Background:Irregular heartbeats can have serious health implications if left undetected and untreated for an extended period of time.Methods:This study leverages machine learning(ML)techniques to classify electrocardi...Background:Irregular heartbeats can have serious health implications if left undetected and untreated for an extended period of time.Methods:This study leverages machine learning(ML)techniques to classify electrocardiogram(ECG)heartbeats,comparing traditional feature-based ML methods with innovative image-based approaches.The dataset underwent rigorous preprocessing,including down-sampling,frequency filtering,beat segmentation,and normalization.Two methodologies were explored:(1)handcrafted feature extraction,utilizing metrics like heart rate variability and RR distances with LightGBM classifiers,and(2)image transformation of ECG signals using Gramian Angular Field(GAF),Markov Transition Field(MTF),and Recurrence Plot(RP),enabling multimodal input for convolutional neural networks(CNNs).The Synthetic Minority Oversampling Technique(SMOTE)addressed data imbalance,significantly improving minority-class metrics.Results:The handcrafted feature approach achieved notable performance,with LightGBM excelling in precision and recall.Image-based classification further enhanced outcomes,with a custom Inception-based CNN,attaining an 85%F1 score and 97%accuracy using combined GAF,MTF,and RP transformations.Statistical analyses confirmed the significance of these improvements.Conclusion:This work highlights the potential of ML for cardiac irregularities detection,demonstrating that combining advanced preprocessing,feature engineering,and state-of-the-art neural networks can improve classification accuracy.These findings contribute to advancing AI-driven diagnostic tools,offering promising implications for cardiovascular healthcare.展开更多
Biological classification is the foundation of biology and paleontology,as it arranges all the organisms in a hierarchy that humans can easily follow and understand.It is further used to reconstruct the evolution of l...Biological classification is the foundation of biology and paleontology,as it arranges all the organisms in a hierarchy that humans can easily follow and understand.It is further used to reconstruct the evolution of life.A biological classification system(BCS)that includes all the established fossil taxa would be both useful and challenging for uncovering the life history.Since fossil taxa were originally recorded in various published books and articles written by natural languages,the primary step is to organize all those taxa information in a manner that can be deciphered by a computer system.A Knowledge Graph(KG)is a formalized description framework of semantic knowledge,which represents and retrieves knowledge in a machine-understandable way,and therefore provides an eligible method to represent the BCS.In this paper,a model of the BCS KG including the ontology and fact layers is presented.To put it into practice,the ontology layer of the invertebrate fossil branches was manually developed,while the fact layer was automatically constructed by extracting information from 46 volumes of the Treatise of Invertebrate Paleontology series with the help of natural language processing technology.As a result,27348 taxa nodes spanning fourteen taxonomic ranks were extracted with high accuracy and high efficiency,and the invertebrate fossil branches of the BCS KG was thus installed.This study demonstrates that a properly designed KG model and its automatic construction with the help of natural language processing are reliable and efficient.展开更多
The key-blocks are the main reason accounting for structural failure in discontinuous rock slopes, and automated identification of these block types is critical for evaluating the stability conditions. This paper pres...The key-blocks are the main reason accounting for structural failure in discontinuous rock slopes, and automated identification of these block types is critical for evaluating the stability conditions. This paper presents a classification framework to categorize rock blocks based on the principles of block theory. The deep convolutional neural network(CNN) procedure was utilized to analyze a total of 1240 highresolution images from 130 slope masses at the South Pars Special Zone, Assalouyeh, Southwest Iran.Based on Goodman’s theory, a recognition system has been implemented to classify three types of rock blocks, namely, key blocks, trapped blocks, and stable blocks. The proposed prediction model has been validated with the loss function, root mean square error(RMSE), and mean square error(MSE). As a justification of the model, the support vector machine(SVM), random forest(RF), Gaussian naïve Bayes(GNB), multilayer perceptron(MLP), Bernoulli naïve Bayes(BNB), and decision tree(DT) classifiers have been used to evaluate the accuracy, precision, recall, F1-score, and confusion matrix. Accuracy and precision of the proposed model are 0.95 and 0.93, respectively, in comparison with SVM(accuracy = 0.85, precision = 0.85), RF(accuracy = 0.71, precision = 0.71), GNB(accuracy = 0.75,precision = 0.65), MLP(accuracy = 0.88, precision = 0.9), BNB(accuracy = 0.75, precision = 0.69), and DT(accuracy = 0.85, precision = 0.76). In addition, the proposed model reduced the loss function to less than 0.3 and the RMSE and MSE to less than 0.2, which demonstrated a low error rate during processing.展开更多
文摘Background:Irregular heartbeats can have serious health implications if left undetected and untreated for an extended period of time.Methods:This study leverages machine learning(ML)techniques to classify electrocardiogram(ECG)heartbeats,comparing traditional feature-based ML methods with innovative image-based approaches.The dataset underwent rigorous preprocessing,including down-sampling,frequency filtering,beat segmentation,and normalization.Two methodologies were explored:(1)handcrafted feature extraction,utilizing metrics like heart rate variability and RR distances with LightGBM classifiers,and(2)image transformation of ECG signals using Gramian Angular Field(GAF),Markov Transition Field(MTF),and Recurrence Plot(RP),enabling multimodal input for convolutional neural networks(CNNs).The Synthetic Minority Oversampling Technique(SMOTE)addressed data imbalance,significantly improving minority-class metrics.Results:The handcrafted feature approach achieved notable performance,with LightGBM excelling in precision and recall.Image-based classification further enhanced outcomes,with a custom Inception-based CNN,attaining an 85%F1 score and 97%accuracy using combined GAF,MTF,and RP transformations.Statistical analyses confirmed the significance of these improvements.Conclusion:This work highlights the potential of ML for cardiac irregularities detection,demonstrating that combining advanced preprocessing,feature engineering,and state-of-the-art neural networks can improve classification accuracy.These findings contribute to advancing AI-driven diagnostic tools,offering promising implications for cardiovascular healthcare.
基金supported by the National Key R&D Program of China(No.2018YFE0204201)the National Natural Science Foundation of China(Nos.92255301,42302001)Jiangsu Innovation Support Plan for International Science and Technology Cooperation Programm(No.BZ2023068)。
文摘Biological classification is the foundation of biology and paleontology,as it arranges all the organisms in a hierarchy that humans can easily follow and understand.It is further used to reconstruct the evolution of life.A biological classification system(BCS)that includes all the established fossil taxa would be both useful and challenging for uncovering the life history.Since fossil taxa were originally recorded in various published books and articles written by natural languages,the primary step is to organize all those taxa information in a manner that can be deciphered by a computer system.A Knowledge Graph(KG)is a formalized description framework of semantic knowledge,which represents and retrieves knowledge in a machine-understandable way,and therefore provides an eligible method to represent the BCS.In this paper,a model of the BCS KG including the ontology and fact layers is presented.To put it into practice,the ontology layer of the invertebrate fossil branches was manually developed,while the fact layer was automatically constructed by extracting information from 46 volumes of the Treatise of Invertebrate Paleontology series with the help of natural language processing technology.As a result,27348 taxa nodes spanning fourteen taxonomic ranks were extracted with high accuracy and high efficiency,and the invertebrate fossil branches of the BCS KG was thus installed.This study demonstrates that a properly designed KG model and its automatic construction with the help of natural language processing are reliable and efficient.
基金support provided by the National Natural Science Foundation of China(Grant No.42077235)the National Key Research and Development Program of China(Grant No.2018YFC1505104).
文摘The key-blocks are the main reason accounting for structural failure in discontinuous rock slopes, and automated identification of these block types is critical for evaluating the stability conditions. This paper presents a classification framework to categorize rock blocks based on the principles of block theory. The deep convolutional neural network(CNN) procedure was utilized to analyze a total of 1240 highresolution images from 130 slope masses at the South Pars Special Zone, Assalouyeh, Southwest Iran.Based on Goodman’s theory, a recognition system has been implemented to classify three types of rock blocks, namely, key blocks, trapped blocks, and stable blocks. The proposed prediction model has been validated with the loss function, root mean square error(RMSE), and mean square error(MSE). As a justification of the model, the support vector machine(SVM), random forest(RF), Gaussian naïve Bayes(GNB), multilayer perceptron(MLP), Bernoulli naïve Bayes(BNB), and decision tree(DT) classifiers have been used to evaluate the accuracy, precision, recall, F1-score, and confusion matrix. Accuracy and precision of the proposed model are 0.95 and 0.93, respectively, in comparison with SVM(accuracy = 0.85, precision = 0.85), RF(accuracy = 0.71, precision = 0.71), GNB(accuracy = 0.75,precision = 0.65), MLP(accuracy = 0.88, precision = 0.9), BNB(accuracy = 0.75, precision = 0.69), and DT(accuracy = 0.85, precision = 0.76). In addition, the proposed model reduced the loss function to less than 0.3 and the RMSE and MSE to less than 0.2, which demonstrated a low error rate during processing.