模型;其次,从InceptionV3模型的不同层得到图像的浅层、中层和深层特征;... 针对身份验证中经常出现的照片欺诈问题,提出了一种基于InceptionV3和特征融合的人脸活体检测模型——InceptionV3_FF。首先,在ImageNet数据集上预训练InceptionV3模型;其次,从InceptionV3模型的不同层得到图像的浅层、中层和深层特征;然后,将不同的特征进行融合得到最终的特征;最后,使用全连接层对特征进行分类,从而实现端到端的训练。InceptionV3_FF模型在NUAA数据集和自制的STAR数据集上进行仿真实验,实验结果表明,InceptionV3_FF模型在NUAA数据集和STAR数据集上分别取得了99.96%和98.85%的准确率,高于InceptionV3迁移学习和迁移微调模型;而与非线性扩散卷积神经网络(ND-CNN)、扩散核(DK)、异构内核卷积神经网络(HKCNN)等模型相比,InceptionV3_FF模型在NUAA数据集上的准确率更高,具备一定的优越性。InceptionV3_FF模型对数据集中随机抽取的单张图片进行识别时,仅需4 ms。InceptionV3_FF模型和OpenCV结合构成的活体检测系统可以对真假人脸进行识别。 展开更多
关键词 活体检测 特征融合 人脸识别 imagenet数据集 NUAA数据集 迁移学习
在线阅读 下载PDF
用于人体行为识别的Inflated VGGNet-16网络 被引量:1
12
作者 王震 刘瑞敏 黄琼桃 《北京化工大学学报(自然科学版)》 CAS CSCD 北大核心 2020年第3期114-121,共8页
针对目前人体行为识别算法中C3D网络结构较浅、特征提取能力差,以及无可用预训练模型、训练耗时长等问题,以更深的VGGNet-16网络为基础,通过添加批归一化层(batch normalization layer)以及使用Inflating方法将ImageNet预训练模型用于... 针对目前人体行为识别算法中C3D网络结构较浅、特征提取能力差,以及无可用预训练模型、训练耗时长等问题,以更深的VGGNet-16网络为基础,通过添加批归一化层(batch normalization layer)以及使用Inflating方法将ImageNet预训练模型用于网络初始化,设计了一种新型的人体行为识别3D网络。通过在标准数据集UCF101与HMDB-51上的实验分析,将图片进行中心剪切后作为所设计网络的输入,从零训练时在UCF101数据集上比原始C3D网络的精度提高了9.2%,并且网络收敛速度更快,验证了所设计的Inflated VGGNet-16网络具有更强的特征提取与泛化能力。最后,将所设计网络加上10倍数据增强,在两个标准数据集上准确率分别达到了89.6%与61.7%,相比于较浅的C3D网络在UCF101数据集上提升了7.3%,超过了传统的改进密集轨迹法(iDT)以及经典的双流卷积神经网络(two-stream),具有较高的行为识别准确率。 展开更多
关键词 行为识别 VGGNet-16 Inflating imagenet预训练 数据增强
在线阅读 下载PDF
迁移学习方法提取高分一号影像汶川地震震后滑坡 被引量:4
13
作者 李震 李山山 葛小青 《遥感学报》 EI CSCD 北大核心 2023年第8期1866-1875,共10页
2008年汶川8.0级地震触发了大量的崩塌滑坡地质灾害,导致强震区震后地质灾害频发,因其对生命和财产的巨大威胁而广泛关注。利用遥感等技术快速提取滑坡信息,对于减少灾害造成的损失具有重要的现实意义。本文提出一种迁移学习方法,从自... 2008年汶川8.0级地震触发了大量的崩塌滑坡地质灾害,导致强震区震后地质灾害频发,因其对生命和财产的巨大威胁而广泛关注。利用遥感等技术快速提取滑坡信息,对于减少灾害造成的损失具有重要的现实意义。本文提出一种迁移学习方法,从自然场景数据集中学习特征,迁移到滑坡提取中。该方法首先在ImageNet上预训练ResNet网络,然后输入滑坡区影像样本,将预训练网络及参数迁移至LinkNet上,最终实现滑坡提取。通过对2013年—2015年3景影像的汶川地震震后滑坡提取实验进行分析及验证,结果显示相较于传统支持向量机和其他深度学习方法,本文提出的迁移学习方法有较优的提取精度,有利于后续研判及决策。 展开更多
关键词 遥感 滑坡提取 迁移学习 imagenet 高分一号
原文传递
深度学习下的病媒蚊虫分类 被引量:2
14
作者 周永新 余本国 《计算机系统应用》 2023年第5期234-243,共10页
蚊虫是多种疾病的传播媒介,对病媒蚊虫的监测是预防蚊媒疾病的关键,针对传统病媒蚊虫的人工鉴定方法成本较高且效率低下,提出深度学习下的病媒蚊虫分类方法,基于迁移学习,微调(fine-tuning)ResNet18、DenseNet121、MobileNetV2这3种Imag... 蚊虫是多种疾病的传播媒介,对病媒蚊虫的监测是预防蚊媒疾病的关键,针对传统病媒蚊虫的人工鉴定方法成本较高且效率低下,提出深度学习下的病媒蚊虫分类方法,基于迁移学习,微调(fine-tuning)ResNet18、DenseNet121、MobileNetV2这3种ImageNet预训练模型,在900张少量蚊虫数据集下采用K折交叉验证,对埃及伊蚊、白纹伊蚊、库蚊3种蚊虫进行分类,评估模型性能,平均峰值准确率分别达到了95%、97%、97%.最后,利用在900张蚊虫数据集下重新训练后的模型,对344张蚊虫图像进行预测,其中轻量化模型MobileNetV2达到了最高0.95的精准率(precision)、召回率(recall)、F1 score.结合3种模型的最终预测准确率,得出轻量化的模型MobileNetV2在少量数据集下表现更优.实验改变了以往的模型微调方式,通过设置模型分类层学习率为前层学习率的10倍,与前人实验相比,对白纹伊蚊的预测准确率提高了5%–6%,解决了少量数据样本的训练收敛问题,进一步拓展了病媒蚊虫识别的适用环境. 展开更多
关键词 蚊虫分类 深度学习 迁移学习 imagenet K折交叉验证 卷积神经网络
在线阅读 下载PDF
基于深度学习模型的以图搜图技术在新华社供稿服务中的创新应用 被引量:1
15
作者 熊立波 《中国传媒科技》 2022年第10期139-141,151,共4页
【目的】为新华社供稿用户提供以图搜图服务。【方法】使用深度学习人工智能技术,实现基于图像内容特征描述的以图搜图服务。【结果】分别基于离散余弦算法DCT和基于深度学习VGG16模型实现了以图搜图算法,并将服务应用到新华全媒新闻服... 【目的】为新华社供稿用户提供以图搜图服务。【方法】使用深度学习人工智能技术,实现基于图像内容特征描述的以图搜图服务。【结果】分别基于离散余弦算法DCT和基于深度学习VGG16模型实现了以图搜图算法,并将服务应用到新华全媒新闻服务平台,是新华社供稿平台第一次实现以图搜图功能,为用户提供精准的图片搜索服务,得到了用户的一致好评。【结论】通过对基于离散余弦算法DCT和基于深度学习VGG16模型的以图搜图实现进行对比测试,得出基于深度学习模型的算法更优的结论,验证了方案的可行性。 展开更多
关键词 以图搜图 深度学习 imagenet 卷积神经网络 VGG16
在线阅读 下载PDF
Beyond the Screen Deciphering the shift from conversational to embodied AI
16
作者 Tao Zihui 《Beijing Review》 2025年第14期34-35,共2页
A round 2010,academic circles witnessed a surge in Al research fueled by break-throughs such as the ImageNet project,a publicly available large-scale image database.The field reached a tipping point in 2016 when Googl... A round 2010,academic circles witnessed a surge in Al research fueled by break-throughs such as the ImageNet project,a publicly available large-scale image database.The field reached a tipping point in 2016 when Google’s AlphaGo defeated Go world champion Lee Se-dol and gained widespread public attention with the release of OpenAI's ChatGPT in November 2022.Just one year after ChatGPT’s debut,Chinese Al firm DeepSeek launched its open-source general large model,a milestone in the evolution of Al technology. 展开更多
关键词 embodied ai deepseek imagenet openai al technology alphago conversational ai chatgpt
原文传递
High performance vegetable classification from images based on AlexNet deep learning model 被引量:10
17
作者 Ling Zhu Zhenbo Li +2 位作者 Chen Li Jing Wu Jun Yue 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2018年第4期217-223,共7页
Deep learning techniques can automatically learn features from a large number of image data set.Automatic vegetable image classification is the base of many applications.This paper proposed a high performance method f... Deep learning techniques can automatically learn features from a large number of image data set.Automatic vegetable image classification is the base of many applications.This paper proposed a high performance method for vegetable images classification based on deep learning framework.The AlexNet network model in Caffe was used to train the vegetable image data set.The vegetable image data set was obtained from ImageNet and divided into training data set and test data set.The output function of the AlexNet network adopted the Rectified Linear Units(ReLU)instead of the traditional sigmoid function and the tanh function,which can speed up the training of the deep learning network.The dropout technology was used to improve the generalization of the model.The image data extension method was used to reduce overfitting in the learning process.With AlexNet network model used for training different number of vegetable image data set,the experimental results showed that the classification accuracy decreases as the number of data set decreases.The experimental verification indicated that the accuracy rate of the deep learning method in the test data set reached as high as 92.1%,which was greatly improved compared with BP neural network(78%)and SVM classifier(80.5%)methods. 展开更多
关键词 vegetable classification deep learning Caffe AlexNet Network imagenet
原文传递
A comparative analysis of paddy crop biotic stress classification using pre-trained deep neural networks 被引量:1
18
作者 Naveen N.Malvade Rajesh Yakkundimath +2 位作者 Girish Saunshi Mahantesh C.Elemmi Parashuram Baraki 《Artificial Intelligence in Agriculture》 2022年第1期167-175,共9页
The agriculture sector is no exception to the widespread usage of deep learning tools and techniques.In this paper,an automated detection method on the basis of pre-trained Convolutional Neural Network(CNN)models is p... The agriculture sector is no exception to the widespread usage of deep learning tools and techniques.In this paper,an automated detection method on the basis of pre-trained Convolutional Neural Network(CNN)models is proposed to identify and classify paddy crop biotic stresses from the field images.The proposed work also provides the empirical comparison among the leading CNN models with transfer learning from the ImageNet weights namely,Inception-V3,VGG-16,ResNet-50,DenseNet-121 and MobileNet-28.Brown spot,hispa,and leaf blast,three of the most common and destructive paddy crop biotic stresses that occur during the flowering and ripening growth stages are considered for the experimentation.The experimental results reveal that the ResNet-50 model achieves the highest average paddy crop stress classification accuracy of 92.61%outperforming the other considered CNN models.The study explores the feasibility of CNN models for the paddy crop stress identification as well as the applicability of automated methods to non-experts. 展开更多
关键词 Paddy crop Stress classification Biotic stress PlantVillage imagenet Pre-trained CNN models
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部